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EFFECTIVE ASPECTS OF

SEMIPERFECT RINGS

A b s t r a c t. This paper studies effective aspects of semiperfect rings from

the standpoint of reverse mathematics. Based on first-order Jacobson radicals of

rings, we define a ring R with the Jacobson radical Jac(R) to be semiperfect if

the quotient ring R/Jac(R) is semisimple, and idempotents of the quotient ring

can be lifted to R. Using elementary matrix operations in linear algebra, we show

that RCA0 proves a characterization of semiperfect rings in terms of idempotents

of rings. Semiperfect rings are generalizations of semisimple rings and local rings,

and semiperfect rings R with R/Jac(R) simple are isomorphic to matrix rings

over local rings. Based on the effective characterization of semiperfect rings

via idempotents, we prove the structure theorem of semiperfect rings R with

R/Jac(R) simple in RCA0. Left perfect rings or right perfect rings are always

semiperfect. Finally, we provide a proof for the structure theorem of one-sided

perfect rings R with R/Jac(R) simple in WKL0.

1 Introduction

Reverse mathematics is a program initiated by Friedman [8, 9] in 1970s. To study a

theorem in reverse mathematics, we often first formalize the theorem by using second-
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order language L2 and then look for a weakest subsystem τ of second-order arithmetic Z2

such that τ proves the theorem. Early empirical work of the area reveals that theorems in

various disciplines of mathematics are often equivalent to one of the big five subsystems of

Z2 over a properly chosen base system, where the five systems are listed as RCA0, WKL0,

ACA0, ATR0 and Π1
1 − CA0. RCA0 serves as the base system. It contains basic axioms

about operations and orders on natural numbers (see Definition I.2.4(i), [15]), induction

axioms restricted to Σ0
1 formulas (i.e., Σ0

1 induction) and axioms asserting the existence

of sets that can be defined by both Σ0
1 and Π0

1 formulas (i.e., ∆0
1 comprehension). For

systematic developments of countable mathematics within the big five systems, refer to

Simpson’s monograph [15]. For a general introduction to reverse mathematics, see a recent

book of Stillwell [19]. For new developments of reverse mathematics in recent decades,

refer to Dzhafarov and Mummert’s new book [7].

Reverse mathematics is closely connected with computable mathematics, where com-

putable mathematics studies algorithmic content of mathematics from the perspective

of computability theory [12, 16, 17]. The base system RCA0 has a minimal ω-model

whose second-order part contains the set of computable sets (see page 65, [15]), so we

often view theorems as effective if they are provable in RCA0 and noneffective otherwise.

Take algebraic closures for example [10, 13]. The statement “every countable field has

an algebraic closure” is provable in RCA0, this implies that the effective version of the

statement holds. That is, every computable field has a computable algebraic closure. In

addition, the statement “every countable field has a unique algebraic closure” is equiv-

alent to WKL0 over RCA0, this implies that the effective version of the statement fails.

That is, two computable algebraic closures of a computable field may not be computably

unique in the sense that they are not isomorphic via a computable isomorphism. For

more examples in countable algebra that illustrate the connections between reverse math-

ematics and computable mathematics, we refer to articles such as Solomon [18], Downey,

Lempp, and Mileti [5, 6], Conidis [3, 4].

Modules over rings are generalizations of algebraic structures (e.g., groups, vector

spaces) that are extensively studied in reverse mathematics. Yamazaki first studied mod-

ules over general rings in the context of reverse mathematics in [24], he also initiated

the study of homological algebra in reverse mathematics in [25]. Following the work of

Yamazaki, we are interested in studying rings and modules from the perspective of reverse

mathematics. Semiperfect rings form an important class of rings, and they are general-

izations of various kinds of rings like one-sided artinian rings, semisimple rings and local

rings. In this paper, we study effective aspects of semiperfect rings. For the background

of algebra studied here, please refer to Lam’s book [11]. In the following, we only consider

rings with identity but not necessarily commutative.

To define semiperfect rings, we need the notion of Jacobson radicals of rings, which is

often defined in a second-order way as the intersection of all maximal left ideals of rings.

As in [20], we define Jacobson radicals in a first-order way.
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Definition 1.1. (RCA0) The Jacobson radical of a ring R is defined as the Π0
2 set

Jac(R) = {x ∈ R : ∀y ∈ R∃z ∈ R[z(1R − yx) = 1R]}.

The Π0
2 set Jac(R) is actually a two-sided ideal of R. The classical proof of the fact

depends on second-order characterizations of Jac(R). Since for general rings, Jac(R) =⋂
{M : M is a maximal left ideal of R} is equivalent to ACA0 over RCA0 (see Theorem

6.19 in Sato’s thesis [14]), the classical proof works in ACA0. We have provided a direct

proof for the fact in RCA0.

Proposition 1.2. [20] Let R be a ring such that the Jacobson radical Jac(R) exists.

Then RCA0 proves that Jac(R) is a two-sided ideal of R.

For a ring R ⊆ N, one can form the quotient ring R/Jac(R), whose elements are

≤N-least representatives under the equivalence relation: x ∼ y ⇔ x − y ∈ Jac(R). As

usual, we write R := R/Jac(R) = {r : r ∈ R}, where r is the least representative of r ∈ R
under the equivalence relation above. For any r, s ∈ R, we have r = s⇔ r− s ∈ Jac(R).

To define semiperfect rings, we also need the notion of semisimple rings. Semisim-

ple rings have various classical characterizations (refer to Chapter 1 of [11]). Sato first

studied semisimple rings in the context of reverse mathematics based on ring-theoretic

definitions at the end of his thesis [14], where semisimple rings are defined as finite direct

products of simple artinian rings. Recently, we have studied semisimple rings based on

module-theoretic definitions [21, 22], where semisimple rings are defined as rings whose

regular modules are semisimple modules. Semisimple modules possess known charac-

terizations which are only equivalent over ACA0. When studying semisimple rings in a

module-theoretic way, different characterizations of semisimple modules result in different

definitions of semisimple rings.

Definition 1.3. (RCA0) A nonzero left R-module M is simple if the Π0
2 condition

∀x ∈M \ {0M}∀y ∈M∃r ∈ R[y = rx] holds.

Since we are interested in structures of rings, we view semisimple modules as those

that can be decomposed as direct sums of simple submodules. Then semisimple rings are

defined as follows.

A left R-module is an abelian group with a left scalar multiplication such that the

usual module axioms hold. We often use RM to denote a left R-module. Each ring R

possesses a natural left R-module structure, namely, the left regular module RR, with the

addition and left scalar multiplication defined by the addition and multiplication of the

ring itself.

Definition 1.4. (RCA0) A ring R is left semisimple if the left regular module RR is

a direct sum of simple submodules.

An element e ∈ R is called an idempotent if e = e2.
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Definition 1.5. (RCA0) A ring R is semiperfect if Jac(R) exists, and the quotient

ring R = R/Jac(R) meets the following two conditions:

(1) R is a left semisimple ring;

(2) idempotents of R can be lifted to R; that is, if r is an idempotent of R, then there

is an idempotent e ∈ R such that r = e.

Based on previous work on Jacobson radicals of rings and semisimple rings, we study

effective aspects of semiperfect rings. We first consider a basic characterization of semiper-

fect rings in terms of idempotents of rings.

Theorem 1.6. [11] The following are equivalent for a ring R.

(1) R is semiperfect.

(2) 1R = e1 + · · ·+ en for some pairwise orthogonal idempotents ei(1 ≤ i ≤ n) with each

Rei strongly indecomposable.

