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A SHORT WAY TO DIRECTED JÓNSSON

TERMS

A b s t r a c t. We show that a variety with Jónsson terms t1, . . . , tn´1 has

directed Jónsson terms d1, . . . , dn´1 for the same value of the indices, solving a

problem raised by Kazda et al. Refined results are obtained for locally finite

varieties.

1 Introduction

Congruence distributive varieties can be characterized by means of the existence of Jónsson

terms. More recently, Kazda et al. [7] provided another characterization by means of a

“directed” variant of Jónsson terms. This novel characterization and generalizations have

found applications in computational complexity [1, 2, 9], as well as in classical universal

algebra [1, 5, 10, 11].

The construction from [7] provides a rather large number of terms, as evaluated in [7,

Section 7], where the problem is asked whether this value can be lowered. We answer the

question, proving the quite unexpected result that if congruence distributivity of some

variety V is witnessed by a certain number of Jónsson terms, then V has the very same
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(or, possibly, smaller) number of directed Jónsson terms. This is the best possible result;

see [12, Theorem 5.2(i)].

We now recall the basic definitions. Given a variety V , a sequence t0, t1, . . . , tn´1, tn of

Jónsson terms is a sequence satisfying the following equations in all algebras in V .

x « tipx, y, xq, for 0 ă i ă n, (J1)

x « t0px, y, zq, (J2)

tipx, x, zq « ti`1px, x, zq, for i even, 0 ď i ă n, (J3)

tipx, z, zq « ti`1px, z, zq, for i odd, 0 ď i ă n, (J4)

tnpx, y, zq « z. (J5)

A sequence of directed Jónsson terms is a sequence of terms satisfying (J1), (J2) and

(J5), as well as

tipx, z, zq « ti`1px, x, zq, for every i, 0 ď i ă n. (D)

In the case of directed terms there is no distinction between even and odd indices. To the

best of our knowledge, directed Jónsson terms first appeared (unnamed) in [15], motivated

by [13].

A variety with Jónsson terms (directed Jónsson terms) t0, t1, . . . , tn´1, tn is said to be

n-distributive (n-directed distributive). In both cases, the terms t0 and tn are projections,

hence the conditions can be reformulated by talking only about t1, . . . , tn´1. For example,

a variety has directed Jónsson terms if and only if V has terms t1, . . . , tn´1 satisfying (J1),

(D), x « t1px, x, zq and tn´1px, z, zq « z.

Jónsson [6] proved that a variety V is congruence distributive if and only if V has

Jónsson terms, for some n. Kazda et al. [7] proved that a variety V has a sequence of

Jónsson terms if and only if V has a sequence of directed Jónsson terms.

The proofs in [7] provide very long chains of terms, see [7, Section 7]. Here we show

that if V is n-distributive, then V is n-directed distributive. Notice that, on the other

hand, for n ě 3, an n-directed distributive variety is not necessarily n distributive; see

[12, Theorem 5.2].

The basic idea of our proof is actually very simple. Recall that a Pixley term for

some variety is a ternary term t such that x « tpx, z, zq « tpx, y, xq and tpx, x, zq « z.

As well-known, a variety with a Pixley term is 2-distributive, as witnessed by the term

t♦px, y, zq “ tpx, tpx, y, zq, zq. Since, in the special case n “ 2, n-distributivity is the

same as n-directed distributivity, we get that a variety with a Pixley term is 2-directed

distributive. Hence one could hope that, for arbitrary n and given terms witnessing

n-distributivity, setting

t♦i px, y, zq “ tiptipx, z, zqtipx, y, zq, tipx, x, zqq, (1.1)
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for even i, could produce a sequence of directed Jónsson terms. Of course, this näıve

expectation, as it stands, is wrong, since also the the remaining terms should be modified,

and some required identity might be missing.

The above procedure works in the case n “ 4, by suitably modifying the terms t1 and

t3, as exemplified in the proof of [12, Proposition 5.4]. For larger n, we do not know a

simple way to obtain the result. The best we are able to do, so far, is to perform the

substitution (1.1) on one even index at a time, each time suitably modifying the remaining

terms. Compare the proof of Claim 4.4 below, but note that we will work with binary

terms, as we are going to explain in the next paragraph. Already in the special case n “ 6

our proof becomes rather involved, see Example 4.6 in the preprint version of this paper1.

On the other hand, as just mentioned, we can indeed simplify the arguments a little

by considering binary terms instead of ternary terms, using the well-known fact that the

Jónsson and the directed identities can be written in a way involving just two variables.

Thus we are lead to an accurate analysis of binary terms in V and of some ways of com-

bining them, extending notions and ideas from [4, 7]. The main tool here is Proposition

3.2: clause (v)(d) there corresponds to the substitution (1.1), while clause (v)(b) helps

to maintain the remaining identities. However, the most intricate aspect of the proof of

the main result is the need of additional identities connecting “distant” terms. These

identities are needed in order to obtain the desired directed identities and correspond to

dashed arrows in our notation; this means that the connecting terms are not required to

satisfy x « tpx, y, xq. The whole of Proposition 3.2 is devoted to obtain such connections

and the main inductive proof is presented in Claim 4.2.

Our methods become slightly easier and our results are somewhat more general in

the case of locally finite varieties, or just under the assumption that every algebra in V
generated by 2 elements is finite. In this case the connections tying distant terms are

easier to come by and we succeed in dealing with more general configurations associated

to paths, as first studied in [8] in a somewhat broader situation. It is an open problem

whether these results hold with no finiteness assumption.

2 Preliminaries

We mainly use the notation from [8]. Most of the notions appeared also in [7], sometimes

in different terminology. We assume that the reader is familiar with the basic notions of

universal algebra, as can be found, e. g., in [14]. Familiarity with [4, 7, 8] would make the

paper easier to read. Some useful comments can be found in [12].

