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A b s t r a c t. The aim of this paper is to investigate the rela-

tion between the strong and the “weak” or intuitionistic negation

in Nelson algebras. To do this, we define the variety of Kleene

algebras with intuitionistic negation and explore the Kalman’s

construction for pseudocomplemented distributive lattices. We

also study the centered algebras of this variety.

.Introduction

Non-classical negation has been investigated from different points of view,

both in different logics and in their corresponding algebraic structures.
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A particular case of study is negation in the context of constructive logic

(the journal Studia Logica, vol. 80 (2005), is dedicated to this subject).

The constructive character of intuitionistic disjunction is not shared by

intuitionistic negation because in general ¬(α ∧ β) does not imply ¬α or

¬β. This motivated D. Nelson to present the constructive logic with strong

negation (CLN) as an expansion of intuitionistic logic by a new negation

symbol, which acts as an involutive negation ∼ (see [17]). The class of

Nelson algebras, deeply studied in [2, 3, 4, 20, 21, 30], is the algebraic

semantics of the propositional fragment of CLN.

Nelson algebras have an involutive negation ∼ (usually known as strong

negation) and another negation (intuitionistic, as called in [29]) that can

be defined through the weak implication → and the constant 0 by the rule

¬x = x→ 0. (1)

For the reader familiar with residuated lattices, Nelson algebras are

termwise equivalent to Nelson residuated lattices, as shown in [4, 26, 27],

where a strong implication ⇒ can be defined in terms of the operations →
and ∼ as

x⇒ y := (x→ y) ∧ (∼ y →∼ x).

In this context, we have that

¬x = x⇒ (x⇒ 0),

∼ x = x⇒ 0.

Strong and intuitionistic negations in Nelson algebras are negations

playing different roles, and they also interact with each other. However,

since ¬ is not seen as a primitive operation, the relation between both

negations in the theory of Nelson algebras is somehow hidden. One of the

purposes of the present paper is to shed some light on the roles of these

negations in Nelson algebras and centered Nelson algebras.

Nelson algebras can be seen as Kleene algebras with an extra binary

operation (see Section 1), the weak implication, which generalises relative

pseudocomplementation. In [24], Sendlewski generalised results from Fidel

and Vakarelov [12, 28] to show the deep connection between Nelson algebras

and Heyting algebras.

In order to show a similar relation for a wider class of algebras, in [25]

Sendlewski introduced the class Kω of Kleene algebras with weak pseu-

docomplementation (see also Section 1) to prove a topological connection
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between this class and pseudocomplemented distributive lattices. The class

Kω encompasses the implication-free reducts of Nelson algebras with the

additional operation ¬ as weak pseudocomplementation, and gives a partial

answer to the question of the relationship between the strong and intuition-

istic negations.

To obtain that result, we define KAN as a variety of Kleene algebras

with an extra negation ¬, where the relation between the involutive nega-

tion ∼ and ¬ can be seen in the axioms defining KAN (this relation will

be made clearer in Section 2.4). We show that the reduct of a Nelson al-

gebra, with the negation as in (1), is a KAN-algebra. Roughly speaking,

KAN-algebras have a weaker structure than Nelson algebras, just like pseu-

docomplemented distributive lattices have a weaker structure than Heyting

algebras. We use the Kalman construction (see [15]) to obtain a categori-

cal equivalence between the algebraic category KAN and the category PDLF

whose objects are pairs of the form (L,F ), where L ∈ PDL (the category of

pseudocomplemented distributive lattices) and F is a Boolean filter of L.

In Section 2.3 we obtain that Kω = KAN. Our results show in a more

immediate way than [25] that Kω is a variety and in Theorem 2.16 we

give a categorical equivalence for KAN by following an alternative path to

that given in [25, Theorem 4.4]. Although some lemmas in our work have

counterparts in [25], the difference between the proofs of [25, Theorem 4.4]

and Theorem 2.16 largely boils down to the fact that Kω is defined as

a quasi-variety, while KAN is defined as a variety.

Furthermore, our approach facilitates the definition of quantifiers for

KAN-algebras, thus allowing for a first-order study (see Corollary 4.7). We

do this by considering monadic pseudocomplemented distributive lattices,

which are pseudocomplemented distributive lattices endowed with a unary

map that acts as an algebraic counterpart of the logical notion of an exis-

tential quantifier (see [13]). Given the relationship between KAN-algebras

and pseudocomplemented distributive lattices, we are able to define weak

quantifiers and weakly monadic KAN-algebras, and provide examples to

show how these quantifiers behave.

Additionally, in this work we consider centered structures. In [8, The-

orem 2.4], R. Cignoli proved that there exists an equivalence between the

category of bounded distributive lattices and a particular full subcate-

gory of centered Kleene algebras. Moreover, in [8, Theorem 3.14] he also

proved that there exists an equivalence between the category of Heyting
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algebras and the category of centered Nelson algebras (see also [5, 14]).

Centered structures have importance on their own and have been stud-

ied throughout the literature under different schemes. See for instance

[5, 6, 7, 8, 10, 14, 22, 23].

We show that there exists a categorical equivalence between PDL and

KANc, the category whose objects are KAN-algebras endowed with a center,

which can be seen as a generalisation of the one just mentioned. This

equivalence is a particular case of Theorem 2.16, but it is also possible

to give a more direct proof in terms of centered structures (see the proof

of Lemma 3.3 and Remark 3.5 for details). Observe that an equivalence

between both categories was also proved in [25, Corollary 4.6] in terms of

the algebraic category whose objects are those algebras of Kω equipped

with a constant c which is a fixpoint of the strong negation.

In summary, the main results of the paper are:

• If L is a pseudocomplemented distributive lattice and F ⊆ L is a

Boolean filter, then K(L,F ) := {(a, b) ∈ L×L : a∧ b = 0 and a∨ b ∈
F} is the universe of an algebra in KAN. Conversely, if T ∈ KAN then

there exists a congruence θ with respect to ∧, ∨ and ¬ such that T/θ

is a pseudocomplemented distributive lattice and T+/θ is a Boolean

filter, where T+ is defined as {x ∈ T : x ≥∼ x}. Both assignments

can be extended to functors which determine a categorical equivalence

(Theorem 2.16).

• If L is a pseudocomplemented distributive lattice, then K(L,L) =

{(a, b) ∈ L×L : a∧b = 0} is the universe of a centered KAN-algebra,

with center (0, 0). Conversely, if T ∈ KANc, then T+ is a pseudo-

complemented distributive lattice. A categorical equivalence can be

proved upon extending these assignments to functors (Theorem 3.6).

The paper is structured as follows. In Section 1 we recall some defini-

tions and properties concerning pseudocomplemented distributive lattices

and Kleene algebras. In Section 2 we introduce and study the variety KAN.

We also define the category PDLF and we prove that there exists a cate-

gorical equivalence between PDLF and KAN (Theorem 2.16), and also give

a first proof from that KAN = Kω (Theorem 2.17). In Section 3 we show

that there exists an equivalence between PDL and KANc (Theorem 3.6).
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The construction of this categorical equivalence is not presented as a par-

ticular case of Theorem 2.16. We also prove that for every L ∈ PDL there

exists a bijection between the congruences of L and the congruences of

its associated centered KAN-algebra. In Section 4 we define the notion of

quantifier in PDL as in the case of bounded distributive lattices (see [9]),

we introduce a notion of quantifier in KAN and we study the relation be-

tween both constructions. Section 5 contains some additional results, such

as that KAN-algebras are not necessarily isomorphic to reducts of Nelson

algebras, and that the intuitionistic negation cannot be strengthened as

a negation without becoming trivial. Moreover, we give a second proof

that KAN = Kω (corollaries 5.9 and 5.11).

.1 Preliminaries and basic results

We assume the reader is familiar with bounded distributive lattices and

Heyting algebras (see [1]).

A pseudocomplemented distributive lattice (L,∧,∨,¬, 0, 1) is an algebra

of type (2, 2, 1, 0, 0) such that (L,∧,∨, 0, 1) is a bounded distributive lattice

and for every a, b ∈ L it holds that a ∧ b = 0 if and only if a ≤ ¬b.
This means that for every a ∈ L there is a largest member of L which is

disjoint with a, namely ¬a. The class of pseudocomplemented distributive

lattices is a variety (see [1]) that we will denote PDL. Also note that in

pseudocomplemented distributive lattices necessarily 1 = ¬0 and 0 = ¬1

hold.

Recall that if L is a lattice, a non-empty subset F ⊆ L is said to be

a lattice filter of L if F is an upset (i.e. for every x, y ∈ L, if x ≤ y and

x ∈ F , then y ∈ F ) and x ∧ y ∈ F for all x, y ∈ F . The notion of lattice

ideal is dually defined.

If L is an algebra and R an equivalence relation on L, we adopt the

notation a/R for the equivalence class of a modulo R, and also L/R for the

set of equivalence classes.

The definitions of Boolean filter and Boolean congruence on a given

pseudocomplemented distributive lattice will be used throughout the paper,

so we opt to introduce in the present section these definitions and the link

between them.
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Definition 1.1. Let L ∈ PDL.

1) A lattice filter F ⊆ L is called Boolean if it contains all dense elements,

i.e. those x ∈ L satisfying ¬x = 0.

2) We say that a congruence R on L is a Boolean congruence if L/R is

a Boolean algebra, or equivalently, if a ∨ ¬a ∈ 1/R for every a ∈ L.

The following two lemmas are part of the folklore of the subject, and

can be found for instance in [19]. However we opt to give a self contained

proof of them.

Lemma 1.2. Let L ∈ PDL and R a congruence on L. The following

conditions are equivalent:

1) R is a Boolean congruence.

2) 1/R is a Boolean filter.

Proof. Assume that R is a Boolean congruence and let a ∈ L be such

that ¬a = 0. Since a = a ∨ ¬a and a ∨ ¬a ∈ 1/R, a ∈ 1/R. Conversely,

suppose that 1/R is a Boolean filter. Since ¬(a ∨ ¬a) = ¬a ∧ ¬¬a = 0,

a ∨ ¬a ∈ 1/R. �

Lemma 1.3. Let L ∈ PDL. If R is a Boolean congruence, then 1/R is

a Boolean filter and if F is a Boolean filter, then the set

H(F ) = {(a, b) ∈ L× L : a ∧ f = b ∧ f for some f ∈ F}

is a Boolean congruence. Moreover, the assignments R 7→ 1/R and F 7→
H(F ) define an order isomorphism between the poset of Boolean congru-

ences of L and the poset of Boolean filters of L.