The classical proof of Theorem 1.6 appeared in [11] uses various arithmetic sets, and

thus works in ACA0; especially, the proof depends on Nakayama’s Lemma, whose classical

proof often requires ACA0. In Section 3, using elementary matrix operations of linear

algebra (see e.g., Lemma 3.3 below), we develop an effective version of Theorem 1.6 in

RCA0.

We next consider the structure theorem of a subclass of semiperfect rings.

Theorem 1.7. [11] The following are equivalent for a ring R.

(1) R is semiperfect with R/Jac(R) simple.

(2) R ∼= Mn(S) for some n ≥ 1 and some local ring S, where Mn(S) is the n×n matrix

ring over S.

In Section 4, based on the characterization of semiperfect rings in terms of idempotents

above, we provide an effective proof for Theorem 1.7 in RCA0.

Semiperfect rings are generalizations of one-sided perfect rings. As an application of

Theorem 1.7, we continue to study the structure theorem of one-sided perfect rings R

with R/Jac(R) simple.

Theorem 1.8. [11] The following are equivalent for a ring R.

(1) R is left (resp., right) perfect with R/Jac(R) simple.

(2) R ∼= Mn(S) for some n ≥ 1 and some local ring S whose maximal ideal is left (resp.,

right) T -nilpotent.
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The classical proof of Theorem 1.8 appeared in [11] relies on an equivalent charac-

terization of left (resp., right) T -nilpotent ideals, proofs involving such arguments often

require ACA0. In Section 5, based on Bounded König’s Lemma, we develop a proof for

Theorem 1.8 in WKL0. We would like to know whether RCA0 proves Theorem 1.8 or not.

The rest of the sections are organized as follows. In Section 2, we provide necessary

properties of semisimple rings and local rings. In Section 3, we study the characteri-

zation of semiperfect rings in terms of idempotents of rings. In Sections 4 and 5, we

study structure theorems of a subclass of semiperfect rings and one-sided perfect rings,

respectively.

2 Semisimple rings and local rings

Semiperfect rings are generalizations of semisimple rings and local rings. In this section,

we provide necessary properties of semisimple rings and local rings.

2.1 Semisimple rings

Semisimple rings have a nice characterization in terms of idempotents of rings. Recall

that two idempotents e, f ∈ R are orthogonal if ef = fe = 0R.

Proposition 2.1. The following are equivalent over RCA0 for a ring R.

(1) R is a left semisimple ring.

(2) 1R = e1 + · · ·+ en for some pairwise orthogonal idempotents ei(1 ≤ i ≤ n) of R with

each Rei a simple left R-module; in this case, RR = Re1 ⊕ · · · ⊕Ren.

Proof. That (2) ⇒ (1) is clear. We provide a proof for (1) ⇒ (2). If R is left

semisimple, by definition, the left regular module can be written as RR = S1⊕· · ·⊕Sn for

some simple submodules S1, . . . , Sn. Then 1R = x1 + · · ·+xn for some xi ∈ Si(1 ≤ i ≤ n).

For any y ∈ Si, we have y = y1R = y(x1 + · · ·+ xn) = yx1 + · · ·+ yxn. Then

y − yxi =
∑
j 6=i

yxj = 0R,

so y = yxi and yxj = 0R for j 6= i. This implies that Si = Rxi and that x1, . . . , xn are

pairwise orthogonal idempotents of R. (2) holds. �

For an idempotent e ∈ R, we point out that Re = {re : r ∈ R} exists in RCA0 because

for any x ∈ R, x ∈ Re⇔ x = xe. Similarly, eRe = {ere : r ∈ R} also exists in RCA0.

To prove the effective characterization of semiperfect rings in Section 3, we will use

the following technical lemma on semisimple rings.
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Lemma 2.2. (RCA0) Let R be a semisimple ring such that R = Re1 ⊕ · · · ⊕ Ren
for some pairwise orthogonal idempotents e1, · · · , en with Rei a simple left R-module for

all 1 ≤ i ≤ n. For any left ideal I of R, there is a set A ⊆ {1, · · · , n} such that

R = I ⊕
⊕

i∈ARei as left R-modules.

Proof. For any subset {i1, · · · , ik} of {1, · · · , n}, I ∩
⊕k

j=1Reij = {0R} if and only if

the Π0
1 condition

∀r ∈ I ∀r1, · · · , rk ∈ R[r = r1ei1 + · · ·+ rkeik → r = 0R]

holds. Form a set X := {{i1, · · · , ik} ⊆ {1, · · · , n} : I ∩
⊕k

j=1Reij = {0R}}. Then X

exists by bounded Π0
1 comprehension.

Build a maximal set A in X as follows.

(1) If for all 1 ≤ i ≤ n, {i} /∈ X, i.e., I ∩ Rei 6= {0R}, then there is an element s ∈ R
such that sei ∈ I \ {0R}. Since Rei is simple, we have that Rei = Rsei ⊆ I and

ei ∈ I. Then R = Re1 ⊕ · · · ⊕Ren = I, take A = ∅.

(2) If there is an 1 ≤ i ≤ n such that {i} ∈ X. We can define a maximal set A ∈ X
extending {i} as follows:

(2.1) If {i} is maximal, i.e., for any j ∈ {1, · · · , n}\{i}, {i, j} /∈ X, then let A = {i}.

(2.2) If (2.1) fails, then there is a j 6= i with {i, j} ∈ X. There are two subcases:

∗ if {i, j} is maximal, then let A = {i, j};
∗ otherwise, there is a k ∈ {1, · · · , n} \ {i, j} with {i, j, k} ∈ X. Continue

the process finitely many steps, we obtain the set A ∈ X such that for any

j ∈ {1, · · · , n} \ A, we have A ∪ {j} /∈ X.

We claim that the maximal set A in X is the desired set. For any ej with j /∈ A, by

A ∪ {j} /∈ X, there is a nonzero r ∈ I such that r = sej +
∑

i∈A riei for some s, ri ∈ R.

By A ∈ X, we see that sej 6= 0R. Again, we have Rej = Rsej and ej = tsej for some

t ∈ R because Rej is simple. Now

ej = tsej = t(r −
∑
i∈A

riei) = tr −
∑
i∈A

triei ∈ I ⊕
⊕
i∈A

Rei.

Therefore, R = Re1 ⊕ · · · ⊕Ren ⊆ I ⊕
⊕

i∈ARei ⊆ R and R = I ⊕
⊕

i∈ARei. �

Matrix rings over division rings are typical examples of left semisimple rings. The

structure theorem of semisimple rings (i.e., Wedderburn-Artin Theorem on page 33, [11])

says that left semisimple rings are isomorphic to finite direct products of matrix rings

over division rings. With the help of the theory of idempotents of rings, we have obtained

a proof for the theorem in RCA0.
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Theorem 2.3. [22](RCA0) A left semisimple ring is isomorphic to a finite direct

product of matrix rings over division rings.

A ring is right semisimple if the right regular module RR is a finite direct sum of right

simple modules. By symmetry, we have a right version of Theorem 2.3 above. Therefore,

RCA0 proves that a ring is left semisimple iff it is right semisimple. In the following, we

only deal with left semisimple rings.

2.2 Local rings

An element r of a ring R is left invertible if sr = 1R for some s ∈ R. Let Ul(R) = {r ∈
R : ∃s ∈ R[sr = 1R]}.

Definition 2.4. [20](RCA0) A ring R is left local if Ul(R) exists, and the set of non

left invertible elements R \ Ul(R) is closed under the addition of R.