Convention 2.1. Throughout this note, we fix a variety V all whose operations are

idempotent. For the sake of brevity, we will simply say that V is idempotent. We work

in the free algebra F2pVq generated in V by two elements x̄ and z̄. Since V is fixed, we

1arXiv:2405.02768v2.
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will frequently write F2 in place of F2pVq. Elements of F2 are denoted by s, s1, s
1, r, . . .

Since F2 is generated by x̄ and z̄, to every element s P F2 there is associated some term

ŝ depending on the variables x and z such that s is the interpretation of ŝ under the

assignment x ÞÑ x̄ and z ÞÑ z̄. Thus s “ s̄px̄, z̄q, where s̄ is a shorthand for ŝF2 , namely,

s̄px̄, z̄q denotes the interpretation of ŝ under the above assignment. Notice that x̄ is the

interpretation of the variable x, hence the notation is consistent. When there is no risk

of ambiguity, we will sometimes omit the bars.

The term ŝ is not unique; however, since F2 is free, any other term satisfying the

condition is interpreted in the same way inside V .

The Maltsev conditions we consider are defined using ternary terms, but in all proofs

we succeeded in working just with binary terms (abstractly, this is due to the fact that the

Maltsev conditions we deal with can be expressed using only two variables, hence, say, a

variety is congruence distributive if and only if the free algebra F2 generates a congruence

distributive variety. See [4] for further elaboration on this). The main connection among

binary and ternary terms is given by the following definition, rephrasing notions from

[7, 8].

Definition 2.2. In this note « is used in equations with the intended meaning that

the equations are always satisfied in V . Also the notions we are going to define depend

on V , but we will not explicitly indicate the dependence, since V will be kept fixed.

We will consider directed graphs whose vertexes are elements of F2 and whose edges are

labeled either as solid or dashed. If s, r P F2, there is an edge from s to r if and only if there

is a ternary V-term t such that the equations ŝpx, zq « tpx, x, zq and tpx, z, zq « r̂px, zq

are valid in V . We shall denote this as s 99K r or r L99 s. In particular, s L99 r means

that there is a term t such that ŝpx, zq « tpx, z, zq and tpx, x, zq « r̂px, zq. Intuitively, an

arrow means that the variable x is moved to z in the middle argument of t and in the

same direction.

If furthermore t can be chosen in such a way that x « tpx, y, xq, then the edge from s

to r is solid, denoted by sÑ r or r Ð s. It is convenient to have multiple edges, so that

if, say, s Ñ r, then also s 99K r. As custom, a notation like s Ñ s1 L99 s2 Ð s3 99K s4

means that sÑ s1, s1 L99 s2, s2 Ð s3 and s3 99K s4 at the same time.

Remark 2.3. As we mentioned, we use a notation quite similar to [8]. In [7], instead,

a different notation is used: the relations denoted by F and E in [7, p. 209] correspond

to 99K and Ñ in the present notation. In [7] arrows are used to denote transitive closures

of the relations F and E. Here we have no use for transitive closure, since we want to

deal with the exact length of paths.

Example 2.4. Many Maltsev conditions can be represented by undirected paths from

x to z in F2.
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(a) For example, for n even, V is n-distributive if and only if there are s2, s3, . . . ,

sn´1 P F2 such that x Ñ s2 Ð s3 Ñ s4 Ð s5 Ñ ¨ ¨ ¨ Ð sn´1 Ñ z. A path representing

n-distributivity for n odd is similar, except that we have ¨ ¨ ¨ Ñ sn´1 Ð z on the right

side.

Indeed, the condition is equivalent to the existence of terms t1, . . . , tn´1 such that x «

tipx, y, xq, for every i ă n, x « t1px, x, zq, t1px, z, zq « ŝ2px, zq « t2px, z, zq, t2px, x, zq «

ŝ3px, zq « t3px, x, zq . . . Notice that if there are terms t1, . . . , tn´1 satisfying the conditions

for n-distributivity, then s2, s3, . . . , sn´1 can be expressed in terms of the tis.

(b) Similarly, directed distributivity is equivalent to the realizability of x Ñ s2 Ñ

s3 Ñ s4 Ñ ¨ ¨ ¨ Ñ z.

Paths like x Ñ s2 Ñ s3 Ñ s4 Ñ . . . z or (undirected) paths like x Ñ s2 Ð s3 Ñ

s4 Ð . . . z will be called pattern paths and a variety V is said to realize the pattern

path if F2pVq has elements s2, s3, . . . such that the relations represented by the path are

satisfied. Equivalently, V has binary terms ŝ2, ŝ3, . . . , ŝn´1 and ternary terms t1, . . . , tn´1

such that the equations given by Definition 2.2 hold through V . We will frequently

consider additional edges between the vertexes of the above paths.

(c) If we exchange the conditions for i odd and i even in the definition of Jónsson

terms, we get a condition which is frequently called the alvin condition. See [4, 12] for a

discussion. The alvin condition corresponds to the realizability of x Ð s2 Ñ s3 Ð s4 Ñ

s5 Ð s6 Ñ s7 Ð . . . z.

So far, we have presented conditions involving only solid edges. Any condition rep-

resented, as above, by an undirected path from x to z implies congruence distributivity

[8, 12]. We now deal with weaker conditions involving dashed edges and which are equiv-

alent to congruence modularity.

(d) If in the alvin condition above we do not ask for the equation x « t1px, y, xq to be

satisfied, we get a sequence of Gumm terms. In detail, Gumm terms are terms satisfying

the equations in (J3) for i odd, the equations in (J4) for i even, the equations (J2) and

(J5) and the equations in (J1) for 1 ă i. The existence of Gumm terms corresponds to

the realizability of x L99 s2 Ñ s3 Ð s4 Ñ s5 Ð s6 Ñ s7 Ð . . . z.

The definition of Gumm terms is not uniform in the literature, see [12, Remark 7.2]

for a discussion.

