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DIVISIBILITY IN βN AND ∗N

A b s t r a c t. The paper first covers several properties of the

extension of the divisibility relation to a set ∗N of nonstandard

integers, including an analogue of the basic theorem of arithmetic.

After that, a connection is established with the divisibility in the

Stone-Čech compactification βN , proving that the divisibility of

ultrafilters introduced by the author is equivalent to divisibility

of some elements belonging to their respective monads in an en-

largement. Some earlier results on ultrafilters on lower levels on

the divisibility hierarchy are illuminated by nonstandard meth-

ods. Using limits by ultrafilters we obtain results on ultrafilters

above these finite levels, showing that for them a distribution by

levels is not possible.

In [10] four different ways to extend the divisibility relation on N to

the Stone-Čech compactification βN were introduced. One of them, the

relation |̃ , seems to be the most fruitful for investigation, and some of its

Received 16 July 2018

Keywords and phrases: divisibility, nonstandard integer, Stone-Čech compactification,
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properties were extracted in [11]. In this paper we prove more about it,

using mostly the connection between βN and nonstandard extensions ∗N

of N .

The first section covers most of the facts needed for the rest of the paper

about nonstandard extensions, βN and the connection between them. In

the second section we single out some facts on the divisibility in ∗N that can

be useful for obtaining information on divisibility in βN . The new results

are mostly contained in sections 3 and 4, the former containing facts on the

first ω-many levels of the |̃ -hierarchy and the latter on ultrafilters above

these finite levels. Some open problems are addressed in the last section.

.1 Introduction

Nonstandard methods. In the course of the last 60 years many ap-

proaches to nonstandard extensions have been developed. One general idea

is to work with a particular construction of nonstandard universe, most fre-

quently an ultrapower or an ultralimit. The other is to give an axiomatic

development of the notion of a nonstandard extension. The paper [2] con-

tains an overview of various historically relevant axiomatic systems. In this

paper we mostly follow the Robinson-Zakon superstructure approach as

exposed in Henson’s chapter [5], a text highly recommended for mathe-

maticians new to the subject.

Let X be a set; we assume that elements of X are atoms: none of them

contains as an element any of the others. Let V0(X) = X, Vn+1(X) =

Vn(X) ∪ P (Vn(X)) for n ∈ ω and V (X) =
⋃
n<ω Vn(X). The rank of

x ∈ V (X) is the smallest n ∈ ω such that x ∈ Vn(X). V (X) is called

a superstructure. We call atoms (elements of X) and sets of V (X) by

a common name objects in V (X).

Let V (X) be a superstructure. Its nonstandard extension is a pair

(V (Y ), ∗), where V (Y ) is a superstructure with the set of atoms Y ⊃ X

and ∗ : V (X)→ V (Y ) is a rank-preserving function such that ∗X = Y and

satisfying the following principle.
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The Transfer Principle. For every bounded formula ϕ and every a1, a2, . . .,

an ∈ V (X), ϕ(a1, a2, . . . , an) holds in V (X) if and only if ϕ(∗a1,
∗a2, . . . ,

∗an)

holds in V (Y ).

(A first-order formula is bounded if all its quantifiers are bounded,

i.e. of the form (∀x ∈ y) or (∃x ∈ y). The free variables that appear

in ϕ(a1, a2, . . . , an) are exactly objects a1, a2, . . . , an from V (X) and in

ϕ(∗a1,
∗a2, . . . ,

∗an) they are replaced with their star-counterparts. The ato-

mic subformulas in ϕ are of the form A(x1, . . . , xk) for some k-ary relation

A ∈ V (X).)

We may abuse the notation and call V (∗X) the extension of V (X), or

even call ∗X the extension of X. We restrict ourselves to nonstandard

arithmetic, i.e. extensions of the set X = N of natural numbers (including

zero). Objects of the form ∗x for x ∈ V (N) are called standard. For each

n ∈ N , the element ∗n is identified with n. Elements of ∗N \N are called

nonstandard integers.