One can also define right local rings and local rings via right invertible elements and

invertible elements, respectively. That is, R is right local if Ur(R) = {r ∈ R : ∃s ∈ R[rs =

1R]} exists, and the set of non right invertible elements R \ Ur(R) is closed under the

addition of R; R is local if U(R) = {r ∈ R : ∃s ∈ R[sr = rs = 1R]} exists, and the set

of non invertible elements R \ U(R) is closed under the addition of R. By Corollary 3.4

in [20], RCA0 can prove that a ring is left local iff it is right local iff it is local. In the

following, we only focus on left local rings.

Lemma 2.5. (RCA0) The following are equivalent for a ring R.

(1) R is left local.

(2) Jac(R) exists, and Jac(R) = R \ Ul(R).

(3) Jac(R) exists, and the quotient ring R := R/Jac(R) is a division ring.

Proof.

(1) ⇒ (2). Let R be a left local ring. That is, Ul(R) exists, and R \ Ul(R) is closed

under addition. Jac(R) = {x ∈ R : ∀y ∈ R∃z ∈ R[z(1R − yx) = 1R]}.

• If x ∈ Ul(R), let yx = 1R, then for any z ∈ R, we have z(1R − yx) = 0R 6= 1R, by

definition, x /∈ Jac(R).

• If x /∈ Jac(R), there is a y ∈ R such that for any z ∈ R, we have z(1R − yx) 6= 1R.

That is, 1R− yx /∈ Ul(R). Suppose otherwise that x /∈ Ul(R). Then yx /∈ Ul(R), we

see that 1R = yx + (1R − yx) /∈ Ul(R) because R \ Ul(R) is closed under addition,

this derives a contradiction. So we have x ∈ Ul(R).
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We have shown that Ul(R) = R \ Jac(R). (2) holds.

(2)⇒ (1) is clear because Jac(R) is a two-sided ideal of R by Proposition 1.2.

(3)⇒ (2). Since Ul(R) ⊆ R \ Jac(R), it suffices to prove that R \ Jac(R) ⊆ Ul(R). If

x /∈ Jac(R), then x ∈ R is nonzero, and thus invertible in the division ring R. Let y be

an inverse of x in R, i.e., 1R − yx ∈ Jac(R). Then, by the definition of Jac(R), there is

an element z ∈ R such that zyx = z[1R − (1R − yx)] = 1R, so x ∈ Ul(R). (2) holds.

(2) ⇒ (3). Let x ∈ R be nonzero, i.e., x /∈ Jac(R), we need to show that x is

invertible in the quotient ring R. First, by Jac(R) = R \ Ul(R), x ∈ Ul(R), let yx = 1R
for some y ∈ R. Second, by Proposition 1.2, Jac(R) is a two-sided ideal of R, we have

y /∈ Jac(R). Again, this means that y ∈ Ul(R) and zy = 1R for some z ∈ R. Now we

have z = z(yx) = (zy)x = x, and yx = xy = 1R. So y is an inverse of x in R. R is a

division ring. �

For a general ring R, Jac(R) =
⋂
{M : M is a maximal left ideal of R} is equivalent

to ACA0 over RCA0 (see Theorem 6.19, [14]). For left local rings, by Lemma 2.5, we see

that the equality holds in RCA0.

Proposition 2.6. (RCA0) For a left local ring R, Jac(R) = R \ Ul(R) is the unique

maximal left ideal of R.

In classical algebra, local rings are used to define strongly indecomposable modules,

where a left R-module M is strongly indecomposable if the endomorphism ring End(RM)

is local. Although the endomorphism ring of general modules is a third-order object,

for a cyclic R-module Re with e an idempotent of R (such modules are called principal

modules), the endomorphism ring can be defined as follows.

Definition 2.7. (RCA0) Let e be an idempotent of a ring R. The endomorphism ring

of the left R-module Re is (encoded by) the ring eRe = {ere : r ∈ R} with identity e.

It is not hard to see the idea behind Definition 2.7. In fact, if ϕ : Re → Re is a

left R-endomorphism, the desired code is just the image of ϕ at e, i.e., (e)ϕ = (ee)ϕ =

e(e)ϕ ∈ eRe; conversely, each element ere ∈ eRe determines a left R-endomorphism on

Re which sends e to ere.

Definition 2.8. (RCA0) A left R-module Re with e an idempotent of R is strongly

indecomposable if eRe is a local ring.

Schur’s Lemma says the endomorphism ring End(RM) of a simple R-module M is a

division ring. When restricted to principal modules, based on Definition 2.7, we can prove

the lemma as follows.

Proposition 2.9. (RCA0) Schur’s Lemma: If Re is a simple R-module, then eRe is

a division ring with identity e.
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Proof. Let r ∈ R. Since Re is simple, if ere 6= 0R, then Re = Rere, and e = sere

for some s ∈ R. Now e = ee = e(sere) = (ese)(ere). On the other hand, ese 6= 0R
implies that Re = Rese and (ete)(ese) = e for some t ∈ R. As usual, one can check that

ere = ete, and thus, ere is invertible in the ring eRe. �

Proposition 2.10. (RCA0) For a ring R and an idempotent e ∈ R, the following are

equivalent.

(1) Re is an indecomposable left R-module.

(2) e is not a sum of two nonzero orthogonal idempotents of R.

Proof. (1)⇒ (2). If (2) fails, let e = f + g for some nonzero orthogonal idempotents

of R. Then fe = f(f + g) = f 2 + fg = f , ge = g(f + g) = gf + g2 = g, and Re can be

decomposed as Re = Rfe⊕Rge. (1) fails.

(2)⇒ (1). If (1) fails, that is, Re = M1 ⊕M2 for two nonzero submodules M1,M2 ⊆
Re. Then e = x1 + x2 for some nonzero x1 ∈ M1, x2 ∈ M2, and x1 = x1e = x1x1 + x1x2
implies that x1 is an idempotent of R and x1x2 = 0R. Similarly, x2 is an idempotent of R

with x2x1 = 0R. (2) fails. �

Simple modules Re are strongly indecomposable because eRe is a division ring, which

is always local. On the other hand, using Proposition 2.10, one can check that strongly

indecomposable modules Re are always indecomposable. Proposition 2.11 shows that the

three notions are the same for semisimple rings.

Proposition 2.11. (RCA0) For a semisimple ring R and a nonzero idempotent e ∈ R,

the following conditions are equivalent.

(1) Re is a simple R-module.

(2) Re is a strongly indecomposable R-module.

(3) Re is an indecomposable R-module.

Proof.

(1)⇒ (2) and (2)⇒ (3) are true for general rings.

For (3) ⇒ (1). Let Re be an indecomposable R-module. As R is left semisimple,

there are mutually orthogonal idempotents ei(1 ≤ i ≤ n) with Rei a simple R-module

such that 1R = e1 + · · · + en. By Lemma 2.2, there is a set A ⊆ {1, · · · , n} such that

R = Re1⊕· · ·⊕Ren = Re⊕
⊕

i∈ARei. Then Re ∼=
⊕

i/∈ARei. Since Re is indecomposable,

there is exactly one number 1 ≤ i ≤ n such that i /∈ A; thus Re ∼= Rei and Re is a simple

left R-module. �
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3 Semiperfect rings

In this section, we develop an effective proof for the characterization of semiperfect rings

in terms of idempotents of rings in Theorem 1.6 above.

Definition 3.1. (Yamazaki, [25]) (RCA0) A left R-module P is projective if it is a

direct summand of a free left R-module.

Free modules are isomorphic to direct sums of copies of regular modules, refer to

Proposition 1.6, [23]. For an idempotent e of a ring R, Re is projective because it is a

direct summand of the left regular module RR.

