
REPORTS ON MATHEMATICAL LOGIC
56 (2021), 75–99
doi:10.4467/20842589RM.21.006.14376

Satoru NIKI and Hitoshi OMORI

A NOTE ON HUMBERSTONE’S CONSTANT Ω

A b s t r a c t. We investigate an expansion of positive intuition-

istic logic obtained by adding a constant Ω introduced by Lloyd

Humberstone. Our main results include a sound and strongly

complete axiomatization, some comparisons to other expansions

of intuitionistic logic obtained by adding actuality and empirical

negation, and an algebraic semantics. We also briefly discuss its

connection to classical logic.

.1 Introduction

In [8, §3], Lloyd Humberstone introduced an expansion of the implicational

fragment of intuitionistic logic as one of the simple examples of an expansion

of intuitionistic logic that lacks the Deduction Theorem. The expansion of

Humberstone involves a constant Ω which is different from the more usual
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falsum constant ⊥. The aim of this note is to explore an expansion of the

positive intuitionistic logic obtained by adding the constant Ω. We refer to

the resulting expansion as IPCΩ. Our main observations include an axiom-

atization, an algebraic semantics, and a comparison with two expansions of

the positive intuitionistic logic, one known as JX of Krister Segerberg, orig-

inally introduced by Ingebrigt Johansson, and another obtained by adding

the actuality operator, which is also discussed in [8, §3] by Humberstone.

Our note is structured as follows. After introducing the semantics and

proof system for IPCΩ in §2, we establish soundness and strong complete-

ness result in §3. We then briefly compare JX and IPCΩ in §4. This will

be followed by another presentation of IPCΩ in §5, and in §6 we add the

falsum constant ⊥ and observe some interesting features of the resulting

system. We then turn our attention to another expansion of intuitionistic

logic, also considered by Humberstone, in terms of actuality operator in §7,

and offer a brief comparison. This will be enriched by devising an algebraic

semantics for the main systems in §8. The note is then concluded in §9

with a brief discussion on regarding the expansions of intuitionistic logic as

adding classical negation to intuitionistic logic, as well as a few directions

for further investigations.

.2 Semantics and Proof system

The language LΩ consists of a finite set {Ω,∧,∨,→} of propositional con-

nectives and a countable set Prop of propositional variables which we denote

by p, q, etc. Furthermore, we denote by Form the set of formulas defined

as usual in LΩ. We denote a formula of LΩ by A, B, C, etc. and a set of

formulas of LΩ by Γ, ∆, Σ, etc.

We now present the semantics, and then turn to the proof system.

Definition 2.1 (Humberstone). An IPCΩ-model for the language LΩ

is a quadruple 〈W, g,≤, V 〉, where W is a non-empty set (of states); g ∈W

(the base state); ≤ is a partial order on W with g being the least element;

and V : W × Prop→ {0, 1} an assignment of truth values to state-variable

pairs with the condition that V (w1, p) = 1 and w1 ≤ w2 only if V (w2, p) = 1

for all p ∈ Prop and all w1, w2 ∈ W . Valuations V are then extended to

interpretations I to state-formula pairs by the following conditions:
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• I(w, p) = V (w, p);

• I(w,Ω) = 1 iff w 6= g;

• I(w,A ∧B) = 1 iff I(w,A) = 1 and I(w,B) = 1;

• I(w,A ∨B) = 1 iff I(w,A) = 1 or I(w,B) = 1;

• I(w,A → B) = 1 iff for all x ∈ W : if w ≤ x and I(x,A) = 1 then

I(x,B) = 1.

Semantic consequence is now defined in terms of truth preservation at

g: Γ |= A iff for all IPCΩ-models 〈W, g,≤, I〉, I(g,A) = 1 if I(g,B) = 1 for

all B ∈ Γ.

Then, as expected, the heredity condition carries over to Form.

Lemma 2.2. For all A ∈ Form and for all w1, w2 ∈ W , I(w1, A) = 1

and w1 ≤ w2 only if I(w2, A) = 1.

Proof. By induction on the complexity of the formula A. We only

treat the case with Ω since other cases are standard. Assume that we have

x, y ∈W with I(x,Ω) = 1, x ≤ y and I(y,Ω) 6= 1. Then the last condition

is equivalent to y = g, and so together with x ≤ y, we obtain x ≤ g. But,

recall too that g is the least element with respect to ≤. Therefore, by the

antisymmetry of ≤, x = g. But, this contradicts the fact that I(x,Ω) = 1

(which is equivalent to x 6= g). �

Remark 2.3. Note that we have Ω |= A for all formulas A, in view of

the fact that I(g,Ω) 6= 1. However, 6|= Ω → p since if we consider a model

with two points g, w with an order g ≤ w, and an assignment V with

V (g, p) 6= 1 and V (w, p) 6= 1, then we have I(g,Ω→ p) 6= 1. Therefore, we

may observe the failure of the Deduction Theorem. This also implies that

Ω is not definable in intuitionistic logic since the Deduction Theorem holds

in intuitionistic logic.

We also note that the falsum constant ⊥ is not definable in IPCΩ.

Proposition 2.4. In IPCΩ, ⊥ is not definable.

Proof. Consider a model 〈W, g,≤, V 〉 such that |W | ≥ 2 and V (w, p) =

1 for all w and p. Then for w 6= g, we can show by induction that I(w,B) =

1 for any B. Hence ⊥, for which I(w,⊥) must be 0, cannot be defined. �
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We now present a proof system in terms of a Hilbert-style calculus. Note

that Humberstone discusses the proof-theoretical aspect of Ω in

terms of sequent calculus.

Definition 2.5. The system IPCΩ consists of the following axiom sche-

mata and rules of inference:

A→(B→A) (Ax1)

(A→(B→C))→((A→B)→(A→C))

(Ax2)

(A ∧B)→A (Ax3)

(A ∧B)→B (Ax4)

(C→A)→((C→B)→(C→(A ∧B)))

(Ax5)

A→(A ∨B) (Ax6)

B→(A ∨B) (Ax7)

(A→C)→((B→C)→((A ∨B)→C))

(Ax8)

A ∨ (A→ Ω) (Ax9)

A A→B

B
(MP)

Ω ∨ C

A ∨ C
(DEOQ)

Finally, we write Γ ` A if there is a sequence of formulas B1, . . . , Bn, A,

n ≥ 0, such that every formula in the sequence B1, . . . , Bn, A either (i)

belongs to Γ; (ii) is an axiom of IPCΩ; (iii) is obtained by (MP) or (DEOQ)

from formulas preceding it in sequence.1

Although the Deduction Theorem fails, we do have a slightly modified

version. We now turn to establishing the result.