Proof. It follows from Lemma 1.2 that if R is a Boolean congruence,

then 1/R is a Boolean filter. Now let F be a Boolean filter. We know

that H(F ) is a congruence of the underlying lattice of L. In order to show

that H(F ) preserves ¬, let (x, y) ∈ H(F ). Thus there exists f ∈ F such

that x ∧ f = y ∧ f . Since F is a Boolean filter, we have that x ∨ ¬x ∈ F
and y ∨ ¬y ∈ F . Hence g = (x ∨ ¬x) ∧ (y ∨ ¬y) ∧ f ∈ F . Straightforward

computations show that ¬x∧g = ¬y∧g = ¬x∧¬y∧f , so (¬x,¬y) ∈ H(F ).
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Then H(F ) is a congruence on L. It is immediate that F = 1/H(F ), so it

follows from Lemma 1.2 that H(F ) is a Boolean congruence.

To show that F 7→ H(F ) is onto, let R be a Boolean congruence on L.

We will show that R = H(1/R). If (x, y) ∈ H(1/R), then x∧ f = y ∧ f for

some f ∈ 1/R. Hence (x ∧ f, x) ∈ R, (y ∧ f, y) ∈ R and (x ∧ f, y ∧ f) ∈ R,

so that (x, y) ∈ R and thus R ⊆ H(1/R). For the other inclusion, let

(x, y) ∈ R, so (x∨¬x, y∨¬x) ∈ R. But (x∨¬x, 1) ∈ R, so (y∨¬x, 1) ∈ R.

Similarly, we have that (x∨¬y, 1) ∈ R. Hence ((x∨¬y)∧ (y ∨¬x), 1) ∈ R,

i.e. (x∨¬y)∧ (y∨¬x) ∈ 1/R. Let f = (x∨¬y)∧ (y∨¬x). Straightforward

computations show that x ∧ f = x ∧ y = y ∧ f , so (x, y) ∈ H(1/R). Then

R = H(1/R).

Let F,G be Boolean filters. We will prove that F ⊆ G if and only

if H(F ) ⊆ H(G). It is immediate that if F ⊆ G then H(F ) ⊆ H(G).

Conversely, assume that H(F ) ⊆ H(G). If x ∈ F , then (x, 1) ∈ H(F ) ⊆
H(G), i.e. x ∧ g = g for some g ∈ G. Thus x ∈ G, so that F ⊆ G. Hence,

the map F 7→ H(F ) is an injection. Moreover, it is an order isomorphism.

�

A Kleene algebra is an algebra (T,∧,∨,∼, 0, 1) of type (2, 2, 1, 0, 0) sat-

isfying that (T,∧,∨, 0, 1) is a bounded distributive lattice and ∼ is an

involution (i.e., ∼∼x = x for every x ∈ T ) such that

1) ∼(x ∨ y) = ∼x ∧ ∼y and

2) x ∧ ∼x ≤ y ∨ ∼y

hold for every x, y ∈ T . A Kleene algebra is called centered if it has

a center; that is, an element c such that c = ∼c. It is immediate that

the center of a Kleene algebra, when it exists, is unique. We write BDL

for the category of bounded distributive lattices, KA for the category of

Kleene algebras and KAc for the category of centered Kleene algebras. In

all cases the morphisms are the corresponding algebra homomorphisms. It

is interesting to note that if T and U are centered Kleene algebras and

f : T → U is a morphism of Kleene algebras, then f preserves the center,

i.e. f(c) = c.

Given an object L ∈ BDL, the set

K(L) := {(a, b) ∈ L× L : a ∧ b = 0}
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endowed with operations

(a, b) ∨ (d, e) := (a ∨ d, b ∧ e)
(a, b) ∧ (d, e) := (a ∧ d, b ∨ e)

∼(a, b) := (b, a)

and distinguished elements (0, 1) and (1,0) is a Kleene algebra which is cen-

tered if in addition we set (0, 0) as the center. For a morphism f : L→M ∈
BDL, the map K(f) : K(L)→ K(M) defined by K(f)(a, b) = (f(a), f(b)) is

a morphism in KA (hence in KAc). Moreover, K is a functor from BDL to

KA (and KAc).

Recall that a Nelson algebra [8, 30] is a Kleene algebra such that for

each pair x, y there exists the binary operation → given by x → y :=

x →HA (∼ x ∨ y) (where →HA is the Heyting implication) and for every

x, y, z it holds that (x ∧ y) → z = x → (y → z). Nelson algebras can be

seen as algebras (H,∧,∨,→,∼, 0, 1) of type (2, 2, 2, 1, 0, 0). The class of

Nelson algebras is a variety [2, 3, 21].

Fidel [12] and Vakarelov [28] proved independently that if (H,∧,∨,→,
0, 1) is a Heyting algebra, then (K(H),∧,∨,→,∼, (0, 1), (1, 0)) is a Nelson

algebra, where

(a, b)→ (d, e) := (a→ d, a ∧ e) (2)

for pairs (a, b) and (d, e) in K(H) (note that we are using the notation→ in

two different senses). For more information about the subject see also [8,

24]. In particular, if H is a Heyting algebra and R is a Boolean congruence

on H, then it follows from [24, Theorem 3.6] that the set {(a, b) ∈ K(H) :

(a ∨ b, 1) ∈ R} endowed with the operations defined on K(H) is a Nelson

algebra.

In [25], Sendlewski defined quasi weakly pseudocomplemented and weak-

ly pseudocomplemented Kleene algebras. A Kleene algebra T is said to be

quasi weakly pseudocomplemented if for every x ∈ T there exists the max-

imum of the set {y ∈ T : x ∧ y ≤∼ x}, which is denoted by ¬x. The

element ¬x is characterised by the following property: for every y ∈ T ,

y ≤ ¬x if and only if x ∧ y ≤∼ x. The unary operation ¬ so defined will

be called a quasi weak pseudocomplementation and the associated algebra

(T,∧,∨,∼,¬, 0, 1) of type (2, 2, 1, 1, 0, 0) a Kleene algebra with a quasi weak

pseudocomplementation, or simply a qwp-Kleene algebra. A qwp-Kleene al-

gebra will be called Kleene algebra with a weak pseudocomplementation or
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simply wp-Kleene algebra if ¬(x ∧ y) = 1 if and only if ¬¬x ≤ ¬y for

every x, y. The set of wp-Kleene algebras is denoted by Kω. If L ∈ PDL

and R is a Boolean congruence on L, then by [25, Lemma 2.3] that the set

{(a, b) ∈ K(L) : (a ∨ b, 1) ∈ R} endowed with the operations defined on

K(L) is a qwp-Kleene algebra (moreover, it is a wp-Kleene algebra).

.2 The variety KAN

In this section we will introduce and study the variety KAN. Moreover,

will see that KAN is categorically equivalent to a certain category whose

objects are pairs of the form (L,F ), where L ∈ PDL and F is a Boolean

filter of L. Finally, we will compare our variety with the class of wp-Kleene

algebras introduced in [25].

.2.1 Definition and basic properties

Definition 2.1. We define the variety KAN of Kleene algebras with

intuitionistic negation as the variety of algebras (T,∧,∨,∼,¬, 0, 1) of type

(2, 2, 1, 1, 0, 0) such that (T,∧,∨,∼, 0, 1) is a Kleene algebra and the follow-

ing conditions are satisfied for every x, y ∈ T :

(N1) ¬(x ∧ ¬(x ∧ y)) = ¬(x ∧ ¬y),

(N2) ¬(x ∨ y) = ¬x ∧ ¬y,

(N3) x∧ ∼ x = x ∧ ¬x,

(N4) ∼ x ≤ ¬x,

(N5) ¬(x ∧ y) = ¬((∼ ¬x) ∧ y).

The members of the variety KAN will be called KAN-algebras.

If (T,∧,∨,∼,¬, 0, 1) is a KAN-algebra, an application of (N3) yields

¬1 = 1 ∧ ¬1 = 1∧ ∼ 1 = 1 ∧ 0 = 0. Taking x = 0 in (N4) we obtain that

¬0 = 1. In addition, if x ≤ y, then ¬y ≤ ¬x by (N2).

In [11], a unary operator t defined on a bounded poset T is a negation

if t(0) = 1, t(1) = 0 and t(y) ≤ t(x) whenever x ≤ y. Therefore, the unary
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operation ¬ in the definition of KAN-algebras is a negation operator in this

sense.

We call this operator intuitionistic negation following [29], given its

relation with intuitionistic negation in Heyting algebras.

Example 2.2. Let (T,∧,∨,∼,→, 0, 1) be a Nelson algebra. Define the

unary operation ¬ by ¬x := x → 0. Taking into account the representa-

tion of Nelson algebras in terms of Heyting algebras due to Fidel [12] and

Vakarelov [28], it can be proved that the algebra (T,∧,∨,∼,¬, 0, 1) is in

KAN (the proof is similar to that of Lemma 2.4 below). In Section 5.1 we

will prove that not every KAN-algebra is a reduct of a Nelson algebra.

Example 2.3. A Boolean algebra (B,∧,∨,¬, 0, 1) with an additional

unary operation ∼ defined as ∼ x := ¬x is a KAN-algebra. This is actually

covered by the previous example, but we consider it separately as it will be

of importance in Section 5.2.

Let H be a Heyting algebra. We can define a unary operation ¬ in

K(H) as ¬(a, b) := (a, b) → (0, 1), where the operation → for K(H) is

(2) of Section 1. Clearly, ¬(a, b) = (¬a, a) (note that we are using the

notation ¬ in two different senses). Motivated by this and the fact that

Heyting algebras can be seen as pseudocomplemented distributive lattices,

for L ∈ PDL we define the unary operation ¬ : K(L)→ K(L) by

¬(a, b) := (¬a, a).

Let (L,∧,∨,¬, 0) ∈ PDL. We define

K(L) = (K(L),∧,∨,∼,¬, (0, 1), (1, 0)).

Lemma 2.4. If (L,∧,∨,¬, 0) ∈ PDL, then K(L) ∈ KAN. Moreover, K
can be extended to a functor from PDL to KAN.