(e) For n even, n ě 4, defective Gumm terms, introduced in [3] in different terminology,

correspond to a path of the form x L99 s2 Ñ s3 Ð s4 Ñ s5 Ð s6 Ñ s7 Ð ¨ ¨ ¨ Ñ sn´5 Ð

sn´4 Ñ sn´3 Ð sn´2 Ñ sn´1 L99 z. See [12] for further details.

(f) Finally, directed Gumm terms [7] correspond to the realizability of xÑ s2 Ñ s3 Ñ

s4 Ñ ¨ ¨ ¨ Ñ sn´3 Ñ sn´2 Ñ sn´1 L99 z.

So far, we have dealt with conditions implying congruence distributivity or at least

congruence modularity. It is not the case that every condition involving some path from

x to z does imply congruence modularity. In fact, if a dashed right arrow is present, the

resulting condition is trivially satisfied by every variety [8]. Intermediate situations might
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occur.

(g) As a condition which we will use only marginally here, V is n-permutable if and

only if x L99 s2 L99 s3 L99 ¨ ¨ ¨ L99 sn´1 L99 z can be realized. Recall that, for n ě 4,

n-permutability does not imply congruence modularity.

(h) In examples (d) - (f) above we have taken conditions implying congruence dis-

tributivity and we have changed some solid edges to dashed, getting conditions implying

congruence modularity. The procedure applies only when left-oriented edges on the two

borders are changed. See [12, Section 8].

For example, Polin variety realizes x Ð s2 L99 s3 Ð z and x Ñ s2 L99 s3 Ñ z [12,

Remark 10.11], but Polin variety is not congruence modular.

The correspondences described in the present example can be further refined, but we

shall not need this here. See [4, 8, 12] for more details and for further Maltsev conditions

expressible in the above fashion. Notice that here we have shifted the indices of the terms

si, in comparison with [8, Section 3.2].

3 A useful proposition

Remark 3.1. The key to our proofs is to nest the terms giving the relevant conditions.

While the terms are ternary, it will be almost everywhere sufficient to deal with binary

terms. In other words, we need to combine terms associated to elements of F2. Recalling

Convention 2.1, if s, s1, s2 P F2, then r “ s̄ps1, s2q is the element of F2 obtained by

interpreting the term ŝ under the assignment x ÞÑ s1, z ÞÑ s2. Thus a term r̂ corresponding

to r is given by r̂px, yq “ ŝpŝ1px, yq, ŝ2px, yqq. Some subtle properties of the above way

of generating elements of F2 are listed in the next proposition. In particular, item (v)(d)

below will allow us to reverse some arrows, and item (viii) will give us the possibility of

obtaining relations involving new terms not appearing in the assumptions.

For every s P F2 and p ě 0, we define spps inductively by sp0s “ s and spp`1s “ s̄px, sppsq.

Proposition 3.2. Assume that V is a variety all whose operations are idempotent;

let s, s1, s
1
1, . . . , r, r1, . . . P F2 and assume the above notation and definitions. Then the

following statements hold.

(i) sÑ s, for every s, that is, Ñ is reflexive.

(ii) x 99K z. More generally, x 99K s and s 99K z, for every s.

(iii) The binary relations Ñ, Ð, 99K and L99 are compatible in F2.

(iv) More generally, assume that t is an m-ary term, I Ď t1, . . . ,mu and tpx1, . . . , xmq «

x is an identity valid in V when xi “ x, for every i P I. If si Ñ s1i, for every i P I,

and si 99K s1i for the remaining indices, i ď m, then tps1, . . . , smq Ñ tps11, . . . , s
1
mq.
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(v) (a) If s 99K r, s1 99K r1, s1 99K r2 and s2 99K r2, then s̄ps1, s2q 99K r̄pr1, r2q. (At

first glance, the condition s1 99K r2 might appear spurious, but it is necessary,

see Example 3.3(d) below.)

(b) If s Ñ r, s1 Ñ r1, s1 99K r2 (notice that a dashed arrow is sufficient here) and

s2 Ñ r2, then s̄ps1, s2q Ñ r̄pr1, r2q.

(c) If s L99 r (notice the reversed arrow), s1 99K r1, s2 99K r1 and s2 99K r2, then

s̄ps1, s2q 99K r̄pr1, r2q.

(d) If sÐ r, s1 Ñ r1, s2 99K r1 and s2 Ñ r2, then s̄ps1, s2q Ñ r̄pr1, r2q.

(vi) (a) If s 99K r and s1 99K r1, then s̄ps1, zq 99K r̄pr1, zq and s̄px, s1q 99K r̄px, r1q.

(b) If sÑ r and s1 Ñ r1, then s̄ps1, zq Ñ r̄pr1, zq and s̄px, s1q Ñ r̄px, r1q.

(c) In particular, by induction, if s 99K r, then spps 99K rpps, for every p. If s Ñ r,

then spps Ñ rpps, for every p.

(vii) (a) If sÑ z and s2 Ñ z, then s̄ps1, s2q Ñ z, for every s1 P F2.

If sÐ z, s2 Ð z and s1 99K s2, then s̄ps1, s2q Ð z.

If s L99 z, s2 L99 z and s1 99K s2, then s̄ps1, s2q L99 z.

(b) If xÑ s and xÑ s2, then xÑ s̄ps2, s1q, for every s1 P F2.

If xÐ s, xÐ s2 and s2 99K s1, then xÐ s̄ps2, s1q.

(viii) If s 99K s1 and s 99K s2, then s 99K r̄ps1, s2q, for every r P F2.

If s1 99K s and s2 99K s, then r̄ps1, s2q 99K s, for every r P F2.

(ix) All the statements in (iv), (v) and (vi) hold true if we reverse simultaneously the

arrows everywhere.

Proof. (i) Take tpx, y, zq “ ŝpx, zq. The edge is solid, since all terms of V are

idempotent, because we assume that all the operations of V are idempotent.

(ii) To prove the first statement, use the projection onto the second component

tpx, y, zq “ y. To prove x 99K s, take tpx, y, zq “ ŝpx, yq, again using idempotence.