To every k-ary relation ρ on N corresponds a k-ary relation ∗ρ on ∗N ;

the same holds for relations of a higher rank of the superstructure hierar-

chy (such as relations on subsets of N). To every operation f : Nk → N

corresponds a k-ary operation ∗f on ∗N . We will frequently use the ex-

tensions of addition, multiplication and the power operation, as well as

the extensions of the usual orders <, ≤ and ∈. To avoid overcomplicated

formulas we will denote these operations and relations in the same way as

their counterparts in N (without a star). Moreover, we will assume that
∗∈ is actually the membership relation on V (∗N) (for the justification of

this see [5], Remark 5.1).

We learn about properties of such relations and functions mainly from

the transfer principle. For example, we will use without mention facts such

as xy+1 = xy · x for x, y ∈ ∗N .

An object x ∈ V (∗N) is called internal if it is an element of a standard

set ∗A for A ∈ V (N) \N . Thus all atoms x ∈ ∗N are internal. Elements of

internal sets are also internal.
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Proposition 1.1 (The Internal Definition Principle). For any formula

ϕ, any k ∈ ω and any internal objects a1, a2, . . . , an ∈ V (∗N), the set

{x ∈ ∗V k(N) : ϕ(x, a1, a2, . . . , an) holds in V (∗N)}

is internal.

The important thing to remember is that the quantifiers in the Transfer

Principle range only over internal objects. For example, by transfer it is

easy to obtain the following.

Proposition 1.2. Every bounded internal subset of ∗N has the greatest

element.

An important type of nonstandard extension is an enlargement. We

call a binary relation ρ in V (N) concurrent if for every finitely many el-

ements a1, a2, . . . , ak of its domain there is b ∈ V (N) such that aiρb for

i = 1, 2, . . . , k. A nonstandard extension V (∗N) is an enlargement if for

every concurrent relation ρ in V (N) there is x in the extension such that
∗a ∗ρ x for all a in the domain of ρ. Such extensions exist, see [5], Theorem

7.12.

The Stone-Čech compatification. The set of all ultrafilters on N is

denoted by βN . For each n ∈ N the principal ultrafilter {A ⊆ N : n ∈ A}
is identified with n. A topology can be defined on βN so that it becomes

the maximal compactification of the discrete space on N . This means

that every f : N → N can be uniquely extended to a continuous function

f̃ : βN → βN . In this topology, for each A ⊆ N , A = {F ∈ βN : A ∈ F}
is the closure of A. If an ultrafilter F contains A as an element, we will say

that F concentrates on A.

Only eventually constant sequences in βN are convergent in the usual

sense. Hence convergence via ultrafilters is often used: if F ,G1,G2, . . . are

ultrafilters, limn→F Gn = G if, for every A ∈ G, {n ∈ N : A ∈ Gn} ∈ F .

More on these limits can be found in [6], section 3.5.

For every x ∈ ∗N the family {S ⊆ N : x ∈ ∗S} is an ultrafilter; we

denote this ultrafilter by v(x). Thus a function v : ∗N → βN is obtained.

For example, for n ∈ N v(n) is the corresponding principal ultrafilter.

In general, v is not 1-1 (unless V (∗N) is obtained as ultrapower by

a Hausdorff ultrafilter, see [4]). v is onto if V (∗N) is an enlargement.
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Proposition 1.3. (a) For every function f : N → N and every x ∈ ∗N ,

f̃(v(x)) = v(∗f(x)).

(b) For every f : N → N and every A ⊆ N , ∗(f [A]) = ∗f [∗A].

Proof. (a) is [8], Lemma 1. (b) Let B = f [A]. Then, in V (N),

(∀n ∈ N)(n ∈ B ⇔ (∃m ∈ A)n = f(m)). By transfer, for every x ∈ ∗N ,

x ∈ ∗B ⇔ (∃y ∈ ∗A)x = ∗f(y). 2

Many aspects of the connection and the similarities between ∗N and

βN were investigated in [1] and [3].

The sets µ(F) := v−1[{F}] for F ∈ βN are called monads; they were in-

vestigated in a more general context in [7]. By [9], Theorem 3.1(a), monad

of every nonprincipal ultrafilter in an enlargement has the same cardinality

as ∗N itself.