Proposition 2.6. For all Γ ∪ {A,B} ⊆ Form, if Γ, A ` B then Γ `
A→ (B ∨ Ω).

Proof. By the induction on the length n of the proof of Γ, A ` B. If

n = 1, then we have the following three cases.

• If B is one of the axioms of IPCΩ, then we have ` B. Therefore, by

(Ax6) and (Ax1), we obtain ` A→ (B∨Ω) which implies the desired

result.

• If B ∈ Γ, we have Γ ` B, and thus we obtain the desired result by

(Ax6) and (Ax1).

• If B = A, then by (Ax6), we have A → (B ∨ Ω) which implies the

desired result.

1(DEOQ) abbreviates d isjunctive version of ex omega quodlibet.
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For n > 1, then there are two additional cases to be considered.

• If B is obtained by applying (MP), then we will have Γ, A ` C and

Γ, A ` C → B lengths of the proof of which are less than n. Thus, by

induction hypothesis, we have Γ ` A→ (C ∨Ω) and Γ ` A→ ((C →
B)∨Ω), and by making use of a thesis in positive intuitionistic logic,

we obtain Γ ` A→ (B ∨ Ω) as desired.

• If B is obtained by applying (DEOQ), then B = C ∨D and we will

have Γ, A ` Ω ∨D length of the proof of which is less than n. Thus,

by induction hypothesis, we have Γ ` A→((Ω ∨D) ∨ Ω). By (Ax6),

inter alia, we have Γ ` A→((C ∨D) ∨ Ω) as desired.

This completes the proof. �

Proposition 2.7. For all Γ∪{A,B} ⊆ Form, if Γ ` A→ (B ∨Ω) then

Γ, A ` B.

Proof. By the assumption Γ ` A→ (B ∨Ω). Then, by (MP), we have

Γ, A ` B ∨ Ω. Thus, we obtain the desired result by (DEOQ). �

By combining Propositions 2.6 and 2.7, we obtain the following theorem.

Theorem 2.8. For all Γ∪{A,B} ⊆ Form, Γ, A ` B iff Γ ` A→(B∨Ω).

As a corollary of this variant of the Deduction Theorem, we obtain the

following which will prove vital for the completeness theorem.

Proposition 2.9. For all Γ ∪ {A,B,C} ⊆ Form, if Γ, A ` C and

Γ, B ` C, then Γ, A ∨B ` C.

.3 Soundness and Completeness

We now turn to prove the soundness and the strong completeness of the

axiomatization given in Definition 2.5. The soundness part is straightfor-

ward.

Theorem 3.1. For Γ ∪ {A} ⊆ Form, if Γ ` A then Γ |= A.
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Proof. By induction on the length of the proof. Here we look at the

cases for (DEOQ). So supposing Γ |= Ω ∨C, we show Γ |= A ∨C. Assume

I(g,B) = 1 for all B ∈ Γ. Now if I(g, C) = 0, then by I.H. I(g,Ω) = 1;

thus g 6= g, a contradiction. Hence I(g, C) = 1; therefore I(g,A ∨ C) = 1,

as desired. �

For the completeness proof, we introduce some notions, following the

presentation in [16].

Definition 3.2. We introduce the following notions.

(i) Σ `Π A iff Σ ∪Π ` A.

(ii) Σ is a Π-theory iff:

(a) if A,B ∈ Σ then A ∧B ∈ Σ.

(b) if `Π A→ B then (if A ∈ Σ then B ∈ Σ).

(iii) Σ is prime iff (if A ∨B ∈ Σ then A ∈ Σ or B ∈ Σ).

(iv) Σ `Π ∆ iff for some D1, . . . , Dn ∈ ∆, Σ `Π D1 ∨ . . . ∨Dn.

(v) `Π Σ→ ∆ iff for some C1, . . . , Cn ∈ Σ and D1, . . . , Dm ∈ ∆:

`Π C1 ∧ · · · ∧ Cn → D1 ∨ · · · ∨Dm.

(vi) Σ is Π-deductively closed iff (if Σ `Π A then A ∈ Σ).

(vii) 〈Σ,∆〉 is a Π-partition iff:

(a) Σ ∪∆ = Form

(b) 0Π Σ→ ∆

(viii) Σ is non-trivial iff A /∈ Σ for some formula A.

Lemma 3.3. If Γ is a non-empty Π-theory, then Π ⊆ Γ.

Proof. Take A ∈ Π. Then, we have Π ` A. Now since Γ is non-empty,

take any C ∈ Γ. Then, by (Ax1), we obtain Π ` C → A, i.e. `Π C → A.

Thus, combining this together with C ∈ Γ and the assumption that Γ is

Π-theory, we conclude that A ∈ Γ. �

We now introduce a number of lemmas concerning extensions of sets

with various properties. For the proofs, cf. [4, §2] which are based on [16].

Lemma 3.4. If 〈Σ,∆〉 is a Π-partition then Σ is a prime Π-theory.
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Lemma 3.5. If 0Π Σ → ∆ then there are Σ′ ⊇ Σ and ∆′ ⊇ ∆ such

that 〈Σ′,∆′〉 is a Π-partition.

Corollary 3.6. Let Σ be a non-empty Π-theory, ∆ be closed under dis-

junction, and Σ∩∆ = ∅. Then there is Σ′ ⊇ Σ such that Σ′∩∆ = ∅ and Σ′ is

a prime Π-theory.

Lemma 3.7. If Σ 0 ∆ then there are Σ′ ⊇ Σ and ∆′ ⊇ ∆ such that

〈Σ′,∆′〉 is a partition, and Σ′ is deductively closed.