To prove s 99K z, take tpx, y, zq “ ŝpy, zq.

(iii) Let s1 Ñ s11, s2 Ñ s12, . . . be witnessed by ŝ1px, zq « t1px, x, zq, t1px, z, zq «

ŝ11px, zq, ŝ2px, zq « t2px, x, zq, t2px, z, zq « ŝ12px, zq, . . . If t is a V-term, then t̄ps1, s2, . . . q Ñ

t̄ps11, s
1
2, . . . q is witnessed by the term t♦px, y, zq “ tpt1px, y, zq, t2px, y, zq, . . . q. As in Re-

mark 3.1, t̄ps1, s2, . . . q denotes the interpretation of the term t under the assignment

xi ÞÑ si, where the xi’s are the variables occurring in t. The arrow is solid since t is

idempotent.

The case of 99K is similar. The relations Ð and L99 are the converses of Ñ and 99K,

hence the conclusion follows from the above arguments.
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(iv) Following the proof of (iii), we have tipx, y, xq « x, for every i P I, since the arrow

in si Ñ s1i is solid. Hence t♦px, y, xq « x, by the assumption on t.

(v)(a) By the assumption s 99K r, ŝpx, zq « tpx, x, zq and tpx, z, zq « r̂px, zq for some

term t. Then s̄ps1, s2q “ t̄ps1, s1, s2q 99K t̄pr1, r2, r2q “ r̄pr1, r2q, by (iii).

(v)(b) is proved in the same way, using (iv).

(v)(c) is similar to (a). Here the assumption is ŝpx, zq « tpx, z, zq and tpx, x, zq «

r̂px, zq for some term t. Then s̄ps1, s2q “ t̄ps1, s2, s2q 99K t̄pr1, r1, r2q “ r̄pr1, r2q, by (iii).

(v)(d) is proved as (v)(c), using again (iv).

(vi) Clauses (a)(b) are special cases of (v)(a)(b), by (i) and (ii). Then (c) follows by

induction.

(vii)(a) The element z̄ P F2 corresponds to the term p̂2, the projection onto the second

component. If we write s Ñ z̄ as s Ñ p2, then s̄ps1, s2q Ñ p̄2ps
1, z̄q “ z̄, by (i), (ii) and

(v)(b). To prove the second line, sÐ z̄ means p2 Ñ s, thus z̄ “ p̄2ps
1, z̄q Ñ s̄ps1, s2q. Item

(vii)(b) is proved in a dual way.

(viii) Since r is idempotent, s “ r̄ps, sq 99K r̄ps1, s2q, by (iii). The second statement is

proved in a similar way.

(ix) can be proved by repeating the above arguments. However, there is no need of

doing this. Just recall that, say, s 99K r is the same as r L99 s. Hence (ix) follows from

(iv) - (vi) just by relabeling the elements in the formulas. l

Every argument in the proof of Proposition 3.2 can be translated expressing it in

function of the relevant ternary terms. We will exemplify this aspect in a simple case

in Example 3.3. A more elaborate situation is described in Example 4.6 in the preprint

version of this paper arXiv:2405.02768v2.

Example 3.3. Many items in Proposition 3.2 furnish a compact way for describing

widely used techniques. The following examples are basic; more involved applications will

be provided in the following sections.

(a) A Pixley term is a ternary term t such that x « tpx, z, zq « tpx, y, xq and tpx, x, zq «

z. This is equivalent to x̄Ð z̄, according to Definition 2.2.

As we mentioned in the proof of Proposition 3.2(vii)(a), z̄ corresponds to the the

projection p̂2 onto the second component; similarly, x̄ corresponds to the the projection

p̂1 onto the first component, so that x̄ Ð z̄ can be written as p1 Ð p2, equivalently,

p2 Ñ p1.

By Proposition 3.2(i), (v)(d) we get x̄ “ p̄1px̄, z̄q Ñ p̄2px̄, z̄q “ z̄, since z̄ Ñ x̄, hence

z̄ 99K x̄ (what is relevant in this example is that the z̄ in p̄1px̄, z̄q is connected by 99K to

the x̄ in p̄2px̄, z̄q).

Thus x̄Ñ z̄, that is, 2-distributivity.

The above argument provides a proof of the fact that a variety with a Pixley term is

2-distributive, that is, has a majority term. Of course, a direct proof using the ternary

Pixley term is easy; see the introduction. However, arguments similar to (a) will be very
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helpful when dealing with more involved situations in which certain conclusions are much

more difficult to obtain dealing directly with ternary terms.

(b) On the other hand, a variety with a Pixley term is congruence permutable (=

2-permutable), since x̄Ð z̄ implies x̄ L99 z̄. Compare Example 2.4(g).

(c) As well-known, a variety V has a Pixley term if and only if V is both congruence

permutable and 2-distributive. A proof for necessity has been given above in (a) and (b),

using Proposition 3.2.

Conversely, V is 2-distributive if x̄Ñ z̄, that is, p1 Ñ p2. V is congruence permutable

if x̄ L99 z̄, that is z̄ 99K x̄. If both properties hold, then z̄ “ p̄1pz̄, x̄q Ñ p̄2pz̄, x̄q “ x̄, by

Proposition 3.2(i), (v)(b), taking s “ p1, r “ p2, s1 “ r1 “ z̄ and s2 “ r2 “ x̄.

Explicitly, if j is a Jónsson term for 2-distributivity, that is, a majority term, and p

is a Maltsev term for congruence permutability, then we need to connect z̄ “ p̄1pz̄, x̄q “

j̄pz̄, z̄, x̄q with j̄pz̄, x̄, x̄q “ p̄2pz̄, x̄q “ x̄. We use z̄ 99K x̄ which is given by p, thus

jpz, ppx, y, zq, xq is a Pixley term.