Proof. Since L is a bounded distributive lattice,

(K(L),∧,∨,∼, (0, 1), (1, 0)) ∈ KA.
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We will prove conditions (N1)-(N5). Let (a, b), (d, e) ∈ K(L). Since

a ∧ ¬(a ∧ d) = a ∧ ¬d,

¬((a, b) ∧ ¬((a, b) ∧ (d, e))) = ¬((a, b) ∧ (¬(a ∧ d), a ∧ d))

= (¬(a ∧ ¬(a ∧ d)), a ∧ ¬(a ∧ d))

= (¬(a ∧ ¬d), a ∧ ¬d)

= ¬(a ∧ ¬d, b ∨ d)

= ¬((a, b) ∧ (¬d, d))

= ¬((a, b) ∧ ¬(d, e)),

so (N1) holds. Condition (N2) follows from the identity ¬(a∨ b) = ¬a∧¬b
in PDL:

¬((a, b) ∨ (d, e)) = (¬(a ∨ d), a ∨ d)

= (¬a ∧ ¬d, a ∨ d)

= (¬a, a) ∧ (¬d, d)

= ¬(a, b) ∧ ¬(d, e).

Condition (N3) can be proved in the following way:

(a, b)∧ ∼ (a, b) = (0, b ∨ a)

= (a ∧ ¬a, b ∨ a)

= (a, b) ∧ (¬a, a)

= (a, b) ∧ ¬(a, b).

In order to see condition (N4), note that ∼ (a, b) ≤ ¬(a, b) if and only

if b ≤ ¬a if and only if a ∧ b = 0 if and only if (a, b) ∈ K(L). Then

∼ (a, b) ≤ ¬(a, b). Finally, we will show condition (N5):

¬((a, b) ∧ (d, e)) = (¬(a ∧ d), a ∧ d)

= ¬(a ∧ d,¬a ∨ e)
= ¬((a,¬a) ∧ (d, e))

= ¬(∼ (¬a, a) ∧ (d, e))

= ¬(∼ ¬(a, b) ∧ (d, e)).

Thus, K(L) ∈ KAN.
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Let f : L→M be a morphism in PDL and let (a, b) ∈ K(L). We define

K(f) = K(f) as in the case of BDL and KA. Then

K(f)(¬(a, b)) = K(f)(¬a, a)

= (f(¬a), f(a))

= (¬f(a), f(a))

= ¬(f(a), f(b))

= ¬K(f)(a, b).

Therefore K(f) is a morphism in KAN. �

We are able to show some additional properties of KAN-algebras.

Proposition 2.5. Let T ∈ KAN and x ∈ T . Then

(N6) ¬(x∧ ∼ x) = ¬(x ∧ ¬x) = 1,

(N7) ∼ ¬x ≤ x ≤ ¬ ∼ x,

(N8) ∼ ¬x ≤ ¬¬x ≤ ¬ ∼ x and

(N9) ¬ ∼ ¬x = ¬x.

Proof. Property (N6) follows from (N1), since

¬(x ∧ ¬x) = ¬(x ∧ ¬(x ∧ 1)) = ¬(x ∧ ¬1) = ¬0 = 1.

Properties (N7) and (N8) follow from (N4) and the fact that ∼∼ x = x.

(N9) is a consequence of (N5), as ¬x = ¬(x∧1) = ¬((∼ ¬x)∧1) = ¬ ∼ ¬x.
�

The next lemma will be crucial for later results.

Lemma 2.6. Let T ∈ KAN and x, y ∈ T . Then

x ≤ y if and only if ∼ ¬x ≤∼ ¬y and ¬ ∼ x ≤ ¬ ∼ y.

Proof. It is immediate that if x ≤ y, then ∼ ¬x ≤∼ ¬y and ¬ ∼ x ≤
¬ ∼ y. Conversely, suppose that ∼ ¬x ≤∼ ¬y and ¬ ∼ x ≤ ¬ ∼ y. Since

T is a Kleene algebra, it holds that x∧ ∼ x ≤ y∨ ∼ y. Thus

[(x∧ ∼ x) ∧ ¬ ∼ x]∨ ∼ ¬x ≤ [(y∨ ∼ y) ∧ ¬ ∼ y]∨ ∼ ¬y.
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We will show that the left-hand side of this inequality is x and the right-

hand side is y. Indeed,

[(x∧ ∼ x) ∧ ¬ ∼ x]∨ ∼ ¬x = (x∧ ∼ x)∨ ∼ ¬x
= x ∧ (∼ x∨ ∼ ¬x)

= x∧ ∼ (x ∧ ¬x)

= x∧ ∼ (x∧ ∼ x)

= x ∧ (x∨ ∼ x)

= x

and

[(y∨ ∼ y) ∧ ¬ ∼ y]∨ ∼ ¬y = [y ∨ (∼ y ∧ ¬ ∼ y)]∨ ∼ ¬y
= [y ∨ (∼ y∧ ∼∼ y)]∨ ∼ ¬y
= y∨ ∼ ¬y
= y.

Hence x ≤ y. �

Let (T,∧,∨,∼,¬, 0, 1) be a KAN-algebra and let θ ⊆ T 2 be defined as

(x, y) ∈ θ if and only if ¬x = ¬y (3)

θ is an equivalence relation which will be critical in proving a categorical

equivalence for the class KAN. Recall that x/θ stands for the set {y ∈ T :

(x, y) ∈ θ}, while the set {x/θ : x ∈ T} is denoted by T/θ.

Lemma 2.7. Let (T,∧,∨,∼,¬, 0, 1) ∈ KAN. Then θ as defined in (3)

is a congruence with respect to ∧, ∨ and ¬.

Proof. Let x, y, z ∈ T and assume that (x, y) ∈ θ; i.e. ¬x = ¬y. It

follows from (N2) that ¬(x∨ z) = ¬(y ∨ z), so (x∨ z, y ∨ z) ∈ θ. Besides it

follows from (N5) that

¬(x ∧ z) = ¬((∼ ¬x) ∧ z) = ¬((∼ ¬y) ∧ z) = ¬(y ∧ z).

Then (x ∧ z, y ∧ z) ∈ θ. It is also immediate that (¬x,¬y) ∈ θ. �

For each T ∈ KAN, with an abuse of notation, (T/θ,∧,∨,¬, 0, 1) will de-

note a new algebraic structure whose operations ∧, ∨ and ¬ are well defined

due to Lemma 2.7 (0 means 0/θ and 1 means 1/θ). Clearly, (T/θ,∧,∨, 0, 1)
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is a bounded distributive lattice and the order≤ in T/θ can be characterised

as

x/θ ≤ y/θ if and only if ¬y ≤ ¬x.

Indeed, if x/θ ≤ y/θ, then ¬y = ¬(x ∨ y) = ¬x ∧ ¬y, so ¬y ≤ ¬x.

Conversely, if ¬y ≤ ¬x, then ¬y = ¬y ∧ ¬x = ¬(x ∨ y). Thus x/θ ≤ y/θ.

Lemma 2.8. If T ∈ KAN, then T/θ ∈ PDL.

Proof. As previously stated, it follows at once from Lemma 2.7 that

T/θ is a bounded distributive lattice. We will show that x/θ ∧ y/θ = 0/θ

if and only if x/θ ≤ ¬y/θ. If x/θ ∧ y/θ = 0/θ, then ¬(x ∧ y) = 1, so that

¬x ∧ ¬¬y = ¬(x ∧ ¬(x ∧ y)) ∧ ¬¬y
= ¬(x ∧ ¬y) ∧ ¬¬y
= ¬((x ∧ ¬y) ∨ ¬y)

= ¬¬y,

by (N1) and (N2). Hence ¬¬y ≤ ¬x, which means that x/θ ≤ ¬y/θ by

the comment preceding this lemma. Conversely, assume that x/θ ≤ ¬y/θ.
Since

x/θ ∧ y/θ ≤ y/θ ∧ ¬y/θ,

¬(y∧¬y) ≤ ¬(x∧y). But ¬(y∧¬y) = 1 by property (N6), so ¬(x∧y) = 1.

Therefore, x/θ ∧ y/θ = 0/θ. �

If L ∈ PDL and we consider (a, b), (c, d) in the KAN-algebra K(L),

((a, b), (c, d)) ∈ θ if and only if ¬(a, b) = ¬(c, d) if and only if a = c. (4)

Therefore two pairs in K(L) are equivalent (modulo θ) if and only if their

first coordinates coincide.

Lemma 2.9. Let L ∈ PDL. Then g : K(L)/θ → L given by

g((a, b)/θ) = a

is an isomorphism.

Proof. Observe that the operations ∧,∨,¬ defined in the pairs of

K(L) behave in the first coordinates exactly as the corresponding operations
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∧,∨,¬ in L. This fact together with (4) and the fact that θ is a congruence

imply that g is a well-defined morphism. It is injective because g((a, b)/θ) =

g((c, d)/θ) if and only if a = c if and only if (a, b)/θ = (c, d)/θ. And it is

also onto, for if a ∈ L, then (a,¬a) ∈ K(L) is such that g((a,¬a)/θ) = a.

�

Lemma 2.10. Let T ∈ KAN. Then the assignment ρ : T → K(T/θ)

given by ρ(x) = (x/θ, (∼ x)/θ) is an injective morphism.

Proof. Let x ∈ T . By (N6) we have that ¬(x∧ ∼ x) = 1, so ρ is

a well-defined map. In what follows we will prove that ρ is a morphism.

It is immediate that ρ preserves bottom and top elements, as well as ∧, ∨
and ∼. To show that ρ preserves ¬, observe that x/θ = (∼ ¬x)/θ by (N9).

Then

ρ(¬x) = ((¬x)/θ, (∼ ¬x)/θ)

= (¬x/θ, x/θ)
= ¬(x/θ, (∼ x)/θ)

= ¬ρ(x),

so ρ is a morphism in KAN.

In order to prove that ρ is injective, let (x/θ, (∼ x)/θ) = (y/θ, (∼ y)/θ).

Then ¬x = ¬y and ¬ ∼ x = ¬ ∼ y. It follows from Lemma 2.6 that x = y.

Hence ρ is an injective function. �

Let L ∈ PDL. Subalgebras T of K(L) that satisfy g(T/θ) = L (that is,

T/θ ∼= L) will be of special interest.

.2.2 A categorical equivalence for KAN

As proved in Section 1, congruences associated with Boolean filters are ex-

actly the ones where the quotient is a Boolean algebra. In the same way that

pairs of Heyting algebras and Boolean filters characterise Nelson algebras

(details in [24] via Boolean congruences, for a version via Boolean filters

see [4, Theorem 2.3]), we will show that pseudocomplemented distributive

lattices and Boolean filters characterise KAN-algebras.