Remark 3.8. Note that the proof of this lemma relies on Proposi-

tion 2.9.

Corollary 3.9. If Σ 0 A then there is Π ⊇ Σ such that A /∈ Π, Π is

a prime Π-theory and is Π-deductively closed.

Lemma 3.10. If ∆ is a Π-theory and A → B /∈ ∆, then there is

a prime Π-theory Γ, such that A ∈ Γ and B /∈ Γ.

Proof. Let Σ = {C : A → C ∈ ∆}. We check that Σ is a Π-theory.

First, if C1, C2 ∈ Σ then A → C1, A → C2 ∈ ∆. Since ` (A → C1 ∧ A →
C2) → (A → (C1 ∧ C2)) and ∆ a Π-theory, we have A → (C1 ∧ C2) ∈ ∆.

Thus C1 ∧ C2 ∈ Σ. Now suppose that `Π C → D and C ∈ Σ. Then

`Π (A → C) → (A → D) and A → C ∈ ∆; so A → D ∈ ∆ and hence

D ∈ Σ.

Clearly A∈Σ and B∨ · · · ∨B/∈Σ. Based on this, let ∆′ be the closure

of {B} under disjunction. Then Σ ∩ ∆′=∅, and the result follows from

Corollary 3.6. �

Remark 3.11. Note that, since Σ is non-trivial, the Γ thus obtained

is non-trivial as well.

We are now ready to prove completeness.

Theorem 3.12. For all Γ ∪ {A} ⊆ Form, if Γ |= A then Γ ` A.

Proof. We prove the contrapositive. Suppose that Γ 0 A. Then,

by Corollary 3.9, there is a Π ⊇ Γ such that Π is a prime Π-theory, Π-

deductively closed and A /∈ Π. Define the interpretation A = 〈X,Π,≤, I〉,
where X = {∆ : ∆ is a non-empty non-trivial prime Π-theory}, ∆ ≤ Σ iff
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∆ ⊆ Σ and I is defined thus. For every state Σ and propositional parameter

p:

I(Σ, p) = 1 iff p ∈ Σ

We show by induction on B that I(Σ, B) = 1 iff B ∈ Σ. We concentrate

on the cases where B has the form Ω and C → D.

When B ≡ Ω, if I(Σ,Ω) = 1 then by definition Σ 6= Π. Since Σ is non-

empty, we have Σ ⊇ Π by Lemma 3.3, and this means there is C ∈ Σ\Π.

Because Π is prime and deductively closed, C ∨ (C → Ω) ∈ Π and so either

C ∈ Π or C → Ω ∈ Π. But the former is impossible by our choice of C.

Thus C → Ω ∈ Π. Now as Σ is a Π-theory, C → Ω ` C → Ω and C ∈ Σ

impies Ω ∈ Σ. For the other direction, if Ω ∈ Σ and Σ = Π, then as Π is

deductively closed, Ω ∨ A ∈ Π and consequently A ∨ A ∈ Π. Hence A ∈ Π

for all A, a contradiction. Therefore Σ 6= Π, which amounts to I(Σ,Ω) = 1.

When B ≡ C → D, by IH I(Σ, C → D) = 1 iff for all ∆ s.t. Σ ⊆ ∆,

if C ∈ ∆ then D ∈ ∆. Hence it suffices to show that this latter condition

is equivalent to C → D ∈ Σ. For the forward direction, we argue by

contraposition; so assume C → D /∈ Σ. Then by Lemma 3.10 we can find

a non-empty non-trivial prime Π-theory Σ′ such that C ∈ Σ′ but D /∈ Σ′.

For the backward direction, assume C → D ∈ Σ and C ∈ ∆ for any ∆ s.t.

Σ ⊆ ∆. Then C → D ∈ ∆ as well, and so D ∈ ∆ since ∆ is a Π-theory.

It now suffices to observe that B ∈ Π for all B ∈ Γ and A /∈ Π, which

in view of the above means Γ 6|= A. This completes the proof. �

.4 A comparison to JX of Segerberg

As some readers might have already recognized, IPCΩ can be regarded

as an extension of JX introduced by Johansson in [10] and investigated

by Segerberg in [18]. In this section, we will observe a couple of results

comparing the two systems. Let us first recall JX. We will use the language

LΩ, and thus refer to Segerberg’s ⊥ as Ω.

For the proof system, we may introduce it as a subsystem of IPCΩ as

follows.

Definition 4.1 (Segerberg). The system JX is obtained from IPCΩ

by eliminating the rule (DEOQ). We refer to the consequence relation as

`JX.
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For the semantics, we need to add another element to capture the con-

stant Ω.

Definition 4.2 (Segerberg).A JX-model for LΩ is a quintuple 〈W, g,≤,
Q, V 〉, where W is a non-empty set (of states); g ∈W ; ≤ is a partial order

on W with g being the least element; Q is an upward closed subset of W

and V : W × Prop→ {0, 1} an assignment of truth values to state-variable

pairs with the condition that V (w1, p) = 1 and w1 ≤ w2 only if V (w2, p) = 1

for all p ∈ Prop and all w1, w2 ∈ W . Valuations V are then extended to

interpretations I to state-formula pairs by the following conditions:

• I(w, p) = V (w, p);

• I(w,Ω) = 1 iff w ∈ Q;

• I(w,A ∧B) = 1 iff I(w,A) = 1 and I(w,B) = 1;

• I(w,A ∨B) = 1 iff I(w,A) = 1 or I(w,B) = 1;

• I(w,A → B) = 1 iff for all x ∈ W : if w ≤ x and I(x,A) = 1 then

I(x,B) = 1.

Furthermore, we require that for all x ∈ W , for all y ∈ W \ Q, x ≤ y iff

x = y.2 We say Γ |=JX A iff for all models 〈W, g,≤, Q, I〉, I(g,A) = 1 if

I(g,B) = 1 for all B ∈ Γ.

Then, we have the following basic result due to Segerberg.

Theorem 4.3 (Segerberg). For all Γ ∪ {A} ⊆ Form, Γ `JX A iff

Γ |=JX A.

Let us now turn to compare JX and IPCΩ. It should be clear that

we immediately obtain the following in view of the definition of the proof

systems.