(d) In the above example, s “ p1 “ x̄ Ñ z̄ “ p2 “ r follows from 2-distributivity and

s1 “ z̄ Ñ z̄ “ r1, s2 “ x̄ Ñ x̄ “ r2 are from Proposition 3.2(i). Since 2-distributivity

does not imply congruence permutability, we actually need s1 99K r2 in clauses (v)(a) and

(v)(b) in Proposition 3.2. In (c) above s1 99K r2 is z̄ 99K x̄, which needs the additional

assumption of congruence permutability.

4 Every n-distributive variety is n-directed distributive

Proposition 4.1. Suppose that n ě 2 and V is an n-distributive variety, thus V
realizes the pattern path

x “ s1 Ñ s2 Ð s3 Ñ s4 Ð . . . sn “ z (4.1)

with n´ 1 arrows.

Then we can choose s2, s3, . . . in such a way that the above path is realized and, fur-

thermore

(*) si 99K sj for every i ď j ď n such that either i is odd, or i` 2 ď j.

Proof. It is no loss of generality to consider the terms witnessing n-distributivity as

operations of V , and also to assume that V has no other operation; in particular, we can

assume that V is idempotent.

In view of Proposition 3.2(i)(ii), for n ď 4 there is nothing to prove. So let us assume

n ą 4. For even positive h ď n, consider the following property.

(*)h si 99K sj for every i, j such that h ď i ď j ď n and either i is odd, or i` 2 ď j.

In view of Proposition 3.2(i)(ii), Property (*)h is satisfied for n odd and h “ n ´ 1

(thus h is even) and for n even and h “ n´ 2. We will show the following.
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Claim 4.2. For every even positive h ď n ´ 3, if there are s1, s2, . . . sn´1, sn P F2

realizing the path (4.1) and such that (*)h`2 holds, then there are s˚1 , s
˚
2 , . . . s

˚
n´1, s

˚
n P F2

realizing the path (4.1) and such that (*)h holds for the s˚i .

Assuming we have proved the Claim, a finite induction on decreasing h proves the

proposition. The induction terminates at h “ 2, but then (*) is true in view of Proposition

3.2(ii).

So let us prove the Claim. Assume that (*)h`2 holds for certain s1, s2, . . . sn´1, sn P F2

realizing (4.1). Define
s˚2 “ s2, s˚3 “ s3,

s˚i`2 “ s̄i`2ps
˚
i , zq, for 2 ď i ď h and

s˚i`2 “ s̄i`2ps
˚
h, zq, for i ě h.

(4.2)

Notice that the second and the third lines agree when i “ h.

We first check that the sequence of the s˚i realizes the path corresponding to n-

distributivity. Indeed, xÑ s˚2 Ð s˚3 hold by assumption. Moreover, s˚3 “ s3 “ s̄3px, zq Ñ

s̄4ps2, zq “ s̄4ps
˚
2 , zq “ s˚4 , by Proposition 3.2(vi)(b), since s3 Ñ s4 and xÑ s2 by assump-

tion. Thus s˚3 Ñ s˚4 .

Inductively, we show that if 2 ď i ă h and, say, i is even and s˚i Ð s˚i`1, then

s˚i`2 Ð s˚i`3. Indeed, s˚i`2 “ s̄i`2ps
˚
i , zq Ð s̄i`3ps

˚
i`1, zq “ s˚i`3, by the reversed version (ix)

of Proposition 3.2(vi)(b), since si`2 Ð si`3 by assumption and s˚i Ð s˚i`1 by the inductive

hypothesis. The case i odd is similar.

The case i ě h is simpler, in that no inductive hypothesis is needed. For i ě h and,

say, i even, s˚i`2 “ s̄i`2ps
˚
h, zq Ð s̄i`3ps

˚
h, zq “ s˚i`3, by Proposition 3.2(i), (vi)(b), (ix),

since si`2 Ð si`3 (here we use s˚h Ð s˚h, which holds by Proposition 3.2(i) and we do not

need something like s˚i Ð s˚i`1). Again, the case i odd is similar.

Finally, say, for n even, s˚n´1 “ s̄n´1ps
˚
h, zq Ñ z, by the first statement in Proposition

3.2(vii)(a), since n ą 4 and sn´1 Ñ z. If n is odd, use the second statement.

Having proved that the sequence of the s˚i witnesses n-distributivity, we now show

that the sequence of the s˚i satisfies (*)h, assuming that the sequence of the si satisfies

(*)h`2.

For j ě i ě h` 2, we have si 99K sj by (*)h`2, hence s˚i “ s̄ips
˚
h, zq 99K s̄jps

˚
h, zq “ s˚j ,

by Proposition 3.2(i), (vi)(a).

For i “ h ` 1, we already know that s˚i Ñ s˚i´1 “ s˚h, since i is odd. Hence, if

j ą i “ h`1, s˚i 99K s̄jps
˚
h, zq “ s˚j , by Proposition 3.2(ii), (viii). Here, since j ą i “ h`1,

we apply the third line in (4.2) in the definition of s˚j (of course, in the case j “ i there

is nothing to prove, this follows from Proposition 3.2(i)).

If i “ h and j ě i ` 2, then s˚i “ s˚h 99K s̄jps
˚
h, zq “ s˚j , again by Proposition 3.2(ii),

(viii). l

So far, we have not used the powerful property stated in Proposition 3.2(v)(d). This

property will play a key role in the proof of the following theorem.



A SHORT WAY TO DIRECTED JÓNSSON TERMS 89

Theorem 4.3. For every n ě 2, every n-distributive variety is n-directed distribu-

tive. Namely, if V has Jónsson terms t1, . . . , tn´1, then V has directed Jónsson terms

d1, . . . , dn´1.

Proof. For n “ 2, there is nothing to prove, so let us assume n ě 3.

In any case, V realizes the pattern path xÑ s2 Ð s3 Ñ s4 Ð . . . z, with n´ 1 arrows

and, by Proposition 4.1, we may assume that (*) is satisfied.