First for L ∈ PDL and F a Boolean filter of L, we define the set

K(L,F ) := {(a, b) ∈ L× L : a ∧ b = 0 and a ∨ b ∈ F}.
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If L′ ∈ PDL, F ′ is a Boolean filter of L′ and f : L → L′ is a morphism

in PDL such that f(F ) ⊆ F ′, we define the function K(f) : K(L,F ) →
K(L′, F ′) by K(f) = (f(a), f(b)). This is a well-defined function, since for

(a, b) ∈ K(L,F ), a ∧ b = 0 implies that f(a) ∧ f(b) = f(a ∧ b) = f(0) = 0,

and also f(a) ∨ f(b) = f(a ∨ b) ∈ F ′ because a ∨ b ∈ F and f(F ) ⊆ F ′.

Theorem 2.11. If L ∈ PDL and F is a Boolean filter of L, then the

set K(L,F ) is the universe of a subalgebra of K(L), which we will denote

K(L,F ), and it is therefore in KAN. Moreover, K(L,F )/θ ∼= L.

Additionally, if L′ ∈ PDL, F ′ is a Boolean filter of L′ and f : L → L′

is a morphism in PDL such that f(F ) ⊆ F ′, then K(f) is a morphism in

KAN.

Proof. It is immediate that K(L,F ) is closed under ∧, ∨ and ∼. Also,

as ¬(a, b) = (¬a, a), we only have to show that a∨¬a ∈ F , but this follows

from the fact that ¬(a∨¬a) = 0 in PDL. Hence K(L,F ) is a subalgebra of

K(L) ∈ KAN.

To show that K(L,F )/θ ∼= L, we will see that g(K(L,F )) = L, where g

is the map defined in Lemma 2.9. Actually, we will prove that the restriction

of g to K(L,F ) is surjective. Let a ∈ L. Since a∨¬a ∈ F , (a,¬a) ∈ K(L,F ),

so g((a,¬a)/θ) = a, which was our aim.

Now let f : L → L′ be a morphism in PDL. Clearly, bottom and top

elements, ∧, ∨ and ∼ are preserved by K(f). To see that it preserves ¬,

we compute

K(f)(¬(a, b)) = (f(¬a), f(a))

= (¬f(a), f(a))

= ¬(f(a), f(b))

= ¬K(f)(a, b).

Therefore K(f) is a morphism in KAN. �

We denote by PDLF the category whose objects are pairs (L,F ), where

L ∈ PDL and F is a Boolean filter of L, and whose arrows f : (L,F ) →
(L′, F ′) are morphisms f : L → L′ such that f(F ) ⊆ F ′. Straightforward

computations show that we have a functor K : PDLF→ KAN.

Remark 2.12. If L is a distributive lattice, I an ideal of L and F

a filter of L, one obtains the Kleene algebra (see [28])

K(L, I, F ) := {(a, b) ∈ L× L : a ∧ b ∈ I and a ∨ b ∈ F}
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with the operations defined as before. As in the Nelson case, the addition of

the operation ¬(a, b) = (¬a, a) will result in a KAN-algebra only if I = {0}.
Indeed, if i ∈ I, then clearly (i, 1) ∈ K(L, I, F ) and

(i, 1) = (i, 1)∧ ∼ (i, 1) = (i, 1) ∧ ¬(i, 1) = (i, 1) ∧ (¬i, i) = (0, 1),

so i = 0.

Notice that we are using the notation K for two different purposes, but

it will always be clear from the context.

We will now proceed to prove the converse of Theorem 2.11, that is,

that every KAN-algebra T takes the form K(L,F ) for some L ∈ PDL and

some Boolean filter F ⊆ L. It is clear that L will be T/θ. First we need to

identify the Boolean filter.

For T ∈ KAN we define its positive and negative parts respectively as

T+ = {x ∈ T : x ≥∼ x} and T− = {x ∈ T : x ≤∼ x}.

Lemma 2.13. Let T ∈ KAN and x ∈ T . Then

1) x ∈ T+ if and only if ¬ ∼ x = 1.

2) x ∈ T− if and only if ¬x = 1.

Proof. By Lemma 2.6, observe that x ≥∼ x if and only if ∼ ¬x ≥∼
¬ ∼ x and ¬ ∼ x ≥ ¬ ∼∼ x = ¬x, which holds if and only if ¬ ∼ x ≥ ¬x.

It is thus clear that x ≥∼ x when ¬ ∼ x = 1. Conversely, if x ≥∼ x, then

¬ ∼ x = ¬(x∧ ∼ x) = 1 by (N6). Hence part 1) holds. Part 2) can be

deduced upon noting that x ∈ T− if and only if ∼ x ∈ T+. �

Lemma 2.14. Let T ∈ KAN. Then the positive part T+ is a lattice filter

of T that contains all elements x ∈ T that satisfy ¬¬x = 1. Consequently,

T+/θ is a Boolean filter of T/θ.

Proof. First we will show that T+ is a filter. Clearly 1 ∈ T+, and if

x ∈ T+ and y ∈ T satisfies y ≥ x, then ∼ y ≤∼ x ≤ x ≤ y, so y ∈ T+.

Now, if x, y ∈ T+, we have by Lemma 2.13 that ¬ ∼ x = ¬ ∼ y = 1. Hence

¬ ∼ (x ∧ y) = ¬(∼ x∨ ∼ y) = ¬ ∼ x ∧ ¬ ∼ y = 1.



32 CONRADO GOMEZ, MIGUEL ANDRÉS MARCOS, HERNÁN JAVIER SAN MARTÍN

Thus x ∧ y ∈ T+.

We know from property (N8) that ¬¬x ≤ ¬ ∼ x. So if ¬¬x = 1, we get

that ¬ ∼ x = 1. Then x ∈ T+.

It is now clear that T+/θ is a filter in T/θ. The only part that is not

immediate is that y/θ ≥ (x∨ ∼ x)/θ implies y/θ ∈ T+/θ, but this follows

from the fact that y/θ = (y ∨ x∨ ∼ x)/θ.

Now, if ¬x/θ = 0/θ in T/θ, then ¬¬x = 1 and thus x/θ ∈ T+/θ.

Therefore T+/θ is a Boolean filter. �

Theorem 2.15. Let T ∈ KAN. Then T ∼= K(T/θ, T+/θ). Moreover, if

T ′ ∈ KAN and f : T → T ′ is a morphism in KAN, then f̂ : T/θ → T ′/θ given

by f̂(x/θ) = f(x)/θ is a morphism in PDL such that f̂(T+/θ) ⊆ (T ′)+/θ.

Proof. Consider the assignment ρ : T → K(T/θ, T+/θ) given by ρ(x) =

(x/θ, (∼ x)/θ) (although we called ρ the map given in Lemma 2.10, we think

it is clear the framework considered in each case). Since ¬(x∧ ∼ x) = 1 by

(N6) and x∨ ∼ x ∈ T+, we have that x/θ∧(∼ x)/θ = (x∧(∼ x))/θ = 0/θ ∈
T/θ and x/θ ∨ (∼ x)/θ = (x ∨ (∼ x))/θ ∈ T+/θ. Thus ρ is a well-defined

map.

The fact that ρ is an injective morphism in KAN follows from Lemma

2.10. Before checking surjectivity, observe that x ∈ T+ if and only if

¬ ∼ x ≥ ¬x, if and only if ¬ ∼ x = 1, if and only if (∼ x)/θ = 0/θ and

recall that x/θ ∧ y/θ = 0/θ if and only if y/θ ≤ ¬x/θ, as T/θ ∈ PDL.

Now, given (x/θ, y/θ) ∈ K(T/θ, T+/θ), we have that x/θ ∧ y/θ = 0/θ

and x/θ ∨ y/θ ∈ T+/θ, so that y/θ ≤ ¬x/θ and (x ∨ y)/θ = z/θ with

(∼ z)/θ = 0/θ. Hence, since (¬x/θ, (∼ ¬x)/θ)) and (z/θ, (∼ z)/θ) belong

to ρ(T ) and ρ(T ) is a subalgebra of K(T/θ) = (K(T/θ),∧,∨,∼,¬, 0/θ, 1/θ),
from

∼ (¬x/θ, (∼ ¬x)/θ)∨ ∼ (z/θ, (∼ z)/θ) = ((∼ ¬x)/θ,¬x/θ) ∨ ((∼ z)/θ, z/θ)
= (x/θ,¬x/θ) ∨ (0/θ, (x ∨ y)/θ)

= (x/θ, (¬x ∧ (x ∨ y))/θ)

= (x/θ, (¬x ∧ y))/θ)

= (x/θ, y/θ)

we deduce that (x/θ, y/θ) ∈ ρ(T ).
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Finally, if T ′ ∈ KAN and f : T → T ′ is a morphism, then f̂ : x/θ 7→
f(x)/θ is clearly a pseudocomplemented lattice morphism, for θ is a con-

gruence with respect to ∧, ∨ and ¬. If x ∈ T+, then ¬ ∼ x = 1, so

¬ ∼ f(x) = 1 ∈ (T ′)+. Hence f̂(x/θ) ∈ (T ′)+/θ, which completes this

proof. �

By previous results we have that if T ∈ KAN, then (T/θ, T+/θ) ∈ PDLF.

Also, if f : T → T ′ is a morphism in KAN, then f̂ is a morphism in PDLF.

Therefore it is immediate that the previous assignments define a functor

from KAN to PDLF.

Theorem 2.16. The functor K : PDLF → KAN defines a categorical

equivalence.

Proof. Theorem 2.11 shows that K is well defined. It is also immediate

that it is faithful. By Theorem 2.15 it is full and dense. Therefore K is an

equivalence. �

.2.3 Comparison with wp-Kleene algebras

In this subsection we prove that KAN = Kω, where Kω is the variety (and

the algebraic category) of wp-Kleene algebras (see Section 1 and [25]).

Recall from Section 1 that a Kleene algebra equipped with an additional

operator ¬ is in Kω if it satisfies the following properties:

y ≤ ¬x if and only if x ∧ y ≤∼ x,
¬(x ∧ y) = 1 if and only if ¬¬x ≤ ¬y.

If L ∈ PDL and R is a Boolean congruence on L, we define

KAR(L) := {(a, b) ∈ K(L) : (a ∨ b, 1) ∈ R}.

Now we prove the following result.

Theorem 2.17. KAN = Kω.

Proof. Let T ∈ Kω. It follows from [25, Theorem 4.4] that there exist

L ∈ PDL and a Boolean congruence R on L such that T ∼= KAR(L). Given

that 1/R is a Boolean filter by Lemma 1.2, KAR(L) = K(L, 1/R) ∈ KAN.
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Then T ∈ KAN and thus Kω ⊆ KAN. Conversely, let T ∈ KAN, so it

follows from Theorem 2.16 that there exist L ∈ BDL and a Boolean filter

F such that T ∼= K(L,F ). It will be sufficient to prove that K(L,F ) ∈ Kω.