Proposition 4.4. For all Γ ∪ {A} ⊆ Form, if Γ `JX A then Γ ` A.

The other way around, however, does not hold:

Proposition 4.5. Ω ` A, but Ω 6`JX A.

2Segerberg merely states that the accessibility relation ≤ is the identity relation for

elements in W \Q. This may be interpreted in a few different ways, but it becomes clear

by inspecting his completeness proof that our condition is what he intended. We would

like to thank the referee for pressing us to clarify this footnote.
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Still, if we focus on the set of theorems, then we do have the following

result.

Proposition 4.6. For all A ∈ Form, if ` A then `JX A.

Proof. Assume ` A and 0JX A. Then by completeness, there is

a JX-model 〈W, g,≤, Q, V 〉 such that I(g,A) = 0. We may assume g /∈ Q,

because otherwise we may take a new model with a new base state g′ /∈ Q

such that I(g′, p) = 1 iff I(g, p) = 1. Then the original model is a generated

submodel of the new model, so I(g,A) = 0 in the new model as well. Then

I(g′, A) = 0, i.e. A is refuted in a model with the base state not in Q.

Now, 〈W, g,≤, Q, V 〉 is nothing but a model of IPCΩ, expanded by the

(redundant) presence of Q = W \ {g}. But then I(g,Ω) = 0 contradicts

the assumption that ` A by soundness. Therefore `JX A. �

.5 Taking ‘arrow Ω’ as primitive

Given a constant Ω, we may also define a unary operator in terms of →
and Ω. Following the notation of Humberstone, we consider ¬ΩA, defined

as A → Ω, and take this connective as a primitive connective. For this

purpose, let L¬Ω be a propositional language consisting of {¬Ω,∧,∨, →}.

Definition 5.1. A model for the language L¬Ω is a quadruple 〈W, g,≤,
V 〉, defined similarly to IPCΩ. Valuations V are then extended to inter-

pretations I to state-formula pairs by the same conditions for intuitionistic

connectives, and the following condition for ¬Ω:

• I(w,¬ΩA) = 1 iff for all x ∈W : if w ≤ x and I(x,A) = 1 then x 6= g.

We set up the following system IPC¬Ω corresponding to the above

semantics, and refer to the resulting semantic consequence relation as |=N .

Definition 5.2. The system IPC¬Ω consists of (Ax1)-(Ax8), (MP) and

the following axiom schemata and a rule of inference:

A ∨ ¬ΩA (N1)

(A ∧ ¬ΩA)→ (B → ¬ΩB) (N2)

A ∨B ¬ΩA

B
(DS)

We shall use `N for the derivability in IPC¬Ω .
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Remark 5.3. The above rule (DS) is included in view of an interesting

observation by Sergei Odintsov in [14, pp.87–88].

Proposition 5.4. For all formulas A,B, the following formulas are

derivable in IPC¬Ω.

(A→ ¬ΩA)→ ¬ΩA (An)

(A→ B)→ (¬ΩB → ¬ΩA) (C)

Proof. (An) follows from (N1). Then (C) follows from (N2), (An) and

`N (A∧(A→B))→(A∧B). �

Remark 5.5. It is known, thanks to [1], that (C) and (An) defines the

negation of minimal logic (with primitive negation). It therefore follows

that IPC¬Ω strictly contains minimal logic.

Again the Deduction Theorem fails, as expected, but we do have

a slightly modified version. We now turn to establish the result.

Proposition 5.6. For all Γ ∪ {A,B} ⊆ Form, if Γ, A `N B then Γ `N
¬ΩA ∨B.

Proof. By the induction on the length n of the proof of Γ, A `N B. If

n = 1, then we have the following three cases.

• If B is one of the axioms of IPC¬Ω , then we have `N B. Therefore,

by (Ax7), we obtain `N ¬ΩA ∨B which implies the desired result.

• If B ∈ Γ, we have Γ `N B, and thus we obtain the desired result by

(Ax7).

• If B = A, then by (N1), we have `N ¬ΩA ∨ B which implies the

desired result.

For n > 1, then there are two additional cases to be considered.

• If B is obtained by applying (MP), then we will have Γ, A `N C and

Γ, A `N C → B lengths of the proof of which are less than n. Thus, by

induction hypothesis, we have Γ `N ¬ΩA∨C and Γ `N ¬ΩA∨ (C →
B), and by making use of a thesis in positive intuitionistic logic, we

obtain Γ `N ¬ΩA ∨B as desired.
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• If B is obtained by applying (DS), then we will have Γ, A `N C ∨ B

and Γ, A `N ¬ΩC lengths of the proof of which are less than n.

Thus, by induction hypothesis, we have Γ `N ¬ΩA ∨ (C ∨ B) and

Γ `N ¬ΩA ∨ ¬ΩC, therefore Γ `N (A ∧ C) ∨ (¬ΩA ∨ B), by making

use of (N1), and Γ `N ¬Ω(A∧C), by making use of a thesis in minimal

logic. By (DS), we have Γ `N ¬ΩA ∨B as desired.

This completes the proof. �

Proposition 5.7. For all Γ ∪ {A,B} ⊆ Form, if Γ `N ¬ΩA ∨ B then

Γ, A `N B.

Proof. By the assumption Γ `N ¬ΩA∨B. Therefore, Γ, A `N ¬ΩA∨B.

Moreover, by making use of a thesis in minimal logic, we have Γ, A `N
¬Ω¬ΩA. Thus, we obtain Γ, A `N B by (DS), as desired. �

By combining Propositions 5.6 and 5.7, we obtain the following theorem.

Theorem 5.8. For all Γ∪{A,B} ⊆ Form, Γ, A `N B iff Γ `N ¬ΩA∨B.

As a corollary of this form of the Deduction Theorem, we obtain the

following which will prove vital for the completeness theorem.

Lemma 5.9. For all Γ∪{A,B,C} ⊆ Form, if Γ, A `N C and Γ, B `N C

then Γ, A ∨B `N C.

We now check the soundness and the completeness of IPC¬Ω with re-

spect to the models for L¬Ω . The basic outline is identical to that of IPC¬Ω .