Define s˚2 “ s̄2ps2, s3q and s˚i “ s̄ips2, siq, for i ě 3, thus s˚3 “ s̄3ps2, s3q.

We have xÑ s˚2 by the first statement in Proposition 3.2(vii)(b), using xÑ s2 twice.

Moreover, s˚i “ s̄ips2, siq Ñ s̄i`1ps2, si`1q “ s˚i`1, for i ě 3, i odd, by the assumptions

and Proposition 3.2(i), (v)(b), noticing that i` 1 ě 4, thus s2 99K si`1, by (*).

On the other hand, if i ě 4 and i is even, then s˚i “ s̄ips2, siq Ð s̄i`1ps2, si`1q “ s˚i`1,

by the reversed version (ix) of Proposition 3.2(v)(b), since i ě 4, thus s2 99K si, by (*).

Thus s˚3 Ñ s˚4 Ð s˚5 Ñ s˚6 Ð . . . .

How are connected s˚2 and s˚3 , then? Here Clause (v)(d) in Proposition 3.2 comes to

the rescue. We have s˚2 “ s̄2ps2, s3q Ñ s̄3ps2, s3q “ s˚3 , taking r “ s2 “ r2 “ s3 and

s “ r1 “ s1 “ s2 in Proposition 3.2(v)(d) and using twice s3 Ñ s2, both as s Ð r and as

s2 99K r1.

In the end, we get

xÑ s˚2 Ñ s˚3 Ñ s˚4 Ð s˚5 Ñ s˚6 Ð . . . (4.3)

three right arrows followed by an alternating path.

So far, the arguments prove the theorem in the cases n “ 3 and n “ 4, since, say

in the latter case, s˚3 “ s̄3ps2, s3q Ñ z, by the first statement in Proposition 3.2(vii)(a),

applying twice s3 Ñ z, which holds since n “ 4. Here we are taking s “ s2 “ s3.

In order to prove the general case, we need an induction. Before starting the induction,

we need to check that the sequence s˚2 , s
˚
3 , . . . still satisfies (*). Indeed, if j ě 4, then

s˚2 “ s̄2ps2, s3q 99K s̄jps2, sjq “ s˚j , by Proposition 3.2(i), (v)(a), since s2 99K sj and

s3 99K sj, by (*). If 3 ď i ă j, then s˚i “ s̄ips2, siq 99K s̄jps2, sjq “ s˚j , by Proposition

3.2(i), (v)(a), since si 99K sj and s2 99K sj, by (*), j being ě 4. We have proved that the

sequence s˚2 , s
˚
3 , . . . realizes (4.3) and satisfies (*).

Claim 4.4. Suppose that h is even, 4 ď h ď n ´ 1 and V realizes the pattern path

x Ñ s2 Ñ s3 Ñ s4 Ñ ¨ ¨ ¨ Ñ sh Ð sh`1 Ñ sh`2 Ð . . . z, with h ´ 1 right arrows followed

by a sequence of alternating arrows. Suppose further that (*) from Proposition 4.1 is

satisfied.

Then V satisfies the above conditions with h` 2 in place of h (with just n´ 1 arrows

in the exceptional case h “ n´ 1).

To prove the Claim, define

s˚i “ s̄ipsi, sh`1q, for i ď h, and

s˚i “ s̄ipsh, siq, for i ě h` 1.
(4.4)
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For i ă h, we have s˚i “ s̄ipsi, sh`1q Ñ s̄i`1psi`1, sh`1q “ s˚i`1 by Proposition 3.2(i),

(v)(b), since si Ñ si`1, by the assumptions. We have also used si 99K sh`1, which holds

by (*), since i ă h, hence i` 2 ď h` 1.

For i “ h, we employ the method used above when dealing with s2 and s3. Namely,

s˚h “ s̄hpsh, sh`1q Ñ s̄h`1psh, sh`1q “ s˚h`1, by Proposition 3.2(i), (v)(d), using twice

sh`1 Ñ sh.

For i ě h ` 1, i odd, as usual by now, s˚i “ s̄ipsh, siq Ñ s̄i`1psh, si`1q “ s˚i`1, by

Proposition 3.2(i), (v)(b), using twice si Ñ si`1, and since sh 99K si`1, by (*), noticing

that i` 1 ě h` 2, since i ě h` 1. The case i ě h` 1, i even is similar: s˚i “ s̄ipsh, siq Ð

s̄i`1psh, si`1q “ s˚i`1, since si Ð si`1. Notice that if i is even, then i ě h ` 2, since h is

even, hence (*) actually gives sh 99K si.

So far, we have showed that the sequence of the s˚i realizes the pattern path xÑ s2 Ñ

s3 Ñ ¨ ¨ ¨ Ñ sh Ñ sh`1 Ñ sh`2 Ð sh`3 Ñ sh`4 Ð . . . z. It remains to show that the

sequence of the s˚i also satisfies (*).

This is standard by now when i ă j ď h, since then i ` 2 ď h ` 1 hence we can

apply (*) holding for the sequence of the si, namely, si 99K sh`1 (the case i “ j is from

Proposition 3.2(i)). Similarly, if h ` 1 ď i ă j, then we always have sh 99K sj. The

cases when i ď h ă j present no particular difficulty, once we check that (*) for the si
can be applied. For example, s˚h´1 “ s̄h´1psh´1, sh`1q 99K s̄h`1psh, sh`1q “ s˚h`1, by the

usual Proposition 3.2(i), (v)(a), since sh´1 99K sh`1 and sh´1 99K sh, by (*) for the si,

h ´ 1 being odd. Similarly, in s˚h´1 “ s̄h´1psh´1, sh`1q 99K s̄h`2psh, sh`2q “ s˚h`2, besides

sh´1 99K sh, we use sh`1 99K sh`2, since h ` 1 is odd and sh´1 99K sh`2, holding by (*).