By Lemma 1.3 we have that H(F ) is a Boolean congruence. Since F =

1/H(F ), T ∼= K(L,F ) = KAH(F )(L) ∈ Kω, as desired. Then KAN ⊆ Kω,

so KAN = Kω. �

We define the category BCon0
ω introduced in [25, Section 4]: the objects

are pairs (L,R), where L ∈ PDL and R is a Boolean congruence on L.

The morphisms are maps f : (L,R) → (M,S) such that f : L → M is

a morphism in PDL and R ⊆ f−1(S) (which means that if (x, y) ∈ R, then

(f(x), f(y)) ∈ S).

Remark 2.18. Straightforward computations based on Lemma 1.3

show that BCon0
ω and PDLF are isomorphic categories.

In [25, Theorem 4.4], it was proved that there exists a categorical equiv-

alence between Kω and BCon0
ω . In Theorem 2.16 we prove an analogous

result with Kω replaced by KAN (both classes turn out to be equal by

Theorem 2.17) and BCon0
ω by PDLF (which are isomorphic categories by

Remark 2.18), by generalising the more natural relation between Heyting

and Nelson algebras from [24]. In conclusion, while Theorem 2.16 can be

seen as a variant of [25, Theorem 4.4] by changing Boolean congruences

for Boolean filters, it also follows more naturally from the definition of the

variety KAN, given that the aim of both papers (the present paper and

[25]) differ.

.2.4 Remarks about the relation between the strong and intu-

itionistic negation

The unary operation ¬ in a given KAN-algebra is a weak pseudocomple-

ment by Sendlewski’s condition

b ≤ ¬a if and only if a ∧ b ≤∼ a.

This already gives a partial answer to our question about the relation-

ship between the negations ¬ and ∼. Properties (N1)-(N9) together with

Lemma 2.6 give a more detailed answer. Moreover, Theorem 5.6 will show
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that while ∼ is an involution, the operator ¬ cannot have the extra proper-

ties one may expect from a negation without becoming trivial (in the sense

that it coincides with ∼).

.3 The variety KANc

Inspired by results due to J. Kalman related to lattices [15], R. Cignoli

proved in [8] that the construction of J. Kalman can be extended to

a functor K from the category of bounded distributive lattices to the cate-

gory of Kleene algebras and this functor has a left adjoint [8, Theorem 1.7].

He also showed that there exists an equivalence between the category of

bounded distributive lattices and the full subcategory of centered Kleene

algebras whose objects satisfy a condition called interpolation property [8,

Theorem 2.4]. Moreover, he also proved the fact that there exists an equiva-

lence between the category of Heyting algebras and the category of centered

Nelson algebras [8, Theorem 3.14].

Let KANc be the variety whose members are the algebras (T,∧,∨,∼
,¬, c, 0, 1) of type (2, 2, 1, 1, 0, 0, 0) such that (T,∧,∨,∼,¬, 0, 1) is a KAN-

algebra and ∼ c = c. We also write Kc
ω for the variety whose members are

the algebras (T,∧,∨,∼,¬, 0, 1) of type (2, 2, 1, 0, 0, 0) such that (T,∧,∨,∼
,¬, 0, 1) ∈ Kω and ∼ c = c. It follows from Theorem 2.17 that Kc

ω = KANc.

In this section we study properties of KANc and we prove that PDL and

KANc are equivalent categories following an alternative path to that given

in [25, Corollary 4.6].

.3.1 Centered KAN-algebras

Recall from Section 1 that KAc denotes the variety of centered Kleene

algebras. We will recall the categorical equivalence between BDL and KAc

to obtain an equivalence between PDL and the category of centered KAN-

algebras.

Let (T,∧,∨,∼, c, 0, 1) ∈ KAc. The set

C(T ) := {x ∈ T : x ≥ c}
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is the universe of a subalgebra of (T,∧,∨, c, 1) and (C(T ),∧,∨, c, 1) ∈ BDL.

For a morphism g : T → U ∈ KAc, the map C(g) : C(T )→ C(U), given by

C(g)(x) = g(x), is a morphism in BDL. Therefore, we can define a functor

C from KAc to BDL.

Let L ∈ BDL. The map αL : L → C(K(L)) given by αL(a) = (a, 0) is

an isomorphism in BDL. If T ∈ KAc, the map βT : T → K(C(T )) given by

βT (x) = (x∨ c,∼x∨ c) is an injective morphism in KAc which is surjective

if and only if

For x, y ≥ c, if x∧ y = c, there exists z such that z ∨ c = x and ∼z ∨ c = y

(CK)

(see [14]). Condition (CK) is not necessarily verified in every centered

Kleene algebra (see for instance [5, Figure 1]). The functor K can then be

seen as a functor from BDL to the full subcategory of KAc whose objects

satisfy (CK).

The following result is [5, Theorem 2.7] (see also [8, Theorem 2.4]).

Theorem 3.1. The functors K and C establish a categorical equivalence

between BDL and the full subcategory of KAc whose objects satisfy (CK),

with natural isomorphisms α and β.

As a reformulation of [8, Theorem 3.14] (see also [7]) we also have

that the functors K and C establish a categorical equivalence between the

category of Heyting algebras and the category of centered Nelson algebras

with natural isomorphisms α and β.

It is easy to see that an algebra (T,∧,∨,∼,¬, c, 0, 1) of type (2, 2, 1, 1, 0,

0, 0) is in KANc if and only if (T,∧,∨,∼, c, 0, 1) ∈ KAc and (T,∧,∨,∼,
¬, 0, 1) is a KAN-algebra. If L ∈ PDL, we write Kc(L) for the algebra K(L)

with center (0, 0) in its signature. If f : L→ L′ is a morphism in PDL, we

write Kc(f) : Kc(L)→ Kc(L
′) given by Kc(f) = K(f). We write Kc for the

functor from PDL to KANc.

Lemma 3.2. Let T ∈ KANc. Then ¬c = 1.

Proof. Since ∼ c = c, c ∈ T−. By Lemma 2.13 we have ¬c = 1. �

Given T ∈ KAN, the positive part T+ is a sublattice which is upper

bounded. In case T ∈ KANc, it can be proved the sets T+ and {x ∈
T : x ≥ c} coincide. Thus we will also write C(T ) to denote the algebra

(T+,∧,∨,¬c, c, 1), where ¬c : T+ → T+ is defined by

¬cx = ¬x ∨ c.
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Lemma 3.3. If T ∈ KANc, then C(T ) ∈ PDL.

Proof. We only need to show that for x, y ≥ c,

x ∧ y = c if and only if x ≤ ¬cy.

To do this, note first that if w, z ∈ T+, then w ≤ z if and only if ¬ ∼ w ≤
¬ ∼ z and ∼ ¬w ≤∼ ¬z by Lemma 2.6. But since the first one becomes

trivial by Lemma 2.13, w ≤ z if and only if ¬z ≤ ¬w.

Now, from Lemma 3.2 and the proof of Lemma 2.8,

x ∧ y = c if and only if ¬(x ∧ y) = ¬c = 1 = ¬0 if and only if ¬¬y ≤ ¬x.

The last inequality can be rewritten as ¬(¬y ∨ c) ≤ ¬x and it is equivalent

to

x ≤ ¬y ∨ c = ¬cy

by our initial observation. �

The functor C: KAc → BDL can be extended to a functor C: KANc →
PDL.

Note that if T ∈ KANc, then Kc(C(T )) ∈ KANc with center (c, c).

Corollary 3.4. Let T ∈ KANc. Then βT : T → Kc(C(T )) is an iso-

morphism.

Proof. Recall that θ is the equivalence relation in T defined by (3),

which is also a congruence with respect to ∧, ∨ and ¬. Observe that

K(T/θ, T/θ) = K(T/θ). It follows from the proof of Theorem 2.15 that the

map ρ : T → K(T/θ) given by ρ(x) = (x/θ, (∼ x)/θ) is an isomorphism in

KAN, so it is also an isomorphism in KANc.

Let fθ : C(T ) → T/θ be given by fθ(x) = x/θ. We are going to show

that fθ is an isomorphism in PDL. Actually, we only need to show that

fθ is a bijection because fθ is a morphism in PDL due to Lemma 2.7. If

fθ(x) = fθ(y) (i.e. x/θ = y/θ), then ¬x = ¬y, so ∼ ¬x =∼ ¬y. Besides

we have that x, y ≥ c. Then ∼ x,∼ y ≤ c and thus ¬ ∼ x,¬ ∼ y ≥ ¬c.

Then ¬ ∼ x = ¬ ∼ y, as ¬c = 1 by Lemma 3.2. Hence x = y by

Lemma 2.6, so fθ is injective. Now consider x ∈ T . Since ¬c = 1, fθ(x∨c) =

x/θ, so fθ is surjective. Then fθ is an isomorphism in PDL, which implies

that K(fθ) : K(C(T )) → K(T/θ) is an isomorphism in KAN, so it is an
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isomorphism in KANc. Also note that K(fθ)(x, y) = (x/θ, y/θ). Then the

map γ : Kc(T/θ)→ Kc(C(T )) given by γ(x/θ, y/θ) = (f−1
θ (x/θ), f−1

θ (y/θ))

is an isomorphism in KANc.

As consequence, the map γ ◦ ρ : T → C(Kc(T )) is an isomorphism in

KANc. It is immediate that βT = γ ◦ ρ. Therefore βT is an isomorphism in

KANc. �

Remark 3.5. Let T ∈ KANc. In what follows we will show that there

is an alternative proof of the fact that the map βT is an isomorphism in

KANc. In order to see it, note that since βT is a monomorphism of centered

Kleene algebras, it suffices to show that βT preserves the operation ¬ and

that it is a surjective map (recall that βT is a surjective map if and only if

it satisfies condition (CK)). Throughout the proof we will use the equality

¬c = 1 (see Lemma 3.2).

It is immediate that the map βT preserves the operation ¬ if and only

if for every x ∈ T it holds the equality ∼ ¬x ∨ c = x ∨ c. It follows from

Lemma 2.6 that the previous equality is equivalent to the following two:

¬ ∼ (∼ ¬x ∨ c) = ¬(∼ x ∨ c) and ∼ ¬(∼ ¬x ∨ c) =∼ ¬(x ∨ c). The

first equality can be verified by using (N5) and that ¬c = 1. The second

equation follows from (N9) and ¬c = 1. So βT preserves the operation ¬.