Since we have the previous lemma, the proofs for other lemmas are identical

to the case for IPCΩ. Finally we show:

Theorem 5.10. For all Γ ∪ {A} ⊆ Form, Γ `N A iff Γ |=N A.

Proof. For the soundness direction, we need to check (N1),(N2) and

(DS) are valid in the models. For (N2), if I(w,A∧¬ΩA)=1, then w 6= g; so

I(w,¬ΩB)=1 and thus, I(g, (A∧¬ΩA)→(B→¬ΩB))=1.

For the completeness direction, if Γ 6`N A, then we construct a counter-

model as in Theorem 3.12. We have to check the following:

I(Σ,¬ΩA) = 1 iff ¬ΩA ∈ Σ.
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For the left-to-right direction, we show the contrapositive. If ¬ΩA /∈ Σ,

then A → (¬ΩB ∧ ¬Ω¬ΩB) /∈ Σ, because Σ is a Π-theory and `N (A →
(¬ΩB ∧ ¬Ω¬ΩB)) → ¬ΩA by (N2) and (An). Hence by (the analogue of)

Lemma 3.10, there is a non-trivial prime Π-theory Σ′ ⊇ Σ such that A ∈ Σ′

and ¬ΩB ∧ ¬Ω¬ΩB /∈ Σ′. Now if Σ′ 6= Π, then there is C ∈ Σ′/Π. Since

Π is deductively closed, it holds by (N1) that C ∨ ¬ΩC ∈ Π. Then either

C ∈ Π or ¬ΩC ∈ Π by the primeness of Π. Since the former contradicts

our assumption for C, it has to be that ¬ΩC ∈ Π. But ¬ΩC `N C →
(¬ΩB ∧¬Ω¬ΩB) by (N2) and (An). Thus ¬ΩB ∧¬Ω¬ΩB ∈ Σ′ by Σ′ being

a Π-theory, which is a contradiction. Therefore Σ′ = Π. Consequently

I(Σ,¬ΩA) = 0.

For the right-to-left direction, assume ¬ΩA ∈ Σ. If for Σ′ ⊇ Σ it holds

that I(Σ′, A) = 1, then by I.H. A ∈ Σ′. Now if Σ′ = Π, then for any C,

¬ΩA ∨ C ∈ Σ′, as Σ′ is a Π-theory. Hence C ∈ Π for all C, as Π(= Σ′) is

deductively closed. This contradicts the non-triviality of Π. Thus Σ′ 6= Π.

So I(Σ,¬ΩA) = 1. �

.6 An expansion by ⊥

We noted earlier in Proposition 2.4 that ⊥ is not definable in IPCΩ. How-

ever, if we add ⊥, then it is observed by Humberstone in [8, p.67] that

⊥ and Ω become equivalent in the sense that ⊥ ` Ω and Ω ` ⊥, while

A → Ω ` A → ⊥ does not generally hold. Here we shall also consider the

addition of ⊥ to the system. We shall use the language LΩ
⊥ which consists of

a set {Ω,⊥,∧,∨,→} of propositional connectives. Then we add one clause

and one axiom to the semantics and the proof system, respectively, in the

following manner.

Definition 6.1. A model for the language LΩ
⊥ is defined as in Definition

2.1. We add the following clause for the interpretation of ⊥.

• I(w,⊥) = 0.

Correspondingly, we have the next axiomatization.
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Definition 6.2. The system IPCΩ
⊥ is defined by adding the following

axiom scheme to IPCΩ:

⊥ → A. (Ax10)

We shall use ¬A as the abbreviation for A → ⊥. Let us use `⊥ and

|=⊥ for the consequences in the above semantics and proof system. Then

we can demonstrate the soundness and completeness in the same way as

IPCΩ.

Theorem 6.3. For all Γ ∪ {A} ⊆ Form, Γ `⊥ A iff Γ |=⊥ A.

The addition of ⊥ to the language gives an interesting view of the

extensions of IPCΩ
⊥. For this purpose, we first observe a theorem of the

system.

Proposition 6.4. `⊥ ¬Ω ∨ ¬¬Ω.

Proof. By (Ax9), `⊥ (¬Ω ∨ ¬¬Ω) ∨ ((¬Ω ∨ ¬¬Ω) → Ω). From the

latter disjunct, it follows that ¬Ω → Ω and ¬¬Ω → Ω. Now since (¬A →
A) → ¬¬A holds intuitionistically, we obtain ¬¬Ω and thus Ω. Hence

`⊥ (¬Ω ∨ ¬¬Ω) ∨ Ω. Therefore by (DEOQ), we conclude `⊥ ¬Ω ∨ ¬¬Ω.

�

On the other hand, we have the following.

Proposition 6.5. We have both 6`⊥ ¬Ω and 6`⊥ ¬¬Ω.

Proof. For the former, consider a model with at least two states. For

the latter, consider a model with a single state. �

This suggests two ways of extending IPCΩ
⊥, one by ¬Ω and another

by ¬¬Ω. The former extension collapses ⊥ and Ω and thus the resulting

logic becomes classical. The latter extension, on the other hand, is more

interesting in that it cannot be extended to classical logic, for Ω would be

derivable if that were possible. Therefore the situation is quite different

from intermediate logics, which are all contained in classical logic. For the

rest of the section, we establish the frame condition for ¬¬Ω and thereby

the completeness of the extension.

Lemma 6.6. Let I be an interpretation of a model of IPCΩ
⊥.

Then I(g,¬¬Ω) = 1 iff for some w ∈W , w 6= g.
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Proof. For the left-to-right direction, if I(g,¬¬Ω) = 1, then for all

w ≥ g there is w′ ≥ w such that I(w′,Ω) = 1. In particular, for some

w ∈ W,w 6= g. For the right-to-left direction, assume w 6= g for some

w ∈ W . Then if I(u,¬Ω) = 1 for some u ≥ g, then ∀u′ ≥ u(u′ = g) This

implies W = {g}, a contradiction. Therefore I(g,¬¬Ω) = 1. �

Let `⊥+ and |=⊥+ denote the consequences of IPCΩ
⊥+¬¬Ω and the

class of models of IPCΩ
⊥ satisfying ∃w(w 6= g), respectively. Then, we

obtain the following result.