By [9], Theorem 2.10, ∗f [µ(G)] ⊆ µ(f̃(G)) for every G ∈ βN and every

f : N → N . We make a short digression to provide more information about

this in the following lemma.

Lemma 1.4. (a) If µ(F) 6= ∅, then the following conditions are equiv-

alent: (i) f [N ] ∈ F ; (ii) µ(F) ⊆ ∗f [∗N ]; (iii) µ(F) ∩ ∗f [∗N ] 6= ∅.
(b) If F ∈ βN and f : N → N is such that f [N ] ∈ F , then µ(F) =⋃
{∗f [µ(G)] : f̃(G) = F}.

Proof. (a) If f [N ] ∈ F , then for every x ∈ µ(F) we have x ∈ ∗(f [N ]) =
∗f [∗N ] (Proposition 1.3(b)), so µ(F) ⊆ ∗f [∗N ]. (ii)⇒(iii) is obvious, and if

x ∈ µ(F) ∩ ∗f [∗N ], then x ∈ ∗(f [N ]), so f [N ] ∈ F .

(b) If f̃(G) = F then, by Proposition 1.3(a), for every x ∈ µ(G)

v(∗f(x)) = f̃(v(x)) = f̃(G) = F , so ∗f(x) ∈ µ(F).

On the other hand, if y ∈ µ(F), by (a) the condition f [N ] ∈ F implies

y ∈ ∗f [∗N ], so there is x ∈ ∗N such that y = ∗f(x). If we denote G = v(x),

then f̃(G) = v(∗f(x)) = F and y ∈ ∗f [µ(G)]. 2

Notation. Throughout the paper, N denotes the set of natural num-

bers (including zero) and P denotes the set of (standard) prime numbers.

If n ∈ N is maximal such that pn | x, we write pn ‖ x. Analogous

notation will be used in ∗N (see Lemma 2.4(b)). For z ∈ N let us denote

[0, z]N = {n ∈ N : n ≤ z}. Analogously, [0, z]∗N = {n ∈ ∗N : n ≤ z} for

z ∈ ∗N .
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The elements of ∗N will be denoted by small letters x, y, z, . . . , with

p, q, . . . reserved for primes. The notation for ultrafilters will differ from that

in [10] and [11]; they will be denoted by F ,G,H, . . ., again with P,Q, . . .
reserved for prime ultrafilters.

For A,B ⊆ N we denote A ↑= {n ∈ N : ∃a ∈ A a | n}, A2 =

{a2 : a ∈ A}, AB = {ab : a ∈ A, b ∈ B,GCD(a, b) = 1} and A(2) =

{ab : a, b ∈ A,GCD(a, b) = 1}. If n ∈ N , nA = {na : a ∈ A}. Also,

Ln = {a1a2 . . . an : a1, a2, . . . , an ∈ P}, F � P = {A ∈ F : A ⊆ P} (for

F ∈ βN) and U = {A ⊆ N : A↑= A}.

Divisibility in βN . In [10] the author defined four relations on βN

extending divisibility in N . The one that most attention was given to is |̃ ,
further investigated in [11]:

F |̃ G iff F ∩ U ⊆ G.

For motivation and several equivalent definitions of this relation we re-

fer the reader to [10]. Here we recapitulate some of its basic properties.

It is not antisymmetric, so we think of it as an order on the equivalence

classes [F ] of the relation defined by: F =∼ G ⇔ F |̃ G ∧ G |̃ F . For such

a class we denote µ([F ]) =
⋃
G=∼F µ(G).

An ultrafilter P is prime (for |̃ ) if it is divisible only by 1 and itself.

By [11], Theorem 2.3, an ultrafilter P is prime if and only if P ∈ P.

In [11] we described the lower part of the |̃ -hierarchy, more precisely

the first ω-many levels. |̃ is antisymmetric within these lower levels ([11],

Lemma 5.13).

On the second level L2 (directly above prime ultrafilters) there are three

types of ultrafilters:

(1) those of the form P2, generated by {A2 : A ∈ P � P} for some prime

P ∈ βN ;

(2) those containing FP2 = {A(2) : A ∈ P � P} for some prime P and

(3) ultrafilters containing FP,Q1,1 = {AB : A ∈ P � P,B ∈ Q � P,A∩B =

∅} for some two distinct prime ultrafilters P and Q.