Finally, in order to show that βT is a surjective map, we will see that

condition (CK) is satisfied in T . Let x, y ∈ T be such that x ∧ y = c.

Define the element z = x ∧ ¬y. Straightforward computations show that

z ∨ c = x. Now we need to prove that z ∧ c =∼ y, which is equivalent to

showing that c∧¬y =∼ y. From Lemma 2.6 this last equality is equivalent

to ¬ ∼ (c ∧ ¬y) = ¬ ∼∼ y and ∼ ¬(c ∧ ¬y) =∼ ¬ ∼ y. A direct

computation based on (N2), (N9) and the fact that ¬c = 1 shows that

¬ ∼ (c ∧ ¬y) = ¬ ∼∼ y is satisfied. The validity of ∼ ¬(c ∧ ¬y) =∼ ¬ ∼ y
is a straightforward consequence of (N5) and ¬c = 1. Therefore βT is an

isomorphism in KANc.

It is easily seen that if L ∈ PDL, then the map αL : L → C(Kc(L)),

which is an isomorphism in BDL, is also an isomorphism in PDL. Taking

into account the results of this section and the categorical equivalence stated

in Theorem 3.1, we obtain the following theorem.

Theorem 3.6. The functors Kc and C establish a categorical equiva-

lence between PDL and KANc with natural isomorphisms α and β.
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From this result, it is natural to ask what is the relation between the

constructions of the categorical equivalences given in theorems 2.16 and

3.6. In what follows we study this relation.

Let T be in KANc. With an abuse of notation we also denote by T the

c-free reduct of T , which is a KAN-algebra. Then we have two pseudocom-

plemented lattices that are obtained from T : C(T ) as previously defined

and T/θ from Section 2. The following result shows that both pseudocom-

plemented distributive lattices are isomorphic.

Theorem 3.7. Let T ∈ KANc. Then

1) T/θ = T+/θ,

2) T/θ ∼= C(T ).

Proof. Claim 1) will follow after we prove that T/θ ⊆ T+/θ. Let

x ∈ T . Then x ∨ c ∈ T+ and thus ¬x = ¬(x ∨ c) by Lemma 3.2. Hence

x/θ = (x ∨ c)/θ, so T/θ ⊆ T+/θ. Claim 2) is in the proof of Corollary 3.4.

�

Theorem 3.8. Let T be a KAN-algebra and θ the congruence defined

in (3). Assume that T/θ = T+/θ (as sets). Then there is an element c ∈ T
such that (T,∧,∨,∼,¬, c, 0, 1) is in KANc.

Proof. It is enough to note that under the assumption T/θ = T+/θ

we have T ∼= K(T/θ, T/θ). If 0 denotes the class 0/θ ∈ T+/θ = T/θ,

then (0, 0) ∈ K(T/θ, T/θ) and it is immediate that (0, 0) is a center.

Thus T is isomorphic to the c-free reduct of the centered KAN-algebra

(K(T/θ, T/θ),∧,∨,∼,¬, (0, 0), (0, 1), (1, 0)) and the theorem follows. �

.3.2 Congruences for algebras of KANc

We will write Con(A) for the lattice of congruences on an algebra A. Given

L ∈ PDL, we will prove that there is an order isomorphism between Con(L)

and Con(Kc(L)). Similarly, we will show that if T ∈ KANc, then Con(T )

and Con(C(T )) are order isomorphic.
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If L ∈ BDL and R is a congruence on L, then the relation SR defined

as

((a, b), (d, e)) ∈ SR if and only if (a, d) ∈ R and (b, e) ∈ R

is a congruence on K(L). If S is a congruence on K(L), then the relation

RS defined as

(a, b) ∈ RS if and only if ((a, 0), (b, 0)) ∈ S

is a congruence on L. In [5] (see also [7, Remark 7.12]), it was proved

that if L ∈ BDL, the assignments R 7→ SR and S 7→ RS define an order

isomorphism between Con(L) and Con(Kc(L)). This result can be extended

to the framework of pseudocomplemented distributive lattices.

Proposition 3.9. Let L ∈ PDL. The assignments R 7→ SR and S 7→
RS define an order isomorphism between Con(L) and Con(Kc(L)).

Proof. We only need to prove that if R ∈ Con(L) and S ∈ Con(Kc(L)),

then SR ∈ Con(Kc(L)) and RS ∈ Con(L).

If R ∈ Con(L) and ((a, b), (d, e)) ∈ SR, then (a, d) ∈ R and (b, e) ∈ R.

In particular, since (¬a,¬d) ∈ R, ((¬a, a), (¬d, d)) ∈ SR, which means that

(¬(a, b),¬(d, e)) ∈ SR. Thus SR ∈ Con(Kc(L)).

Conversely, if S ∈ Con(Kc(L)) and (a, b) ∈ RS , then ((a, 0), (b, 0)) ∈ S.

In particular, (¬(a, 0),¬(b, 0)) = ((¬a, a), (¬b, b)) = ((¬a, a)∨(0, 0), (¬b, b)∨
(0, 0)) = ((¬a, 0), (¬b, 0)) ∈ S; that is, (¬a,¬b) ∈ RS . Therefore RS ∈
Con(L). �

For T ∈ KANc and R ∈ Con(T ) we define the binary relation Γ(R) as

the restriction to C(T ) × C(T ) of R. For S ∈ Con(C(T )) we define the

relation Σ(S) ⊆ T × T by

(x, y) ∈ Σ(S) if and only if (x ∨ c, y ∨ c) ∈ S and (∼ x ∨ c,∼ y ∨ c) ∈ S.

Proposition 3.10. Let T ∈ KANc. The assignments R 7→ Γ(R) and

S 7→ Σ(S) define an order isomorphism between Con(T ) and Con(C(T )).

Proof. It is immediate that Γ(R) ∈ Con(C(T )) whenever R ∈ Con(T ).

Conversely, let S ∈ Con(C(T )). Operations ∧,∨ and ∼ are easily seen to

be preserved by Σ(S). We only need to prove that Σ(S) is a congruence

with respect to ¬. Let (x, y) ∈ Σ(S), so that (x∨ c, y∨ c) ∈ S and (∼ x∨ c,
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∼ y∨c) ∈ S. In particular, (¬c(x∨c),¬c(y∨c)) = (¬(x∨c)∨c,¬(y∨c)∨c) ∈
S. Since ¬(x ∨ c) = ¬x and ¬(y ∨ c) = ¬y by Lemma 3.2,

(¬x ∨ c,¬y ∨ c) ∈ S. (5)

On the other hand, it follows from Theorem 3.6 that T ∼= Kc(C(T )). Since

the equation z ∨ c =∼ (¬z) ∨ c holds in Kc(C(T )), it holds in T . Thus

(∼ (¬x) ∨ c,∼ (¬y) ∨ c) = (x ∨ c, y ∨ c) ∈ S. (6)

Hence (¬x,¬y) ∈ Σ(S) by (5) and (6), meaning that Σ(S) ∈ Con(T ). The

rest of the proof follows from straightforward computations. �

.4 Quantifiers

In this section we define quantifiers on PDL based on [9]. We also introduce

a notion of quantifier on KAN, and we study the relation between quantifiers

on L (for L ∈ PDL) and quantifiers on K(L).

Since Halmos [13], the notion of quantifier has been generalised in many

ways. For example, the definition of a Q-distributive lattice is given in [9]

and in [18] a quantifier for De Morgan algebras is defined.

The following is [9, Definition 1.1].

Definition 4.1. Let L ∈ BDL and∇ : L→ L a unary map. We say that

∇ is a quantifier if it satisfies the following conditions for every a, b ∈ L:

(Q1) ∇0 = 0,

(Q2) a ≤ ∇a,

(Q3) ∇(a ∧∇b) = ∇a ∧∇b,

(Q4) ∇(a ∨ b) = ∇a ∨∇b.

Conditions (Q1)-(Q4) were first introduced by Halmos [13] as an alge-

braic counterpart of the logical notion of an existential quantifier.

We have that ∇1 = 1, ∇∇a = ∇a and a ∈ ∇(L) if and only if a = ∇a.

We also have that ∇(L) is a subalgebra of L. Moreover, if the pseudocom-

plement ¬a exists and a ∈ ∇(L), then ¬a = ∇¬a.
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The notion of quantifier on Heyting algebras is defined by some authors

as in the case of bounded distributive lattices (see for instance [16]). Moti-

vated by this fact we define a quantifier on pseudocomplemented distribu-

tive lattices as in the case of bounded distributive lattices. It is interesting

to note that if L ∈ PDL, then ∇(L) is a subalgebra of L (it can be deduced

from the proof of [9, Proposition 1.2 (iii)]). The variety whose algebras are

pseudocomplemented distributive lattices endowed with a quantifier will be

called monadic pseudocomplemented distributive lattices (in a reference to

Halmos’ monadic Boolean algebras [13]) and denoted by MPDL.

Definition 4.2. Let T ∈ KAN and Ω: T → T a unary map. We say

that Ω is a weak quantifier if the following conditions are satisfied for every

x, y ∈ T :

(W1) Ω0 = 0,

(W2) ¬Ωx ≤ ¬x,

(W3) ¬Ω(x ∧ Ωy) = ¬(Ωx ∧ Ωy),

(W4) Ω(x ∨ y) = Ωx ∨ Ωy,

(W5) ¬Ωx =∼ Ωx,

(W6) Ωx = Ω ∼ ¬x.

WMKAN will stand for the variety of weakly-monadic KAN-algebras, i.e.

KAN-algebras endowed with a weak quantifier.

The following lemma is straightforward from the definition.

Lemma 4.3. If T ∈ KAN and Ω is a weak quantifier, then

(W7) Ω1 = 1,

(W8) x ≤ y implies Ωx ≤ Ωy,

(W9) ΩΩx = Ωx,

(W10) x ∈ T− implies Ωx = 0.
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For L ∈ PDL and a quantifier ∇ on L, we define Ω∇ : K(L)→ K(L) as

Ω∇(a, b) = (∇a,¬∇a).

Notice that Ω∇ is well defined because ∇a ∧ ¬∇a = 0 for every a ∈ L.

Moreover, if F is a Boolean filter on L, then ∇a∨¬∇a ∈ F , so Ω∇ is closed

in the subalgebra K(L,F ).

We write MPDLF for the category whose objects are pairs formed by an

algebra (L,∧,∨,¬, 0,∇) ∈ MPDL and a Boolean filter F on L. The mor-

phisms of MPDLF are the morphisms of PDLF which preserve the respective

quantifiers.