Theorem 6.7. For all Γ ∪ {A} ⊆ Form, Γ `⊥+ A iff Γ |=⊥+ A.

Proof. Soundness follows from the last lemma. For completeness, we

have to check that the counter-model constructed in Theorem 3.12 satisfies

the frame condition. For this, it is sufficient to observe that `⊥+ ¬¬Ω and

the base state Π in the counter-model is deductively closed. Then ¬¬Ω ∈ Π

and so I(Π,¬¬Ω) = 1. Hence by the last lemma, ∃w(w 6= g). �

Before moving ahead, let us note that we can state something stronger

against the law of excluded middle in IPCΩ
⊥+¬¬Ω.

Proposition 6.8. Ω ∨ ¬Ω `⊥+ ⊥.

Proof. It is immediate that Ω `⊥+ ⊥ and moreover the additional ax-

iom ¬¬Ω implies that ¬Ω `⊥+ ⊥. Then use the analogue of Proposition 2.9.

�

Contrast this with the fact that A ∨ ¬A ` ⊥ is not provable in intu-

itionistic logic for any A.

.7 A comparison to other expansions of intuitionistic logic

.7.1 Actuality and empirical negation

As another variation on the failure of the Deduction Theorem, Humber-

stone, in [8], turns his attention to a different connective immediately after

the discussion of Ω. More specifically, Humberstone discusses another oper-

ator R, which represents a persistent notion of ‘actuality’.3 The formulation

3One of the seminal papers in this topic, of course, is [2].
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of R uses the same class of Kripke frames as IPCΩ, i.e. with the base state

g. The interpretation of R is then given by the following clauses4:

• I(w,RA) = 1 iff I(g,A) = 1.

This expansion of intuitionistic logic has a very close connection to the

system IPC∼, introduced by Michael De in [3], which is obtained by adding

empirical negation, denoted by ∼. Very roughly put, empirical negation

expresses that a proposition is currently unverified. This means that the

base state is interpreted to be the present moment, and the interpretation

of empirical negation is given as the falsity at the base state. In order

to make the connection precise, let L∼ be the language consisting of the

connectives {∼,∧,∨,→}. Then, the semantics introduced by De goes as

follows.

Definition 7.1 (De). An IPC∼-model for the language L∼ is a quadru-

ple 〈W, g,≤, V 〉, defined similarly to IPCΩ. Valuations V are then extended

to interpretations I to state-formula pairs by the same conditions for intu-

itionistic connectives, and the following condition for ∼:

• I(w,∼A) = 1 iff I(g,A) = 0.

We shall denote the semantic consequence by |=e (e for empirical negation).

For the proof system, the following system is introduced in [12], building

on an axiomatization presented in [4].

Definition 7.2. The system IPC∼ consists of (Ax1)-(Ax8), (MP) and

the following axiom schemata and a rule of inference:

A ∨ ∼A (E1)

∼A→ (∼∼A→ B) (E2)

(∼A ∧ ∼B)→ ∼(A ∨B) (E3)

A→ B

∼B → ∼A
(RC)

We shall use `e for the derivability in IPC∼.

Then, the following result is established in [4].

Theorem 7.3 (De & Omori). For all Γ ∪ {A} ⊆ Form, Γ `e A iff

Γ |=e A.

4The details of this notion of actuality is investigated in [13], along with its relationship

with similar operators.
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Now, as observed in [13, §4.1], we have that I(w,¬RA) = 1 iff I(g,A) =

0 iff I(w,∼A) = 1. That is, if R is added on top of intuitionistic logic, then

two expansions obtained by adding R and ∼ will be equivalent. Since Ω also

very naturally gives rise to ¬Ω, let us compare Humberstone’s additions of

Ω and R in terms of ¬Ω and ∼.

.7.2 A quick comparison between IPC¬Ω and IPC∼

By looking at the truth conditions for ¬Ω and ∼, they are identical at the

base state:

Fact 7.4. For all A ∈ Form, I(g,¬ΩA) = 1 iff I(g,A) = 0 iff I(g,∼A) =

1.

In other words, in the privileged ‘present’ world, ¬ΩA is capable of

asserting that A does not hold at the moment. Then it appears that ¬Ω

can also be a contender for the formalisation of empirical negation. Note,

however, that we do not have the following: I(w,¬ΩA) = 1 iff I(w,∼A) =

1. Therefore, it will be a different kind of empirical negation. What then

is the intuitive reading of ¬Ω? Given the assumption that the base state

represents the present moment, Ω can then be interpreted as a proposition

stating that ‘It is in the future’. Thus ¬ΩA should mean ‘If A is verified,

it is in the future.’ This is arguably a natural interpretation of empirical

statements like ‘Goldbach’s conjecture is not proved’. However, we will

leave the further philosophical comparisons for another occasion. Instead,

let us turn to observe a few more differences between IPC¬Ω and IPC∼.

Lemma 7.5. |= (A ∧ ¬ΩA)→ ¬ΩB but 6|=e (p ∧ ∼p)→ ∼q.

Proof. The former is an easy consequence of (C). For the latter,

take W={g, w} such that V (w, p) = V (g, q)=1 and V (g, p)=0. Then

I(w, p∧∼p)=1 but I(w,∼q)=0. Therefore I(g, (p∧∼p)→∼q)=0. �

Lemma 7.6. |=e ∼∼A→ A but 6|= ¬Ω¬Ωp→ p.

Proof. For the former, we have I(w,∼∼A)=1 if and only if I(g,A)=1;

so I(w,A) holds by persistence. Therefore I(g,∼∼A → A) = 1 in any

model. On the other hand, in a model with more than two worlds, and
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for w 6= g, it always hold that I(w,¬Ω¬Ωp) = 1. But if V (w, p) = 0, then

I(g,¬Ω¬Ωp→ p) = 0. �

Based on these lemmas, we obtain the following result.

Theorem 7.7. After identifying the connectives ¬Ω and ∼, IPC¬Ω and

IPC∼ are incomparable with respect to inclusion.