Proposition 3.2. (Yamazaki, [25]) For a left R-module P , the following conditions

are equivalent over RCA0.

(1) P is projective.

(2) For any R-modules M,N , for any surjective R-homomorphism ε : M → N and

R-homomorphism ϕ : P → N , there is an R-homomorphism ψ : P → M such that

ψε1= ϕ.

For a left R-module M and a two-sided ideal I of R, IM is the submodule of M

generated by {rx : r ∈ I, x ∈M}. That is,

IM = {r1x1 + · · ·+ rnxn : n ≥ 1, r1, . . . , rn ∈ I, x1, . . . , xn ∈M}.

Lemma 19.27 in Lam’s book [11] is crucial to prove various properties of semiperfect rings.

The classical proof of it uses various arithmetic sets, and thus requires ACA0. We now

develop an effective proof for Lam’s Lemma 19.27 in Lemma 3.3 below.

Lemma 3.3. Let R be a ring with the Jacobson radical J := Jac(R), and P , Q be

finitely generated projective left R-modules with generating sets {x1, · · · , xn} and {y1, · · · , ym},
respectively. Assume that JP, JQ exist. Then the following conditions are equivalent over

RCA0.

(1) P ∼= Q as left R-modules.

(2) P/JP ∼= Q/JQ as left R := R/J-modules.

1Following the convention in algebra text [11], we write left R-module homomorphisms on right, that

is, ϕ : M → N ;x 7→ (x)ϕ, and write the composition of two left R-homomorphisms from left to right,

that is, for two R-homomorphisms ϕ : M → N ;x 7→ (x)ϕ and ψ : N → K;x 7→ (x)ψ, the composition is

ϕψ : M → K;x 7→ ((x)ϕ)ψ.
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Proof. For the quotient modules, we write P/JP = {x : x ∈ P}, where x is the

≤N-least representative of x ∈ P under the equivalence relation x ∼ y ⇔ x− y ∈ JP on

P ; similarly, write Q/JQ = {y : y ∈ Q}.
(1)⇒ (2). Let ϕ : P → Q be a left R-module isomorphism. Define ϕ : P/JP → Q/JQ

by sending x to (x)ϕ for all x ∈ P . It is a direct check that ϕ is an R-module isomorphism.

(2) ⇒ (1). Assume that ψ : P/JP → Q/JQ is an R-module isomorphism. Consider

the natural surjective R-homomorphisms πP : P → P/JP ; x 7→ x and πQ : Q →
Q/JQ; y 7→ y. Since P is a projective R-module, there is an R-module homomorphism

ϕ : P → Q such that ϕπQ = πPψ, i.e., the following diagram commutes:

P
πP //

ϕ

��

P/JP

ψ

��
Q

πQ // Q/JQ // 0

We first show that ϕ : P → Q is onto, that is, im(ϕ) = {y ∈ Q : ∃x ∈ P [y = (x)ϕ]} =

Q. By assumption, Q is generated by {y1, · · · , ym}. Since ϕπQ = πPψ is a surjective

R-module homomorphism, for each yj ∈ Q with 1 ≤ j ≤ m, there is a zj ∈ P such that

yj = (zj)ϕπQ = (zj)ϕ, i.e., yj − (zj)ϕ ∈ JQ. Then there are aj1, · · · , ajm ∈ J such that

yj − (zj)ϕ = aj1y1 + · · ·+ ajmym

for 1 ≤ j ≤ m, and we have the following matrix equations:
1R − a11 −a12 · · · −a1m
−a21 1R − a22 · · · −a2m

...
...

...

−am1 −am2 · · · 1R − amm




y1
y2
...

ym

 =


(z1)ϕ

(z2)ϕ
...

(zm)ϕ


Let B be the square matrix in the equality above. We claim that B is left invertible

in the matrix ring Mm(R). As in linear algebra (see Theorem 1.2.16, [2]), it suffices to

show that the row echelon form of B is the identity matrix Im in the matrix ring Mm(R).

For all 1 ≤ i ≤ m, as aii ∈ J = Jac(R), the i-th diagonal entry 1R − aii of B is left

invertible in R; so there is a ui ∈ R such that ui(1R−aii) = 1R. Compute the row echelon

form of B as follows:

• Step 1. Left multiply the first row of B by a21u1, and then add the resulting first

row to the second row of B, obtaining a matrix with the (2, 1)-entry

a21u1(1R − a11) + (−a21) = a21 − a21 = 0R,

the (2, 2)-entry a21u1(−a12) + (1R − a22) = 1R − (a22 + a21u1a12) ∈ 1R + J and the

(2, j)-entry a21u1(−a1j) + (−a2j) ∈ J for all 3 ≤ j ≤ m.



14 HUISHAN WU

Continue this process by adding left multiples of the first row to the remaining rows

one by one, we obtain a matrix B1 whose (i, 1)-entries with i 6= 1 are zero, (i, i)-

entries are of the form 1R − x with x ∈ J and thus left invertible, and (i, j)-entries

with j ≥ 2 and i 6= j are inside J .

• Step i (2 ≤ i ≤ m). Suppose that we have obtained Bi−1 at Step i − 1. Add

left multiple of the i-th row of Bi−1 to other rows one by one, obtaining a matrix

Bi whose nondiagonal entries with columns j ≤ i are zero, diagonal entries belong

to 1R + J and thus left invertible, and other nondiagonal entries belong to J . In

particular, Bm is a matrix with diagonal entries left invertible and other entries zero.

• Step m+ 1. Left multiply the rows of Bm one by one to obtain the identity matrix

Im.

Now the row echelon form of B is the identity matrix Im, and B is left invertible. Let

CB = Im for some C ∈Mm(R). We have

(y1, · · · , ym)T = CB(y1, · · · , ym)T = C((z1)ϕ, · · · , (zm)ϕ)T ,

and yj(1 ≤ j ≤ m) is an R-linear sum of elements in {(z1)ϕ, · · · , (zm)ϕ}. So yj ∈ im(ϕ)

for all 1 ≤ j ≤ m. Since {y1, . . . , ym} generates Q as left R-modules, Q = im(ϕ) and

ϕ : P → Q is onto.

We next show that ϕ : P → Q is one-to-one, that is, ker(ϕ) = {x ∈ P : (x)ϕ = 0Q} =

{0P}. By the projectivity of Q, for the identity homomorphism idQ : Q → Q and the

surjective homomorphism ϕ : P → Q, there is a homomorphism α : Q → P such that

idQ = αϕ.

Q

idQ
��

α

��
P

ϕ // Q // 0

First of all, im(α) exists in RCA0. Indeed, let x ∈ P , (x)ϕ = (((x)ϕ)α)ϕ implies that

x− ((x)ϕ)α ∈ ker(ϕ). If x ∈ im(α), then x− ((x)ϕ)α = (y)α ∈ ker(ϕ) for some y ∈ Q,

and y = ((y)α)ϕ = 0Q. So x = ((x)ϕ)α. Conversely, if x = ((x)ϕ)α, then x ∈ im(α).

Hence,

x ∈ im(α)⇔ x = ((x)ϕ)α.

im(α) exists by Σ0
0 comprehension. Furthermore, we see that P = ker(ϕ)⊕im(α) because

ker(ϕ) ∩ im(α) = {0P}, and for any x ∈ P , x = (x− ((x)ϕ)α) + ((x)ϕ)α.

Claim. ker(ϕ) = Jker(ϕ) = JP ∩ ker(ϕ).

Proof of the claim. First, Jker(ϕ) = JP ∩ ker(ϕ). Clearly, Jker(ϕ) ⊆ JP ∩ ker(ϕ).