We have already proved sh Ñ sh`1. In s˚h “ s̄hpsh, sh`1q 99K s̄h`2psh, sh`2q “ s˚h`2 we use

again sh`1 99K sh`2. In all the remaining cases the significant components are sufficiently

“far away” so that (*) for the sequence of the si can be always applied with no need of

special care.

Having proved Claim 4.4, the theorem follows from the arguments at the beginning

of the proof. There we proved the assumptions of the Claim for the case h “ 4, thus a

finite induction shows that we can have h ě n, that is, a sequence of directed terms, by

Example 2.4(b). l

Recall the definitions of alvin, Gumm and directed Gumm terms from Example 2.4.

Theorem 4.5. (1) For every n ě 2, every variety with n alvin terms has n-directed

Jónsson terms.

(2) For every n ě 2, every variety with n Gumm terms has n-directed Gumm terms.

Proof. (1) can be proved by arguments similar to Theorem 4.3. Otherwise, with no

need of repeating the arguments, if the alvin condition is witnessed by x Ð r2 Ñ r3 Ð

r4 Ñ . . . z relabel the elements as s3 “ r2, s4 “ r3, . . . and take s2 “ s1 “ x. The sequence

x Ñ s2 Ð s3 Ñ s4 Ð s5 Ñ . . . z witnesses n ` 1-distributivity. Applying the proof of
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Theorem 4.3, we get a sequence x Ñ s32 Ñ s33 Ñ s34 Ñ . . . z witnessing n ` 1-directed

distributivity.

Since we have taken s2 “ x, going through the proof of Theorem 4.3, one sees that

still s32 “ x. Thus the sequence x “ s31 “ s32 Ñ s33 Ñ s34 Ñ . . . z witnesses n-directed

distributivity.

(2) Exchanging at the same time the order of terms and of variables, the existence of

Gumm terms corresponds to the realizability of x Ñ s2 Ð s3 Ñ s4 Ð s5 Ñ s6 Ð ¨ ¨ ¨ Ñ

sn´3 Ð sn´2 Ñ sn´1 L99 z, for n odd and of xÐ s2 Ñ s3 Ð s4 Ñ s5 Ð s6 Ñ s7 Ð ¨ ¨ ¨ Ñ

sn´3 Ð sn´2 Ñ sn´1 L99 z, for n even.

For n odd, repeat the proof of Theorem 4.3, stopping the induction at h “ n ´ 1 (if

we reverse the dashed arrow in sn´1 L99 z, a trivial condition arises).

For n even, use the arguments in (1). In both cases one needs the third statement in

Proposition 3.2(vii)(a). l

5 Adding edges to undirected paths in locally finite varieties

We now deal with arbitrary undirected paths from x to z, namely, we do not assume

that the directions of the arrows alternate. Under a finiteness assumption, we show that

we can always add dashed right arrows between pairs of vertexes in the path. On the

contrary, left arrows cannot be generally added, since congruence distributivity does not

imply n-permutability, for some n. Compare Example 2.4(g).

Assumption 5.1. In detail, we fix some variety V and some n ě 1. It is no loss of

generality to assume that V is idempotent, arguing as at the beginning of the proof of

Proposition 4.1, when necessary. We deal with a sequence x “ s1, s2, . . . , sn “ z such

that, for every i ă n, either si Ñ si`1, or si Ð si`1, or si L99 si`1. The case si 99K si`1

need not be considered, since it always corresponds to a trivial condition; see [8].

To establish some notation, we will consider some fixed function f from t1, . . . , n´ 1u

to tÑ,Ð, L99u and we will write si
i

à si`1 to mean si fpiq si`1. The pattern path

associated to f is the path x “ s1
1

à s2
2

à s3
3

à . . . sn “ z. Thus a sequence s1, s2, . . .

realizes the pattern path associated to f if si
i

à si`1 holds for every i ă n. Notice that

we will always assume x “ s1 and sn “ z.

Our aim is to show that, under the above assumptions, we can further have si 99K sj,

for every i ď j ď n. We need a finiteness assumption. We say that some variety V is

2-locally finite if the free algebra F2 in V generated by 2 elements is finite, equivalently,

if every algebra in V generated by 2 elements is finite.

Lemma 5.2. Under the assumptions in 5.1, fix some k ď n.
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(i) Define s
p1,kq
i “ s̄ipx, skq, for i ď k, and s

p1,kq
i “ s̄ipx, siq, for i ě k. Note that the

definitions coincide when i “ k. For p ě 1, define inductively s
pp`1,kq
i “ s̄ipx, s

pp,kq
k q,

for i ď k and s
pp`1,kq
i “ s̄ipx, s

pp,kq
i q, for i ě k.

Then x “ s
pp,kq
1 , s

pp,kq
n “ z and s

pp,kq
i

i
à s

pp,kq
i`1 , for every i ă n and every p ě 1.

If 1 ď i ď j ď k and si 99K sj, then s
pp,kq
i 99K s

pp,kq
j .

(ii) Suppose further that V is 2-locally finite. Then there is some p ě 1 such that the

sequence ps
pp,kq
i qiďn still satisfies Assumption 5.1 and furthermore, for every i ď k,

s
pp,kq
i 99K s

pp,kq
k .

Proof. (i) is immediate from Proposition 3.2(i), (vi)(a)(b), (ix), by an induction, using

the assumptions. For example, if s
pp,kq
n “ z, then s

pp`1,kq
n “ s̄npx, s

pp,kq
n q “ s̄npx, zq “ z,

since sn “ z, that is, ŝn is the second projection. As another example, if k ď i ă n

and s
pp,kq
i Ð s

pp,kq
i`1 , then s

pp`1,kq
i “ s̄ipx, s

pp,kq
i q Ð s̄i`1px, s

pp,kq
i`1 q “ s

pp`1,kq
i`1 by the reversed

version (ix) of Proposition 3.2(v)(b).