Note also that the Deduction Theorem again fails for `e, but a slightly

modified version of the Deduction Theorem holds for IPC∼, namely

Γ, A `e B iff Γ `e ∼∼A → B. This obtained by combining Γ, A `e B

iff Γ `e ∼A∨B, just like Theorem 5.8, and the equivalence `e (∼A∨B)↔
(∼∼A→ B).

Finally, we noted above that ∼A can be defined as RA→⊥. Then

it seems possible to formulate another unary operator by RA→Ω. This

operator, however, turns out to be identical to A→Ω. At the base world,

A is true iff RA is true; and at other worlds, the two implications are both

always true.

.8 Algebraic Semantics for IPCΩ and IPC∼

We now turn to look at the algebraic semantics for the systems IPCΩ and

IPC∼, as well as other related systems. We refer to [15] for the basics of

algebraic semantics. First, here are some of the basics of Heyting algebras.

Definition 8.1 (Heyting algebra). A Heyting algebra A is a quintuple

〈A,∨,∧,→, 0〉, where 〈A.∨,∧〉 is lattice with the least element 0, and the

operation → satisfies the following law of residuation:

a ∧ b ≤ c if and only if a ≤ b→ c

for all a, b, c ∈ A.

We shall use 1 for the element 0 → 0 and ¬a for a → 0. Note 1 is the

greatest element of a Heyting algebra. If 0 = 1, then the algebra is called

degenerate. If a Heyting algebra has the second greatest element, it is called

a subdirectly irreducible algebra (cf. [15, 17] for more precise details). We

shall use this class of algebras for the semantics of IPCΩ and IPC∼.
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.8.1 An algebraic semantics for IPCΩ

We first deal with IPCΩ.

Definition 8.2 (Humberstone algebra). A Humberstone algebra A is

a sextuple 〈A,∨,∧,→, 0, ω〉, where 〈A,∨,∧,→, 0〉 is a subdirectly irre-

ducible Heyting algebra, and ω is its second greatest element.5

Note that the idea of adding an constant corresponding to the second

greatest element is not new, as one may observe in [9, 19], where a propo-

sitional variable is assigned for each element of a subdirectly irreducible

Heyting algebra.

For the purpose of defining an algebraic model, we introduce the notion

of assignments.

Definition 8.3 (Assignment). Let A be a Humberstone algebra. An

assignment h is mapping which assigns each propositional variable to an

element h(p) of A. h is then extended with the following clauses.

• h(A ∧B) = h(A) ∧ h(B);

• h(A ∨B) = h(A) ∨ h(B);

• h(A→ B) = h(A)→ h(B);

• h(Ω) = ω.

We shall write Γ |=o A if for every assignment h of any non-degenerate

Humberstone algebra, h(B) = 1 for all B ∈ Γ implies h(A) = 1. Then we

observe that IPCΩ is sound with respect to Humberstone algebras.

Theorem 8.4 (Soundness). For all Γ ∪ {A} ⊆ Form, if Γ ` A then

Γ |=o A.

Proof. We argue by induction on the length of proof. It suffices

to consider the cases related to Ω. For (Ax9), we must show h(A ∨
(A → Ω)) = 1 for any assignment h. If h(A) < 1, then h(A) ≤ ω, so

1 ∧ h(A) ≤ ω. Thus by the law of residuation, 1 ≤ h(A) → ω. Thus

h(A) ∨ h(A → Ω) = 1; consequently h(A ∨ (A → Ω)) = 1. For (DEOQ),

5Note that there is already a notion of Humberstone algebra introduced in [11], but

we will use the same label here since there should be no room for confusion.
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suppose |=o Ω ∨ C. Then h(Ω ∨ C) = 1 for any h in any Humberstone

algebra A. Now since A is subdirectly irreducible, it is well-connected [15,

p.125], which in this case means either h(Ω) = 1 or h(C) = 1. But as

ω 6= 1, it has to be that h(C) = 1; so h(A∨C) = 1 as well. Thus |=o A∨C.

�

For the algebraic completeness, we shall argue via Kripke completeness.

To this end, we introduce the notion of dual Humberstone algebra. Given

a Kripke frame 〈W, g,≤〉 for IPCΩ, let U(W ) be the set of all upward closed

subsets of the frame. Note in particular that W \ {g} ∈ U(W ).

Definition 8.5 (dual Humberstone algebra). Let F = 〈W, g,≤〉 be

a Kripke frame for IPCΩ. Then the dual Humberstone algebra U(F) of F
is 〈U(W ),∪,∩,⇒, ∅,W \ {g}〉 where

U1 ⇒ U2 := {a ∈W : ∀c ≥ a(c ∈ U1 implies c ∈ U2)}

for all U1, U2 ∈ U(W ).

Lemma 8.6. A dual Humberstone algebra is indeed a Humberstone

algebra.

Proof. It is immediate from the fact that a dual Heyting algebra is

a Heyting algebra, and that the rootedness of the frame corresponds with

the dual algebra being subdirectly irreducible. Clearly, in particular,

W \ {g} is the second greatest element of the dual algebra. Cf. [15, p.

107, 124]. �

We are now ready to establish the completeness direction.

Theorem 8.7 (Algebraic completeness). For all Γ ∪ {A} ⊆ Form, if

Γ |=o A then Γ ` A.

Proof. Assume Γ |=o A. Let 〈W, g,≤, V 〉 be a Kripke model for IPCΩ

with the frame F = 〈W, g,≤〉. Assume I(g,B) = 1 for all B ∈ Γ. Let

U(F) be its dual Humberstone algebra. Choose an assignment h such that

h(p) = {w : V (w, p) = 1}. Then as in the case for Heyting algebra, we can

show h(B) = {w : I(w,B) = 1} for all B; in particular, h(Ω) = W \ {g} =

{w : I(w,Ω) = 1}. Now by assumption, for any B ∈ Γ it holds h(B) = W

and so h(A) = W . Thus I(g,A) = 1. Therefore Γ |= A, and consequently

Γ ` A by Theorem 3.12. �
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Remark 8.8. We can similarly obtain the algebraic semantics for IPCΩ
⊥

and its extension by the axiom ¬¬Ω. In the latter case, we have to take

the class of Humberstone algebras such that 0 6= ω, because then

a ∧ ω ≤ 0 iff a ≤ 0

and so ω → 0 = 0; consequently h(¬¬Ω) = 1. It should also be clear that

we can devise an algebraic semantics for IPC¬Ω .