The ultrafilters of the third type are divisible by exactly two primes, and

those of the first two types have only one prime divisor (”counted” twice).
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In a similar way, each ultrafilter on the n-th level Ln of the hierarchy has

exactly n ”ingredients”, not necessarilly distinct, with powers of primes pk

counted k times, see [11], Theorem 5.5.

.2 The divisibility relation on ∗N

In this section we recall some number-theoretic properties of the extension
∗| of the divisibility relation | on N . Note that the notions of greatest

common divisor, least common multiplier and mutually prime numbers

transfer directly from N to ∗N . By transfer, x ∗| y if and only if there is

k ∈ ∗N such that y = kx. If that is the case, we can write y
x for k.

Definition 2.1. x ∈ ∗N \ {0, 1} is prime if it is divisible only by 1 and

itself.

Clearly, ”x is prime” can be written as (∀y ∈ N)(y | x⇒ y = 1∨y = x).

Lemma 2.2. For every x ∈ ∗N , x is prime if and only if x ∈ ∗P .

Proof. The formula (∀x ∈ N \ {0, 1})(”x is prime”⇔ x ∈ P ) holds in

V (N) so, by transfer, its counterpart (∀x ∈ ∗N \ {0, 1})((∀y ∈ ∗N)(y | x⇒
y = 1 ∨ y = x)⇔ x ∈ ∗P ) holds in V (∗N). 2

The next lemma also follows directly from the Transfer Principle.

Lemma 2.3. (a) For all z ∈ ∗N , n ∈ N and A ⊆ N : z ∈ ∗(nA) if and

only if z = nx for some x ∈ ∗A.

(b) For all x ∈ ∗N , n ∈ N and A ⊆ N : nx ∈ ∗(nA) if and only if

x ∈ ∗A.

In particular, z ∈ ∗N is divisible by n ∈ N if and only if z ∈ ∗(nN). Our

next lemma lists several other properties of ∗| that mostly follow directly

from the Transfer Principle.

Lemma 2.4. (a) |∗P | = |∗N |.
(b) For every x ∈ ∗N \ {0} and every p ∈ ∗P there is maximal a ∈ ∗N

such that pa ∗| x.

(c) If x, y ∈ ∗N have the same sets of divisors of the form pz (p ∈ ∗P ,

z ∈ ∗N), then x = y.
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Proof. (a) Let p : N → P be the function mapping every n ∈ N

to the n-th prime number; so p(0) = 2, p(1) = 3 etc. Then the formula

(∀m ∈ N)”m is prime”⇔ (∃n ∈ N)m = p(n) holds in V (N), so by transfer

each ∗p(x) is prime in V (∗N). p is a bijection, so ∗p is a bijection too.

Finally, by Proposition 1.3(b), ∗P = ∗p[∗N ].

(b) We have (∀x ∈ N \ {0})(∀p ∈ P )(∃a ∈ N)(pa | x ∧ pa+1 - x), so the

same holds in V (∗N).

(c) Since (∀x, y ∈ N)((∀p ∈ P )(∀n ∈ N)(pn | x ⇔ pn | y) ⇒ x = y)

holds, it follows that for all x, y ∈ ∗N : (∀p ∈ ∗P )(∀z ∈ ∗N)(pz ∗| x ⇔
pz ∗| y) implies x = y. 2

∗N is not well-ordered, so infinite sums and products can not be defined

in the usual way, by induction. However, using transfer we can bypass this,

using an idea described in [5], Remark 5.8.

The next theorem is an extension of the fundamental theorem of arith-

metic. Within it p is the function enumerating all primes (defined in the

proof of Lemma 2.4(a)). Note that, since a sequence f : [0, z]N → N is

a set of ordered pairs, we have f ∈ V3(N).

Theorem 2.5. (a) For every z ∈ ∗N and every internal sequence 〈h(n) :

n ≤ z〉 there is unique x ∈ ∗N such that ∗p(n)h(n) ∗‖ x for n ≤ z and
∗p(n) ∗- x for n > z; we denote such element by

∏
n≤z

∗p(n)h(n).