Proposition 4.4. Let L ∈ PDL and let ∇ be a quantifier on L. Then

Ω∇ is a weak quantifier on K(L) (and therefore on K(L,F ) for every

Boolean filter F ⊆ L). Moreover, K extends to a functor from MPDLF

to WMKAN.

Proof. First we prove that Ω∇ is a weak quantifier. Let (a, b), (d, e) ∈
K(L).

(W1) Ω∇(0, 1) = (∇0,¬∇0) = (0, 1).

(W2) ¬Ω∇(a, b) = ¬(∇a,¬∇a) = (¬∇a,∇a) ≤ (¬a, a) = ¬(a, b).

(W3) ¬Ω∇((a, b) ∧ Ω∇(d, e)) = ¬Ω∇(a ∧∇d, b ∨ ¬∇d)

= ¬(∇(a ∧∇d),¬∇(a ∧∇d))

= ¬(∇a ∧∇d,¬∇(a ∧∇d))

= ¬((∇a,¬∇a) ∧ (∇d,¬∇d))

= ¬(Ω∇(a, b) ∧ Ω∇(d, e)).

(W4) Ω∇((a, b) ∨ (d, e)) = Ω∇(a ∨ d, b ∧ e)
= (∇(a ∨ d),¬∇(a ∨ d))

= (∇a ∨∇d,¬∇a ∧ ¬∇d)

= Ω∇(a, b) ∨ Ω∇(d, e).

(W5) ¬Ω∇(a, b) = ¬(∇a,¬∇a) = (¬∇a,∇a) =∼ Ω∇(a, b).

(W6) Ω∇(a, b) = (∇a,¬∇a) = Ω∇(a,¬a) = Ω∇ ∼ ¬(a, b).
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Let f : (L,∇, F )→ (L′,∇′, F ′) be a morphism in MPDLF. Let a, b ∈ K(L).

Then

K(f)(Ω∇(a, b)) = K(f)(∇a,¬∇a)

= (f(∇a), f(¬∇a))

= (∇′f(a),¬∇′f(a))

= Ω∇′(f(a), f(b))

= Ω∇′(K(f)(a, b)),

so K is functorial. �

On the other hand, given T ∈ KAN and a weak quantifier Ω on T , we

try to recover a quantifier on T/θ as

∇Ω(x/θ) = (Ωx)/θ.

Proposition 4.5. Given T ∈ KAN and Ω a weak quantifier on T ,

∇Ω is a well-defined operator in T/θ and it is a quantifier. Moreover, if

f : (T,Ω) → (T ′,Ω′) is a morphism in WMKAN, then the morphism in

PDLF f̂ : T/θ → T ′/θ given by f̂(x/θ) = f(x)/θ sends ∇Ω into ∇Ω′.

Proof. Recall that x/θ = y/θ if and only if ¬x = ¬y. Therefore,

∼ ¬x =∼ ¬y and by (W6) we have Ωx = Ωy, so ∇Ω(x/θ) = ∇Ω(y/θ).

Thus, ∇Ω is well defined. By (W1)-(W4), it is clear that ∇Ω is a quantifier.

Finally,

f̂(∇Ω(x/θ)) = f̂((Ωx)/θ)

= f(Ωx)/θ

= (Ω′f(x))/θ

= ∇Ω′((f(x))/θ)

= ∇Ω′ f̂(x/θ).

�

The maps Ω∇ and ∇Ω behave as inverses in the sense that if (L,∇, F ) ∈
MPDLF, then ∇Ω∇ is a quantifier on K(L,F )/θ ∼= L, and if (T,Ω) ∈
WMKAN, then Ω∇Ω

is a weak quantifier on K(T/θ, T+/θ) ∼= T . More-

over, recalling the natural isomorphisms

g−1 : L→ K(L,F )/θ given by g−1(a) = (a,¬a)/θ

ρ : T → K(T/θ, T+/θ) given by ρ(x) = (x/θ, (∼ x)/θ)
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between the categories PDLF and KAN (see lemmas 2.9 and 2.10), we have:

Theorem 4.6.

1) If (L,∇, F ) ∈ MPDLF, then g−1(∇a) = ∇Ω∇(g−1(a)).

2) If (T,Ω) ∈WMKAN, then ρ(Ωx) = Ω∇Ω
(ρ(x)).

Hence g−1 and ρ are isomorphisms in the new categories.

Proof. The first part is immediate by definition, as

∇(Ω∇)(g
−1(a)) = ∇(Ω∇)((a,¬a)/θ)

= (Ω∇(a,¬a))/θ

= (∇a,¬∇a)/θ

= g−1(∇a).

For the second part, we also need (W5), as

Ω(∇Ω)(ρ(x)) = Ω(∇Ω)(x/θ, (∼ x)/θ)

= (∇Ω(x/θ),¬∇Ω(x/θ))

= ((Ωx)/θ,¬(Ωx)/θ)

= ((Ωx)/θ, (¬Ωx)/θ)

= ((Ωx)/θ, (∼ Ωx)/θ)

= ρ(Ωx).

�

As a corollary, we have the following result.

Corollary 4.7. There exists a categorical equivalence between MPDLF

and WMKAN.

Let T ∈ KANc and let Ω be a weak quantifier. If we define Ωc(x) =

Ωx∨ c, then for pairs we have Ωc(a, b) = (∇a, 0), and besides the following

hold:

T1. x ∨ c ≤ Ωc(x ∨ c),

T2. Ωc((x ∨ c) ∧ Ωc(y ∨ c)) = Ωc(x ∨ c) ∧ Ωc(y ∨ c),

T3. Ωc(x ∨ y ∨ c) = Ωc(x ∨ c) ∨ Ωc(y ∨ c),
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T4. Ωc(x ∨ c) = Ωcx,

T5. Ωc(x ∧ c) = c.

Let WMKANc be the variety of KAN-algebras with an additional op-

erator satisfying T1-T5. We call these operators c-weak quantifiers. In

this case we have the bijections ∇ 7→ (∇·, 0) and Ωc 7→ Ωc|C(T ) between

quantifiers and c-weak quantifiers. The isomorphisms α and β preserve

these operations, and therefore we have a categorical equivalence between

WMKANc and MPDL.

Example 4.8. Let L be the PDL-reduct of the Heyting algebra B2×B2,

where B2 is the two-element Boolean algebra, and the lattice skeleton of

the KAN-algebra K(L) (see Figure 1).

0

a ¬a

1

(0, 1)

(0,¬a)

(a,¬a)

(0, a)

(¬a, a)(0, 0)

(0, a) (¬a, 0)

(1, 0)

Figure 1: L and K(L) from Example 4.8.

It can be shown that the only two quantifiers on L are the trivial ones

denoted by ∇1 and ∇2, and described in Table 1. The corresponding weak

quantifiers on K(L) are shown in Table 2.
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x ∇1x ∇2x

0 0

1 1

a a 1

¬a ¬a 1

Table 1:

x Ω∇1x Ω∇2x

(0, 1) (0, 1)

(0, a) (0, 1)

(0,¬a) (0, 1)

(0, 0) (0, 1)

(1, 0) (1, 0)

(a, 0) (a,¬a) (1, 0)

(¬a, 0) (¬a, a) (1, 0)

(a,¬a) (a,¬a) (1, 0)

(¬a, a) (¬a, a) (1, 0)

Table 2:

Example 4.9. Let L now be the PDL-reduct of the Heyting algebra

B2 ⊕ (B2 × B2) (where ⊕ is the ordinal sum of posets). The diagrams

corresponding to the lattice reducts of L and K(L) are sketched in Figure 2.

Recall that in L we have that ¬a = ¬b = ¬d = 0. Quantifiers on L are

described in Table 3 and the weak quantifiers on K(L) are shown in Table 4.

0

d

a b

1

(0, 0)

(d, 0)

(a, 0) (b, 0)

(1, 0)

(0, d)

(0, b)(0, a)

(0, 1)

Figure 2: L and K(L) from Example 4.9.
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x ∇1x ∇2x ∇3x ∇4x ∇5x

0 0

1 1

a a a 1 1 1

b b 1 b 1 1

d d a b d 1

Table 3:

x Ω∇1x Ω∇2x Ω∇3x Ω∇4x Ω∇5x

(0, 1) (0, 1)

(0, a) (0, 1)

(0, b) (0, 1)

(0, d) (0, 1)

(0, 0) (0, 1)

(1, 0) (1, 0)

(a, 0) (a, 0) (a, 0) (1, 0) (1, 0) (1, 0)

(b, 0) (b, 0) (1, 0) (b, 0) (1, 0) (1, 0)

(d, 0) (d, 0) (a, 0) (b, 0) (d, 0) (1, 0)

Table 4:

.5 Some additional results

In this section we study some consequences of the categorical equivalences

and related topics. We show that in general it is not true that a KAN-

algebra is the reduct of a Nelson algebra. We also introduce and study a

particular subvariety of KAN. Then we give an alternative (algebraic) proof

of Theorem 2.17.

.5.1 A KAN-algebra that is not isomorphic to the reduct of

a Nelson algebra.

Although it is part of the folklore that there are pseudomplemented dis-

tributive lattices which are not the reduct of any Heyting algebra, to make

this paper self-contained we illustrate this fact with an example, which will

be used to show that not every KAN-algebra is the reduct of a Nelson
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algebra.

Consider the lattice L = N2 ∪ {⊥,>}, consisting in the lattice N2 (de-

fined coordinatewise) with added top > and bottom ⊥ (here N is the set

of natural numbers). This can be easily seen as a pseudocomplemented

distributive lattice by defining ¬> = ⊥, ¬⊥ = > and ¬(m,n) = ⊥ for any

m,n ∈ N. However, a Heyting implication cannot be defined. For example,

(2, 1)→ (1, 2) cannot exist. Indeed, observe that

(2, 1) ∧ (m,n) = (2 ∧m, 1) ≤ (1, 2) if and only if m = 1, n ∈ N.

Since the set {(1, n) : n ∈ N} does not have a maximum, (2, 1) → (1, 2)

does not exist.

Consider now the KAN-algebra T := K(L,L). Assume that there is

a Nelson algebra (N,∧,∨,∼,→, 0, 1) such that after defining ¬x := x→ 0

we have that (N,∧,∨,∼,¬, 0, 1) is the algebra T . From Theorem 3.8 we

know that T can be extended to a centered KAN-algebra Tc. It is easy to

verify that Nc is a centered Nelson algebra. We also know that the restric-

tion of the functor C to the subcategory of centered Nelson algebras into

the category of Heyting algebras yields a categorical equivalence (details in

[5]). Therefore, C(Nc) = C(Tc) is a Heyting algebra. From Theorem 3.7

we have that C(Tc) ∼= T/θ ∼= L but this contradicts the fact that L was not

a Heyting algebra.