.8.2 An algebraic semantics for IPC∼

Let us now turn our attention to the algebraic counterpart of IPC∼.

Definition 8.9 (De algebra). A De algebra A is a sextuple 〈A,∨,∧,→
,∼, 0〉, where 〈A,∨,∧,→, 0〉 is a subdirectly irreducible Heyting algebra,

and ∼ is an unary operator satisfying the next conditions:

• a ∨ ∼a = 1;

• ∼a ∧ ∼∼a = 0;

• a ≤ b⇒ ∼b ≤ ∼a;

for a, b ∈ A.

We define an assignment h for a De algebra in much the same way as

a Humberstone algebra, except that h(∼A) = ∼h(A). We shall use |=d for

the validity.

Lemma 8.10. In any De algebra, ∼1 = 0.

Proof. First, we have ∼0 = 0 ∨ ∼0 = 1. Thus ∼1 = ∼∼0. Then since

∼∼0 = 1 ∧ ∼∼0 = ∼0 ∧ ∼∼0 = 0, we conclude ∼1 = 0. �

Theorem 8.11 (Soundness). For all Γ ∪ {A} ⊆ Form, if Γ `e A then

Γ |=d A.

Proof. We show by induction on the length of the proof. Here we

treat the case for (E3); other cases are straightforward. Let A be a non-

degenerate De algebra and h be an assignment. For any proposition A, we

know h(A∨∼A) = h(A)∨∼h(A) = 1. Thus either h(A) = 1 or ∼h(A) = 1.
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In particular, when A is of the form A ∨ B, we have either h(A ∨ B) = 1

or ∼h(A ∨ B) = 1. In the latter case, h(∼A ∧ ∼B) ≤ ∼h(A ∨ B); so (E3)

follows by the law of residuation. In the former case, by well-connectedness

again, either h(A) = 1 or h(B) = 1. Hence by one of the conditions for

De algebra, we infer ∼h(A) ≤ ∼1 or ∼h(B) ≤ ∼1. Then by Lemma 8.10,

∼h(A) = 0 or ∼h(B) = 0. Thus h(∼A ∧ ∼B) = 0; so (E3) holds for this

case as well. �

For the completeness, we again use dual algebras.

Definition 8.12 (dual De algebra). Let F = 〈W, g,≤〉 be a Kripke

frame for IPC∼. Then the dual De algebra U(F) of F is 〈U(W ),∪,∩,⇒
,∼, ∅〉 where

∼U :=

{
∅ if U = W.

W if U 6= W.

for all U ∈ U(W ).

Proposition 8.13. A dual De algebra is indeed a De algebra.

Proof. It suffices to check that a dual De algebra satisfies the conditions

related to ∼.

• If U = W , then U ∪∼U = W . Otherwise ∼U = W ; so U ∪∼U = W .

• If U = W , then ∼U ∩ ∼∼U = ∅. If U 6= W , then ∼U = W , so

∼∼U = ∅. Hence ∼U ∩ ∼∼U = ∅.

• If U ⊆ V , then if U = W , then V = W and so ∼V = ∅. Thus

∼V ⊆ ∼U . On the other hand, if U 6= W , then ∼V ⊆W = ∼U .

This completes the proof. �

Theorem 8.14 (Algebraic completeness). For all Γ ∪ {A} ⊆ Form, if

Γ |=d A then Γ `e A.

Proof. The argument is analogous to that of Theorem 8.7. It suffices

to check h(∼A) = {w : I(w,∼A) = 1}. The latter set is an emptyset if

I(w,A) = 1 for all w; otherwise it equals W . Since h(∼A) = ∼h(A) and

h(A) = {w : I(w,A) = 1} by I.H., the desired equality therefore follows. �
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.9 Concluding remarks

As a final remark, let us consider a Humberstone algebra and a De algebra

with three elements 1, i, 0 with the order 0 ≤ i ≤ 1. Equivalently, we may

also take respective Kripke models with two states. Then, by focusing on

¬Ω and ∼, we obtain the following truth table.

A ¬ΩA ∼A Ω

1 i 0 i

i 1 1 i

0 1 1 i

Given that 1 will be the only designated value in defining the corresponding

semantic consequence relations, we may observe that both ¬Ω and ∼ satisfy

the condition that negation is designated iff the negand is undesignated.

In fact, this is the condition discussed in [5, §2] as a condition for classical

negation in expansions of the strong Kleene logic K3. Moreover, as observed

in [5, §2.2] via a combinatorial argument, these are the only two classical

negations in the context of K3. However, ¬Ω was dismissed because of

its unusual behavior with respect to de Morgan negation which is present

in K3.6 But, in the present context in which de Morgan negation is not

available, then we need not be dismissive.7 We would like to rather make

use of this fact to conclude that we may regard ¬Ω as classical negation,

and that ¬Ω together with empirical negation ∼ are two natural options

for the purpose of adding classical negation to intuitionistic logic.

For further investigations, we may think of a few directions. First, one

may explore further into algebraic semantics and along the systematic in-

vestigations into extensions of minimal logic carried out by Odinstov in

[14]. Second, there are natural questions concerning systems with slightly

different versions of (DEOQ) and (DS) without disjunction. Are they strict

subsystems of IPCΩ and IPC¬Ω , respectively? If so, can we provide se-

mantics that characterize these systems? Finally, there is a direction to

add Ω or ¬Ω to subintuitionistic logic SJ. This is carried out for empirical

negation in [6], and given the tight connections between IPCΩ and IPC∼

6More specifically, letting ¬d to stand for de Morgan negation, we obtain that

¬Ω¬d¬ΩA is valid for all A. This will therefore produce another contra-classical logic

(cf. [7]).
7Of course, if we add Ω to Nelson logic N3, then the so-called strong negation will

correspond to de Morgan negation.
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we observed in this paper, it will be interesting to explore the details of the

resulting expansions of SJ. For the case of adding Ω, note that the axiom

(Ax9) and the rule (DEOQ) remain valid in the models for SJ.
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