Now let x ∈ JP ∩ ker(ϕ). Since P = ker(ϕ) ⊕ im(α) is generated by {x1, . . . , xn}, let
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xi = y′i + z′i be the unique decomposition with y′i ∈ ker(ϕ) and z′i ∈ im(α). Then there

are r1, . . . , rn ∈ J such that

x = r1x1 + · · ·+ rnxn = (r1y
′
1 + · · ·+ rny

′
n) + (r1z

′
1 + · · ·+ rnz

′
n) ∈ JP ∩ ker(ϕ).

Let z = r1z
′
1 + · · ·+ rnz

′
n ∈ im(α). Then (z)ϕ = (x)ϕ = 0Q, and z ∈ ker(ϕ) ∩ im(α). So

z = 0P and x = r1y
′
1 + · · · + rny

′
n ∈ Jker(ϕ). This shows that JP ∩ ker(ϕ) ⊆ Jker(ϕ).

Hence, Jker(ϕ) = JP ∩ ker(ϕ).

Second, ker(ϕ) = Jker(ϕ). It suffices to show that ker(ϕ) ⊆ Jker(ϕ). Let x ∈ ker(ϕ).

Then (x)ψ = (x)πPψ = (x)ϕπQ = (x)ϕ is zero in Q/JQ. Since ψ : P/JP → Q/JQ is

an R-isomorphism, x is zero in P/JP , and x ∈ JP . Thus, we have x ∈ JP ∩ ker(ϕ) =

Jker(ϕ).

This ends the proof of the claim.

We are ready to show that ker(ϕ) = {0P}. P is generated by {x1, · · · , xn}. Again, for

each 1 ≤ i ≤ n, let xi = y′i+ z′i with y′i ∈ ker(ϕ), z′i ∈ im(α). Then ker(ϕ) is generated by

{y′1, · · · , y′n}, and y′i ∈ ker(ϕ) = Jker(ϕ) implies that there are bi1, · · · , bin ∈ J = Jac(R)

such that y′i = bi1y
′
1 + bi2y

′
2 + · · ·+ biny

′
n for all 1 ≤ i ≤ n. That is,

1R − b11 −b12 · · · −b1n
−b21 1R − b22 · · · −b2n

...
...

...

−bn1 −bn2 · · · 1R − bnn




y′1
y′2
...

y′n

 =


0P
0P
...

0P


As before, since bij ∈ J = Jac(R) for all 1 ≤ i, j ≤ n, the square matrix on the equation

above is left invertible and thus y′i = 0P for all 1 ≤ i ≤ n. Then ker(ϕ) = {0P} and

ϕ : P → Q is an R-module isomorphism. �

We remark that the classical proof of Lemma 19.27 in [11] uses Nakayama’s Lemma.

Here, we avoid the use of Nakayama’s Lemma that appeared in the classical proofs like

im(ϕ) + JQ = Q⇒ im(ϕ) = Q, which requires the existence of both im(ϕ) and the sum

im(ϕ) + JQ, and thus ACA0.

For a proof of Proposition 3.4 below, refer to Theorem 21.10, [11].

Proposition 3.4. (RCA0) Let R be a ring with the Jacobson radical J := Jac(R).

For an idempotent e ∈ R, Jac(eRe) = J ∩ eRe = eJe = {ere : r ∈ J}.

For a semiperfect ring R, using Lemma 3.3 above, we show that indecomposable

modules Re are always strongly indecomposable.

Proposition 3.5. (RCA0) Let R be a semiperfect ring with J := Jac(R) and e an

idempotent of R. The following conditions are equivalent.

(1) Re is an indecomposable R-module.
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(2) Re is a strongly indecomposable R-module.

Proof. We only need to show (1) ⇒ (2). Let Re be an indecomposable R-module.

Consider the least representative e ∈ R := R/J . We first show that Re is an indecompos-

able R-module. Suppose otherwise that Re is decomposable. Then e = x + y with x, y

nonzero orthogonal idempotents of R. Since idempotents of R can be lifted to R, there

are idempotents f, g of R such that x = f, y = g, and fg, gf ∈ J . Claim that there is an

idempotent h ∈ R with h = g = y and fh = hf = 0R. The classical proof of the claim

works in RCA0 (see Proposition 21.22, [11]), we omit the details here.

Let e′ = f + h. e′ is an idempotent of R, and e = x + y = f + h = f + h = e′. Then

we have the following isomorphisms of R-modules:

Re/Je ∼= Re = R e′ ∼= Re′/Je′.

Since Re and Re′ are projective R-modules, by Lemma 3.3, Re ∼= Re′ = R(f + h) =

Rf⊕Rh as R-modules, and Re is decomposable, a contradiction. So Re is indecomposable

as an R-module.

As R is a semisimple ring, by Proposition 2.11, Re is a simple R-module. Then

eRe/Jac(eRe) = eRe/eJac(R)e ∼= eRe is a division ring. By Lemma 2.5, Jac(eRe) =

eRe \ Ul(eRe), the set of non left invertible elements of eRe. This shows that eRe is a

local ring. By definition, Re is strongly indecomposable. �

Proposition 3.5 above will be used to prove the characterization of semiperfect rings in

terms of idempotents. Following the classical proof of the characterization of semiperfect

rings, we also need (1) of Ex 21.16 in [11], for completeness, we provide a proof for the

exercise in the following proposition.

Proposition 3.6. Let e1, e2 be two idempotents of a ring R and let f1 = 1R− e1, f2 =

1R − e2. The following conditions are equivalent over RCA0.

(1) Re1 ∼= Re2 and Rf1 ∼= Rf2 as left R-modules.

(2) e1 = u−1e2u for some unit u ∈ R.

Proof. (1) ⇒ (2). Let ϕ : Re1 → Re2; e1 7→ ae2 and ψ : Rf1 → Rf2; f1 7→ cf2 be

left R-module isomorphisms with inverse ϕ−1 : Re2 → Re1; e2 7→ be1 and ψ−1 : Rf2 →
Rf1; f2 7→ df1, respectively. Then we have

ae2 = (e1)ϕ = (e1e1)ϕ = e1(e1)ϕ = e1ae2,

be1 = (e2)ϕ
−1 = (e2e2)ϕ

−1 = e2(e2)ϕ
−1 = e2be1,

e1 = (e1)ϕϕ
−1 = (ae2)ϕ

−1 = a(e2)ϕ
−1 = abe1 = ae2be1,

e2 = (e2)ϕ
−1ϕ = (be1)ϕ = b(e1)ϕ = bae2 = be1ae2.
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In a similar way, one can obtain that

cf2 = f1cf2, df1 = f2df1, f1 = cf2df1 and f2 = df1cf2.

Take u = (e2)ϕ
−1 + (f2)ψ

−1 = be1 + df1. It is a direct check that u is a unit of R with

inverse u−1 = (e1)ϕ+ (f1)ψ = ae2 + cf2. Calculate u−1e2u as follows:

u−1e2u =(ae2 + cf2)e2(be1 + df1)

=ae2(be1 + df1) + cf2e2(be1 + df1)

=ae2be1 + ae2df1 = ae2be1 + ae2f2df1 = ae2be1 = e1.

(2) ⇒ (1). Assume that u−1e2u = e1 for some unit u in R. Define an R-module

homomorphism ϕ : Re1 → Re2 by sending e1 to u−1e2. Then

(re1)ϕ = r(e1)ϕ = ru−1e2.

On the one hand, (rue1)ϕ = ruu−1e2 = re2, this means that ϕ is onto. On the other

hand, (re1)ϕ = ru−1e2 = 0R implies that re1 = ru−1e2u = 0R, so ϕ is one-to-one. This

shows that ϕ : Re1 → Re2 is a left R-module isomorphism.