(ii) Since F2 is finite, there are p ą p1 ą 0 such that s
pp,kq
k “ s

pp1,kq
k . If i ď k, then

s
pp,kq
i “ s̄ipx, s̄kpx, . . . s̄kpx, s

pp1,kq
k q . . . qq, with p ´ p1 open parenthesis and p ´ p1 closed

parenthesis on the base line. Then s
pp,kq
i “ s̄ipx, s̄kpx, . . . s̄kpx, s

pp1,kq
k q . . . qq 99K s

pp1,kq
k “

s
pp,kq
k , by Proposition 3.2(i)(ii) and iterating the second statement in (viii). l

Proposition 5.3. Suppose that n ě 2 and f is a function from t1, . . . , n ´ 1u to

tÑ,Ð, L99u. If V is 2-locally finite and V realizes the pattern path associated to f , then

the path can be realized in V by s1, s2, ¨ ¨ ¨ P F2 in such a way that si 99K sj, for every

i ď j ď n.

Proof. By a finite induction on k ě 1, we prove that, for every k ď n, there is a

sequence such that si 99K sj, for every i ď j ď k. The case k “ n gives the proposition.

The base case k “ 1 is Proposition 3.2(i).

If k ą 1 and the statement holds for i ď j ď k ´ 1 for some sequence, then the

sequence constructed in Lemma 5.2(ii) satisfies si 99K sk, for every i ď k. By 5.2(i) and

the inductive assumption, the new sequence also satisfies si 99K sj, for every i ď j ď k´1.

This completes the induction and thus the proof of the proposition. l

In the next theorem, for 2-locally finite varieties, we generalize Theorems 4.3 and 4.5,

to the effect that if some variety V realizes some pattern path, then V realizes a path in

which any number of solid left arrows of our choice are changed into solid right arrows.

Theorem 5.4. Suppose that n ě 2 and f, g are functions from t1, . . . , n ´ 1u to

tÑ,Ð, L99u such that, for every i ď n, if fpiq ‰ Ð, then gpiq “ fpiq (in other words, f

and g possibly differ only on those i such that fpiq “ Ð).
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(1) If V realizes the pattern path associated to f by a sequence s1, s2, . . . such that si 99K
sj, for every i ď j ď n, then V realizes the pattern path associated to g.

(2) If V is 2-locally finite and V realizes the pattern path associated to f , then V realizes

the pattern path associated to g.

Proof. (1) The proof goes as in the proof of Theorem 4.3 with no essential modifica-

tion.

In detail, if fphq “ Ð and s1, s2, . . . is a sequence realizing the path associated to

f , define another sequence s˚1 , s
˚
2 , . . . by (4.4). Then the sequence of the s˚i realizes the

path associated to the function f 1 such that f 1phq “ Ñ and f 1 coincides with f on all

the i different from h. Moreover, all the relations of the form si 99K sj, for i ď j ď n

are preserved. The proof is exactly the same as in Claim 4.4. Note that here we have

si 99K sj, for every i ď j ď n, hence we need not to deal with the parity of elements

(recall that in (*) in Proposition 4.1 we do not necessarily have si 99K si`1, for i even).

To prove (1) iterate the above procedure a sufficient number of times.

(2) is immediate from (1) and Proposition 5.3. l

Definition 5.5. [12] For n ě 3, a variety V is n-directed with alvin heads if V realizes

the path x “ s1 Ð s2 Ñ s3 Ñ s4 Ñ ¨ ¨ ¨ Ñ sn´3 Ñ sn´2 Ñ sn´1 Ð sn “ z.

For n ě 3, a variety V is n-two-headed directed Gumm if V realizes the path x “

s1 L99 s2 Ñ s3 Ñ s4 Ñ ¨ ¨ ¨ Ñ sn´3 Ñ sn´2 Ñ sn´1 L99 sn “ z.

The next corollary is immediate from Theorem 5.4(2).

Corollary 5.6. Suppose that V is a 2-locally finite variety.

If n ě 3 and V is n-directed with alvin heads, then V is n-directed distributive.

More generally, if V realizes some undirected path as in Assumption 5.1 with n ´ 1

edges and with all arrows as solid, then V is n-directed distributive.

If n ě 4, n even and V is n-defective Gumm (that is, V realizes the path from Example

2.4(e)), then V is n-two-headed directed Gumm.

Problems 5.7. (a) Can we remove the assumption that V is 2-locally finite in Theorem

5.4(2) and Corollary 5.6?

Of course, the problem has affirmative answer if the assumption of 2-local finiteness

can be removed from Proposition 5.3.

Remark: the point is not that in Section 4 we only proved and used (*) from Propo-

sition 4.1, rather than si 99K sj, for every i ď j ď n. The point is that we needed the

arrows in the path to alternate between left and right, in order to carry over the proof of

Proposition 4.1.

(b) Can we simplify the proofs of the main Theorems 4.3 and 4.5? In particular, is there

some hidden combinatorial principle underlying the compositions we have performed?
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Were this the case, it would be probably very useful in similar contexts, for example when

dealing with SD(_) terms, or when comparing the number of Day and Gumm terms in

a congruence modular variety. On the other hand, the results we have proved are quite

unexpected, hence it would be really surprising if a significantly simpler proof could be

devised.

Acknowledgement. We thank anonymous referees for useful suggestions.

References

[1] L. Barto, Finitely related algebras in congruence modular varieties have few subpowers, J. Eur. Math.

Soc. (JEMS) 20, 1439–1471 (2018)

[2] L. Barto, M. Kozik, Absorption in universal algebra and CSP, in: The Constraint Satisfaction Prob-

lem: Complexity and Approximability , Dagstuhl Follow-Ups, 7 (Schloss Dagstuhl–Leibniz Zentrum

für Informatik, Wadern, 2017), 45–77

[3] T. Dent, K. A. Kearnes and Á. Szendrei, An easy test for congruence modularity, Algebra Universalis

67, 375–392 (2012).

[4] R. Freese, M. A. Valeriote, On the complexity of some Maltsev conditions, Internat. J. Algebra

Comput. 19, 41–77 (2009).
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