Remark 5.1. However, if T ∈ KAN is finite, then it is isomorphic

to the reduct of a Nelson algebra. T/θ is a finite pseudocomplemented

distributive lattice and

a→ b = max{c : a ∧ c ≤ b}

is a well-defined implication which is compatible with the negation ¬. Hence

(T/θ,∧,∨,→, 0, 1) is a Heyting algebra and K(T/θ, T+/θ) can be equipped

with the implication

(a, b)→ (d, e) := (a→ d, a ∧ e)

so that it is a Nelson algebra.
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.5.2 Strengthening the negation

Following [11], a negation t defined on a bounded poset T (that is, a unary

operator satisfying t(0) = 1, t(1) = 0 and t(y) ≤ t(x) whenever x ≤ y) is

a weak negation if it also satisfies

x ≤ t(t(x)) (7)

and a strong negation if

t(t(x)) = x.

The algebras in the variety KAN have therefore a strong negation ∼ and

a negation ¬, which we call intuitionistic. But unlike the intuitionistic

negation in Heyting algebras, which is weak in the preceding sense, the

operator ¬ is not necessarily a weak negation. In this section we shall

investigate the class of KAN-algebras for which ¬ is a weak negation.

Definition 5.2. KANw is the variety of KAN-algebras satisfying x ≤
¬¬x.

Recalling Example 2.3, if B = (B,∧,∨,¬, 0, 1) is a Boolean algebra and

we set ∼ x = ¬x, then B̃ := (B,∧,∨,∼,¬, 0, 1) is in KANw, as ¬¬x = x. It

turns out that all algebras in KANw will be of this form. Thus, we cannot

strengthen (in the sense of requiring it to satisfy ¬¬x ≥ x) the intuitionistic

negation in KAN-algebras without collapsing it into the involution.

Lemma 5.3. If T ∈ KANw, then T+ = {1} and T− = {0}.

Proof. If x ∈ T+, then ¬ ∼ x = 1, so ¬¬(∼ x) = 0. But as equation

(7) holds, ∼ x = 0 and x = 1. If x ∈ T−, then ∼ x ∈ T+ and ∼ x = 1, so

the lemma holds. �

Theorem 5.4. If T ∈ KANw, then T/θ is a Boolean algebra.

Proof. As T/θ ∈ PDL, we only need to show that

(x/θ) ∨ ¬(x/θ) = (1/θ).

This is immediate, as x ∨ ¬x ≥ x∨ ∼ x ∈ T+ and T+ is a filter, therefore

x ∨ ¬x ∈ T+ and x ∨ ¬x = 1. �

If B is Boolean, then 1 is the only element satisfying ¬x = 0, so the

filter {1} is a Boolean filter.
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Lemma 5.5. If B is a Boolean algebra, then K(B, {1}) is in KANw
and satisfies ∼ (a, b) = ¬(a, b). Moreover, B̃ ∼= K(B, {1}).

Proof. From the previous observation, K(B, {1}) is a KAN-algebra.

Observe that (a, b) ∈ K(B, {1}) if and only if a ∧ b = 0 and a ∨ b = 1, if

and only if b = ¬a. Therefore it is immediate that

∼ (a, b) =∼ (a,¬a) = (¬a, a) = ¬(a,¬a) = ¬(a, b)

and also that (7) holds. The assignment b ∈ B 7→ (b,¬b) is clearly an

isomorphism between B̃ and K(B, {1}). �

Observe that for T ∈ KANw the congruence θ is just the diagonal ∆ =

{(x, x) : x ∈ T}.
From Theorem 2.15 and the previous results, we obtain the following.

Theorem 5.6. Let T ∈ KANw. Then ∼ and ¬ coincide, and (T,∧,∨,
¬, 0, 1) is a Boolean algebra.

.5.3 Comparison with the variety Kω

The rest of our work is devoted to providing an alternative (direct) proof

of Theorem 2.17. We have divided it into a sequence of lemmas, starting

with those from which the inclusion KAN ⊆ Kω can be deduced.

Lemma 5.7. If T ∈ KAN and x, y ∈ T , then x ∧ y ≤∼ x if and only if

y ≤ ¬x.

Proof. Let x, y ∈ T . If y ≤ ¬x, an application of (N3) yields

x ∧ y ≤ ¬x ∧ x =∼ x ∧ x ≤∼ x,

so x ∧ y ≤∼ x. We now will see that if x ∧ y ≤∼ x, then

∼ ¬(y ∧ ¬x) =∼ ¬y (8)

¬ ∼ (y ∧ ¬x) = ¬ ∼ y. (9)

Indeed, since x ∧ y ≤∼ x, x ∧ y = x∧ ∼ x ∧ y. Recalling that the operator

¬ reverses the order, by (N6) we get

1 = ¬(x∧ ∼ x) ≤ ¬(x∧ ∼ x ∧ y);
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that is to say that ¬(x∧ ∼ x ∧ y) = 1. Hence

¬y = ¬(y ∧ 1) = ¬(y ∧ ¬(x∧ ∼ x ∧ y)) = ¬(y ∧ ¬(x ∧ y)) = ¬(y ∧ ¬x),

where the last equality is due to (N1). Then ∼ ¬(y ∧ ¬x) =∼ ¬y and

equality (8) is proved. In order to prove equality (9), note that since x ≤∼
x∨ ∼ y,

x = x ∧ (∼ x∨ ∼ y) = (x∧ ∼ x) ∨ (x∧ ∼ y).

Then

¬x = ¬((x∧ ∼ x) ∨ (x∧ ∼ y)) = ¬(x∧ ∼ x) ∧ ¬(x∧ ∼ y) = 1 ∧ ¬(x∧ ∼ y)

= ¬(x∧ ∼ y)

by (N2) and (N6). Hence, by (N2) and (N9),

¬ ∼ (y ∧ ¬x) = ¬(∼ y∨ ∼ ¬x) = ¬ ∼ y ∧ ¬ ∼ ¬x = ¬ ∼ y ∧ ¬x
= ¬ ∼ y ∧ ¬(x∧ ∼ y).

But since x∧ ∼ y ≤∼ y, ¬(x∧ ∼ y) ≥ ¬ ∼ y, and therefore ¬ ∼ (y ∧¬x) =

¬ ∼ y.

From (8), (9) and Lemma 2.6 we obtain that y∧¬x = y, or its equivalent

y ≤ ¬x, which was our aim. �

Lemma 5.8. If T ∈ KAN and x, y ∈ T , then ¬(x ∧ y) = 1 if and only

if ¬¬x ≤ ¬y.

Proof. Assume that ¬(x∧y) = 1 holds. Then, arguing as in Lemma 2.8,

¬¬x ∧ ¬y = ¬¬x ∧ ¬(y ∧ ¬(x ∧ y)) = ¬¬x ∧ ¬(y ∧ ¬x)

= ¬(¬x ∨ (y ∧ ¬x)) = ¬¬x.

Hence ¬¬x ≤ ¬y. In case ¬¬x ≤ ¬y, ¬¬x∧y ≤ ¬y∧y, so that ¬(¬¬x∧y) ≥
¬(¬y ∧ y) = 1 by (N6). Then

¬(¬¬x ∧ y) = 1. (10)

On the other hand, since ∼ ¬x ≤ ¬¬x by (N4), (∼ ¬x) ∧ y ≤ ¬¬x ∧ y an

consequently

¬(x ∧ y) = ¬((∼ ¬x) ∧ y) ≥ ¬(¬¬x ∧ y) = 1

by (N5) and equation (10) above. Thus ¬(x ∧ y) = 1, as desired. �
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Corollary 5.9. KAN ⊆ Kω.

For the proof of the opposite inclusion we will use (i), (iii), (iv), (vi) and

(vii) of [25, Lemma 2.1] as well as the known fact that the binary relation

θ(T ) defined on a Kleene algebra T as

(x, y) ∈ θ(T ) if and only if there exists z ≤∼ z such that x ∨ z = y ∨ z

is a congruence of lattices.

Every member of Kω fulfils (N2), (N3) and (N4), as they are trivial

from (iv), (i) and (iii), respectively. Every member of Kω also satisfies

(N5). Indeed, let T ∈ Kω. Since (x,∼ ¬x) ∈ θ(T ) by (vi) and θ(T ) being

a congruence of lattices, (x ∧ y, (∼ ¬x) ∧ y) ∈ θ(T ). Then

¬(x ∧ y) = ¬((∼ ¬x) ∧ y)

by (vii), and condition (N5) is proved.

The following lemma will be used to show that every member of Kω
satisfies (N1).

Lemma 5.10. Let T ∈ Kω and x, y ∈ T . If ¬(x ∧ y) = 1, then

¬(x ∧ ¬y) = ¬x.

Proof. Let x, y ∈ T such that ¬(x ∧ y) = 1. Then ¬¬y ≤ ¬x because

T ∈ Kω, so that ¬¬y = ¬(¬y ∨ x) by (iv) and hence (¬y,¬y ∨ x) ∈ θ(T )

by (vii). Since θ(T ) is a congruence of lattices, (x ∧ ¬y, x ∧ (¬y ∨ x)) =

(x ∧ ¬y, x) ∈ θ(T ), so again by (vii) we get ¬(x ∧ ¬y) = ¬x, which proves

the lemma. �

Let T ∈ Kω. From ¬¬x ≤ ¬¬x it is easily seen that ¬(x ∧ ¬x) = 1 for

every x ∈ T . Let x, y ∈ T . Then

¬((x ∧ y) ∧ ¬(x ∧ y)) = ¬((x ∧ ¬(x ∧ y)) ∧ y) = 1.

Hence, by Lemma 5.10,

¬(x ∧ ¬(x ∧ y)) = ¬((x ∧ ¬(x ∧ y)) ∧ ¬y) = ¬(x ∧ (¬(x ∧ y) ∧ ¬y)).

But since y = (x∧y)∨y, ¬y = ¬((x∧y)∨y) = ¬(x∧y)∧¬y by (iv). Thus

we get

¬(x ∧ ¬(x ∧ y)) = ¬(x ∧ ¬y),

which is condition (N1).
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Corollary 5.11. Kω ⊆ KAN.

Therefore, it follows from corollaries 5.9 and 5.11 that KAN = Kω. In

particular, Kc
ω = KANc.
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