Note that u−1f2u = u−1(1R−e2)u = 1R−u−1e2u = 1R−e1 = f1. As in the paragraph

above, one can prove that Rf1 ∼= Rf2 as left R-modules. �

We are ready to provide an effective proof for the characterization of semiperfect rings

by using lemmas and propositions developed above.

Theorem 3.7. For a ring R with the Jacobson radical J := Jac(R), the following

conditions are equivalent over RCA0.

(1) R is a semiperfect ring.

(2) 1R = e1 + · · ·+ en for some pairwise orthogonal idempotents ei(1 ≤ i ≤ n) of R with

each Rei strongly indecomposable.

Proof. (1) ⇒ (2). Suppose that R is semiperfect. That is, J = Jac(R) exists and

R := R/J = {r : r ∈ R} is a semisimple ring such that idempotents of R can be lifted to

R. First, as R is a semisimple ring, there are mutually orthogonal idempotents x1, · · · , xn
of R such that 1R = x1 + · · · + xn and Rxi is a simple left R-module for all 1 ≤ i ≤ n.

Second, there are idempotents ei ∈ R such that xi = ei for all 1 ≤ i ≤ n. It is a direct

check that each Rei(1 ≤ i ≤ n) is indecomposable. By Proposition 3.5, Rei is strongly

indecomposable. Let e = e1 + · · ·+ en. In R, we have

1R = x1 + · · ·+ xn = e1 + · · ·+ en = e1 + · · ·+ en = e.

Then f := 1R − e ∈ J and e = 1R − f is left invertible. Let ve = 1R for some v ∈ R, we

see that f = vef = 0R and e = 1R. So 1R = e1 + · · ·+ en. (2) holds.
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(2)⇒ (1). Let 1R = e1+ · · ·+en with e1, · · · , en pairwise orthogonal idempotents of R

and Rei strongly indecomposable for all i = 1, · · · , n. For each i, eiRei is a left local ring,

that is, Jac(eiRei) = eiJac(R)ei = eiJei equals the set of non left invertible elements of

the ring eiRei. By Lemma 2.5, eiRei/Jac(eiRei) = eiRei/eiJei ∼= eiRei is a division ring.

Claim. For any nonzero r ∈ R, there is an element s ∈ R such that rsr 6= 0R.

Proof of the claim. We first show that Jac(R) = {0R}. Let x ∈ Jac(R) with x = t

for some t ∈ R, i.e., x = t meets the condition: for any y ∈ R, there is a z ∈ R such that

z(1R−yx) = 1R. It remains to check that t ∈ Jac(R). For any r1 ∈ R, 1R−r1 t = 1R − r1t
is left invertible in R. Let r2 1R − r1t = 1R with r2 ∈ R. Then r2(1R−r1t)−1R ∈ Jac(R)

and we see that r2(1R − r1t) is left invertible in R; so is 1R − r1t. Hence, t ∈ Jac(R) by

definition, and x = t = 0R.

For the given nonzero r, we have r /∈ Jac(R), i.e., there is an element s ∈ R such that

1R − sr is not left invertible in R. For the particular element 1R + sr,

(1R + sr) (1R − sr) = 1R − srsr 6= 1R,

Then srsr 6= 0R, and thus, rsr 6= 0R.

This ends the proof of the claim.

We are ready to show that Rei is a simple left R-module. Let r ei = rei be a nonzero

element in Rei. By the Claim, there is an element s ∈ R such that reisrei is nonzero in

R. Clearly, eisrei is nonzero in the division ring eiRei. Then eisrei is left invertible in

the ring eiRei, i.e., there is a nonzero u ∈ R such that

ei = eiuei eisrei = eiueis rei ∈ Rrei.

Then, as left R-modules, Rei = Rrei. This means that rei generates the left R-module

Rei. By definition, Rei is simple as a left R-module.

By 1R = e1 + · · · + en, we see that R = Re1 ⊕ · · · ⊕ Ren is a direct decomposition of

the left regular module of R into simple left R-modules. That is, R is a left semisimple

ring. To prove that R is a semiperfect ring, it remains to show that idempotents of R can

be lifted to R.

Let x be an idempotent of R. Since R = Re1 ⊕ · · · ⊕ Ren is semisimple, for the left

R-module Rx, by Lemma 2.2, there is a set A ⊆ {1, · · · , n} such that

Rx ∼=
⊕
i∈A

Rei = R(
∑
i∈A

ei).

By Proposition 3.6, there is a unit z = u ∈ R for some u ∈ R such that x = z−1(
∑

i∈A ei)z.

Let z−1 = v with v ∈ R. Now uv = vu = 1R, i.e., 1R − uv, 1R − vu ∈ J = Jac(R). Then

uv = 1R − (1R − uv) and vu = 1R − (1R − vu) are left invertible in R.

Clearly, u is left invertible in R. We now show that u is right invertible too. Since uv

is left invertible, suv = 1R for some s ∈ R. Now s = 1R + s(1R − uv) ∈ 1R + Jac(R) is
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left invertible and let ts = 1R with t ∈ R. Then

uvs = (ts)uvs = t(suv)s = ts = 1R

and u is right invertible. Now u is invertible, let u−1 be the inverse of u in R. Set e =∑
i∈A u

−1eiu. Since
∑

i∈A ei is an idempotent of R, so is e = u−1(
∑

i∈A ei)u; furthermore,

we have

e =
∑
i∈A

u−1eiu =
∑
i∈A

u−1ei u = u−1(
∑
i∈A

ei)u = z−1(
∑
i∈A

ei)z = x.

That is, e is an idempotent of R that lifts to the idempotent x of R. Hence, R is

semiperfect. (1) holds. �

4 Semiperfect rings R with R/Jac(R) simple

Semiperfect rings R with R/Jac(R) simple are isomorphic to matrix rings over local rings.

In this section, we will develop an effective proof for the result in RCA0.

We first review the structure of rings that are both semisimple and simple.

Definition 4.1. (RCA0) A ring R is simple if R is generated by any nonzero element

as a two-sided ideal. That is, the Π0
2 condition

∀x ∈ R \ {0R}∀y ∈ R∃r1, s1, · · · , rn, sn ∈ R[y = r1xs1 + · · ·+ rnxsn]

holds.

Typical examples of simple rings are matrix rings over division rings. For semisimple

rings, we have obtained in [22] that RCA0 proves the structure theorem: semisimple

rings are isomorphic to finite direct products of matrix rings over division rings. Then

semisimple and simple rings are always isomorphic to matrix rings over division rings.

For completeness, we now sketch the proof.

Lemma 4.2. (RCA0) Let R be a semisimple and simple ring with R = Re1⊕· · ·⊕Ren
for simple left R-modules Rei(1 ≤ i ≤ n). Then Re1 ∼= · · · ∼= Ren, and R is isomorphic

to the matrix ring Mn(e1Re1) over the division ring e1Re1.

Proof. For 1 ≤ i, j ≤ n, we have that Rei ∼= Rej ⇔ ∃r, s ∈ R[ei = rs ∧ ej = sr]. So

Rei ∼= Rej is a Σ0
1 relation on {1, 2, · · · , n}. We can collect isomorphic direct summands

of R in the decomposition R = Re1 ⊕ · · · ⊕Ren as follows:

(1) Let i1 = 1. By bounded Σ0
1 comprehension, X1 = {j : 1 ≤ j ≤ n,Rej ∼= Rei1}

exists, one can count the size |X1| of X1.

(2) Let i2 be the least number in {1, 2, · · · , n} \ X1. Similarly, X2 = {j : 1 ≤ j ≤
n,Rej ∼= Rei2} exists, one can count the size |X2| of X2.
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(3) Continue the process for no more than n many steps, we obtain numbers i1, . . . , it
such that X1, . . . , Xt form a partition of {1, 2, . . . , n}, where Xk = {j : 1 ≤ j ≤
n,Rej ∼= Reik} for 1 ≤ k ≤ t.

For each 1 ≤ k ≤ t, the size of Xk is the number of Rej’s isomorphic to Reik , let

nk = |Xk|. Then R ∼= (Rei1)
n1 ⊕ · · · ⊕ (Reit)

nt as left R-modules. As shown in Lemma 3

of [21], R ∼= Mn1(ei1Rei1) × · · · ×Mnt(eitReit) as rings. As R is a simple ring, t = 1, so

Re1 ∼= · · · ∼= Ren, and we have R ∼= Mn(e1Re1). �

To prove the structure theorem of semiperfect rings in RCA0, we need to verify the

effectiveness of several properties related to matrix rings.

Proposition 4.3. (RCA0) Let R be a ring with the Jacobson radical Jac(R), then

Jac(Mn(R)) = Mn(Jac(R)), where Mn(R) is the matrix ring over R.

Proof. We first show that Jac(Mn(R)) ⊆ Mn(Jac(R)). Let A = (aij) be a matrix

in Jac(Mn(R)), i.e., for any B ∈Mn(R), there is a matrix C ∈Mn(R) such that C(In −
BA) = In, where In is the identity matrix in Mn(R) with the (i, i)-entry 1R for all

1 ≤ i ≤ n and other entries 0R. For all 1 ≤ i, j ≤ n, let Eij be the matrix with the

(i, j)-entry 1R and other entries 0R. Let b ∈ R. For the matrix Bb = bEij, there is a

matrix C = (cij) ∈Mn(R) such that C(In −BbA) = In. By multiplying out the matrices

on the left side of the equation, we see that the (i, i)-entry is cii(1R − baji) = 1R. This

implies that aji ∈ Jac(R). Thus, A ∈Mn(Jac(R)).

We next show that Mn(Jac(R)) ⊆ Jac(Mn(R)). Let A = (aij) be a matrix in

Mn(Jac(R)). To argue that A ∈ Jac(Mn(R)), for any B = (bij) ∈ Mn(R), we need

to find a left inverse for In − BA in the matrix ring Mn(R). As before, we only need to

show that the row echelon form of the matrix In −BA is the identity matrix In.

Let D := (dij) = In − BA. For all 1 ≤ i ≤ n, the (i, i)-entry of D is dii = 1R −∑n
k=1 bikaki, which is left invertible in R because

∑n
k=1 bikaki ∈ Jac(R); for all 1 ≤ i 6=

j ≤ n, the (i, j)-entry is dij = −
∑n

k=1 bikakj ∈ Jac(R).

• After performing the elementary operation “adding a left multiple of one row to

another row” on D for finitely many times, we obtain a matrix U whose (i, i)-

entries are left invertible and other entries are zero. For instance, left multiply the

first row of D by −d21u11 with u11 a left inverse of d11 in R, and then add the

multiplied first row to the second row of D, we obtain a matrix whose (2, 1)-entry

is zero, (i, i)-entries are still left invertible for all i and (i, j)-entries are still inside

Jac(R) for all i 6= j.

• After performing the elementary operation “left multiplying one row of a matrix”

on U for finitely many times, we obtain the identity matrix In. Now the row echelon

form of D is In.
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Hence, D = In−BA is left invertible in Mn(R). By definition, we have A ∈ Jac(Mn(R)).

�

Proposition 4.4. (RCA0) Semisimple rings and local rings are semiperfect.

Proof. By Proposition 4.3, Jac(Mn(D)) = Mn(Jac(D)) = {0Mn(D)} for a division

ring D. So for a semisimple ring R, Jac(R) = {0R} and R = R/Jac(R) = R. This means

that semisimple rings are semiperfect.

By Lemma 2.5, for a local ring R, R = R/Jac(R) is a division ring, and thus semisim-

ple. Moreover, R contains only trivial idempotents, the condition (2) in the definition of

semiperfect rings holds. This shows that local rings are semiperfect. �

We also need Corollary 23.9, [11], which says that matrix rings over semiperfect rings

are always semiperfect, the classical proof there depends on properties of endomorphism

rings of strongly indecomposable modules. We now provide a direct proof for it.

Proposition 4.5. (RCA0) For a semiperfect ring R, Mn(R) is semiperfect.

Proof. First, Jac(Mn(R)) = Mn(Jac(R)) exists. As R is semiperfect, by Theorem

3.7, 1R = e1 + · · · + en, where e1, · · · , en are pairwise orthogonal idempotents of R with

each eiRei left local. Consider the identity In of the matrix ring Mn(R). In =
∑n

i=1Eii,

where Eii is the square matrix of size n with the (i, i)-entry 1R and other entries 0R. Based

on the decomposition of 1R, Eii = e1Eii + · · · + enEii, and then In =
∑n

i=1

∑n
j=1 ejEii.

To see why Mn(R) is semiperfect, using Theorem 3.7 for the matrix ring Mn(R), we only

need to show that each

ejEiiMn(R)ejEii = {ejEiiAejEii : A ∈Mn(R)}

is a left local ring.

For each A = (aij) ∈ Mn(R), we have ejEiiAejEii = ejaiiejEii, i.e., the matrix whose

(i, i)-entry is ejaiiej and all other entries are 0R. The identity of the ring ejEiiMn(R)ejEii
is just ejEii. The matrix ejaiiejEii is left invertible in the ring ejEiiMn(R)ejEii if and

only if the (i, i)-entry ejaiiej is left invertible in the ring ejRej. By assumption, ejRej
is a left local ring, so the non left invertible elements of ejRej are closed under the

addition of ejRej. This implies that the non left invertible matrices in the matrix ring

ejEiiMn(R)ejEii are also closed under the addition of the matrix ring. By definition,

ejEiiMn(R)ejEii is a left local ring. �

We are ready to prove the structure theorem for semiperfect rings R with R/Jac(R)

simple.

Theorem 4.6. The following conditions are equivalent over RCA0 for a ring R.

(1) R is a semiperfect ring with R/Jac(R) simple.
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(2) R ∼= Mn(S) for some n ≥ 1 and local ring S.

Proof. (2) ⇒ (1). Let S be a local ring, and ϕ : R → Mn(S) be the isomorphism.

Since local rings are semiperfect, by Proposition 4.5, Mn(S) is semiperfect. Then Jac(R)

exists because for any r ∈ R, r ∈ Jac(R) ⇔ (r)ϕ ∈ Jac(Mn(S)), and R is semiperfect.

By Proposition 4.3,

R/Jac(R) ∼= Mn(S)/Jac(Mn(S)) = Mn(S)/Mn(Jac(S)) ∼= Mn(S/Jac(S)).

Since S/Jac(S) is a division ring and matrix rings over division rings are simple,

Mn(S/Jac(S)) is simple. So is R/Jac(R).

(1) ⇒ (2). Let R be a semiperfect ring. By Theorem 3.7, 1R = e1 + · · · + en for

some mutually orthogonal idempotents e1, · · · , en of R with each eiRei a local ring. Then

R = Re1 ⊕ · · · ⊕ Ren, and the semisimple ring R = R/Jac(R) has a decomposition

R = Re1 ⊕ · · · ⊕ Ren with each Rei simple submodules. Since the semisimple ring R is

actually simple, by Lemma 4.2, the direct summands Rei(1 ≤ i ≤ n) are all isomorphic

to each other. Furthermore, since Rei(1 ≤ i ≤ n) are projective R-modules, by Lemma

3.3, Re1 ∼= Re2 ∼= · · · ∼= Ren as left R-modules, and thus, R = Re1 ⊕ · · · ⊕ Ren ∼= (Re1)
n

as left R-modules. Again, this implies that R ∼= Mn(e1Re1) as rings with e1Re1 a local

ring. �

5 Perfect rings R with R/Jac(R) simple

In this section, we study the structure theorem for one-sided perfect ringsR withR/Jac(R)

simple. We first introduce left (resp., right) T -nilpotent ideals (see page 341, [11]), which

are closely related to nil ideals and nilpotent ideals.

Definition 5.1. (RCA0) Let I be an (two-sided) ideal of a ring R.

(1) I is nil if for any a ∈ I, there is a number n such that an = 0R.

(2) I is nilpotent if there is a number n such that for any a1, . . . , an ∈ I, a1 · · · an = 0R.

(3) I is left (resp., right) T -nilpotent if for any sequence 〈an : n ∈ N〉 of elements of I,

there is a number n such that a1a2 · · · an = 0R (resp., an · · · a2a1 = 0R).

Nil ideals are weaker than nilpotent ideals. It is not hard to see that one-sided T -

nilpotent ideals are strictly between nil ideals and nilpotent ideals.

Definition 5.2. (RCA0) A ring R with the Jacobson radical Jac(R) is left (resp.,

right) perfect if it satisfies the following conditions:

(1) R/Jac(R) is semisimple;
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(2) Jac(R) is left (resp., right) T -nilpotent.

Unlike semisimple rings, local rings and semiperfect rings, left perfect rings and right

perfect rings are distinct notions (see Example 23.22, [11]), and perfect rings refer to rings

that are both left perfect and right perfect.

For a proof of Proposition 5.3 below, refer to the classical proof appeared in Theorem

21.28, [11], which works in RCA0.

Proposition 5.3. (RCA0) If I is a nil ideal of a ring R, then idempotents of the

quotient ring R/I can be lifted to R.

For a left (resp., right) perfect ring R, idempotents of R/Jac(R) can be lifted to R

because left (resp., right) T -nilpotent ideals are nil. So left perfect rings or right perfect

rings are always semiperfect within RCA0, and we will prove the structure theorem of

one-sided perfect rings based on the corresponding theorem of semiperfect rings.

To prove the structure theorem of one-sided perfect rings, we need a key lemma.

Lemma 5.4. (WKL0) For an ideal I of a ring R, the following are equivalent.

(1) I is a left (resp., right) T -nilpotent ideal of R.

(2) Mn(I) is a left (resp., right) T -nilpotent ideal of the matrix ring Mn(R).

Proof. We only prove the case of left T -nilpotent ideals.

(2) ⇒ (1). We reason in RCA0. Assume that Mn(I) is a left T -nilpotent ideal of

Mn(R). Let 〈am : m ∈ N〉 be a sequence of elements in I. Then 〈amE11 : m ∈ N〉 is a

sequence of matrices in Mn(R), where E11 is the n square matrix with (1, 1)-entry 1R and

other entries 0R. By (2), there is a number m such that a1E11 · · · amE11 = 0Mn(R), the

zero matrix in Mn(R); thus, a1 · · · am = 0R. I is left T -nilpotent.

(1) ⇒ (2). We reason in WKL0. A tree S ⊆ N<N is bounded if there is a function

g : N → N such that for each node τ = τ(0)aτ(1) · · ·a τ(|τ | − 1) ∈ S and i < |τ |,
τ(i) < g(i). Here, |τ | stands for the length of τ . By Lemma IV.1.4, [15], WKL0 is

equivalent to RCA0 plus Bounded König’s Lemma: every bounded infinite tree S ⊆ N<N

has an infinite path.

We now use Bounded König’s Lemma to prove (1)⇒ (2). Assume that Mn(I) is not

a left T -nilpotent ideal of Mn(R). Then there is a sequence of matrices 〈Am : m ∈ N〉 in

Mn(I) such that for any m, A0A1 · · ·Am 6= 0Mn(R). Define a bounded tree S ⊆ N<N based

on the sequence 〈Am : m ∈ N〉 of matrices in Mn(I) as follows:

(1) For any m ≥ 0 and 1 ≤ i, j ≤ n, let amij be the (i, j)-entry of Am. Also fix a bijection

〈·, ·〉 : N× N→ N.
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(2) A node σ = σ(0)a · · ·a σ(m) ∈ N<N of lengthm+1 belongs to S if for any 0 ≤ k ≤ m,

σ(k) = 〈ik, jk〉 subject to the condition

a0i0j0a
1
i1j1
· · · amimjm 6= 0R,

where akikjk is the (ik, jk)-entry of the matrix Ak for 0 ≤ k ≤ m.

Since nodes of S are chosen from finite sequences of numbers from the set {〈i, j〉 :

1 ≤ i, j ≤ n}, S is a bounded tree. Moreover, for any m, A0 · · ·Am 6= 0Mn(R) implies

that there is a nonzero entry of A0 · · ·Am, which is a sum of multiplications of the form

a0i0j0 · · · a
m
imjm in R. So there is a node of length m+ 1 in S for any m, and S is an infinite

tree. By Bounded König’s Lemma, S contains an infinite path f . For any m ≥ 0, let

f(m) = 〈im, jm〉 with 1 ≤ im, jm ≤ n. Then 〈amimjm : m ∈ N〉 is a sequence of elements of

I such that a0i0j0 · · · a
m
imjm 6= 0R for all m. By definition, I is not a left T -nilpotent ideal

of R. �

Using a different characterization of right T -nilpotent ideals (i.e., Theorem 23.16,

[11]), Lam’s book provides a proof for the structure theorem of right perfect rings R

with R/Jac(R) simple (i.e., Theorem 23.23, [11]). Since the characterization of right T -

nilpotent ideals in [11] holds in ACA0, the classical proof of the structure theorem there

works in ACA0. Using Lemma 5.4 above, we can provide a proof for the structure theorem

in WKL0.

Theorem 5.5. (WKL0) The following conditions are equivalent for a ring R.

(1) R is a left (resp., right) perfect ring with R/Jac(R) simple.

(2) R ∼= Mn(S) for some n ≥ 1, and some local ring S whose maximal ideal is left

(resp., right) T -nilpotent.

Proof. We only prove the case of left perfect rings. Then the proof for right perfect

rings is clear.

(1) ⇒ (2). We reason in RCA0. If R is a left perfect ring, then R is semiperfect. By

Theorem 4.6, there is a local ring S with a maximal ideal Jac(S) such that R ∼= Mn(S).

Then Mn(Jac(S)) = Jac(Mn(S)) ∼= Jac(R). As Jac(R) is a left T -nilpotent ideal of R,

Mn(Jac(S)) is a left T -nilpotent ideal of Mn(S). Then RCA0 proves that Jac(S) is a left

T -nilpotent ideal of S.

(2) ⇒ (1). We reason in WKL0. If R ∼= Mn(S) for some local ring S with Jac(S)

a left T -nilpotent ideal, then by Theorem 4.6, R/Jac(R) is simple, and by Lemma 5.4,

WKL0 proves that Jac(Mn(S)) = Mn(Jac(S)) is a left T -nilpotent ideal of Mn(S). Then

Jac(R) is a left T -nilpotent ideal of R, and R is a left perfect ring. �
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