(b) Every x ∈ ∗N can be uniquely represented as
∏
n≤z

∗p(n)h(n) for

some z ∈ ∗N and some internal sequence 〈h(n) : n ≤ z〉 such that h(z) > 0.

Proof. (a) Let, as usual, ”f : X → N” denote the formula: f is a

function ∧ dom(f) = X ∧ ran(f) ⊆ N . Let ”g(z) =
∏
n≤z f(n)” denote the

formula

g(0) = f(0) ∧ (∀n < z)g(n+ 1) = g(n) · f(n+ 1).

In V (N) we have:

(∀z ∈ N)(∀f ∈ V3(N))(f : [0, z]N → N ⇒ (∃!g ∈ V3(N))

(g : [0, z]N → N ∧ g(z) =
∏
n≤z f(n)).

(1)

By transfer, the same holds in V (∗N). Now, if we are given z ∈ ∗N and

an internal sequence 〈h(n) : n ≤ z〉, by the Internal Definition Principle

the sequence 〈f(n) : n ≤ z〉 defined by f(n) = ∗p(n)h(n) is also internal. (1)
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now produces a sequence 〈g(n) : n ≤ z〉 such that g : [0, z]∗N →∗N ∧ g(z)=∏
n≤z

∗p(n)h(n).

Now we use transfer again: in V (N)

(∀z ∈ N)(∀h ∈ V3(N))(∀g ∈ V3(N))(h : [0, z]N → N ∧
g : [0, z]N → N ∧ g(z) =

∏
n≤z p(n)h(n) ⇒

(∀n ≤ z)p(n)h(n) ‖ g(z) ∧ (∀n > z)p(n) - g(z)),

so the same holds in V (∗N) and x = g(z) is the wanted element. Uniqueness

follows from Lemma 2.4(c).

(b) For x ∈ ∗N , the set of primes that divide x is clearly bounded

(x cannot be divisible by primes greater than itself). It is also internal by

the Internal Definition Principle, so it has the greatest element by Propo-

sition 1.2; let p(z) be this element. For n ≤ z we define h(n) to be the

greatest a ∈ ∗N such that ∗p(n)a ∗| x; such a exists by Lemma 2.4(b) and

the obtained sequence {(n, a) : n ≤ z ∧ ∗p(n)a ∗‖ x} is internal, again by

the Internal Definition Principle. Now by (a) we get x′ :=
∏
n≤z

∗p(n)h(n)

divisible by the same powers of primes as x. By Lemma 2.4(c), x = x′.

To prove uniqueness, assume x =
∏
n≤z′

∗p(n)h
′(n) for some z′ ∈ ∗N and

some sequence 〈h′(n) : n ≤ z′〉. If z′ > z, this would mean that x is divisible

by p(z′); if z′ < z then x would not be divisible by p(z). Either way we

reach a contradiction, so z′ = z. In a similar manner we get a contradiction

if we assume that h′(n) 6= h(n) for some n ≤ z. 2

Let lev : N \ {0} → N be the function calculating the level of each

n ∈ N \ {0} in the |-hierarchy. More precisely, if n = pa11 p
a2
2 . . . pakk , let

lev(n) = a1 + a2 + . . . + ak. Its extension ∗lev does the same for elements

in ∗N , when represented as
∏
n≤z

∗p(n)h(n), as in Theorem 2.5. Namely, let

”g(z) =
∑

n≤z f(n)” denote the formula

g(0) = f(0) ∧ (∀n < z)g(n+ 1) = g(n) + f(n+ 1).

Then, by transfer, ∗lev is the unique function satisfying, for every z ∈ ∗N
and every internal h : [0, z] → N , the formula g(z) =

∏
n≤z

∗p(n)h(n) ∧
∗lev(g(z)) =

∑
n≤z h(n).

Here are some properties of the function ∗lev, proven easily by transfer.

Lemma 2.6. Let x, y ∈ ∗N be such that x ∗| y.

(a) Either x = y or ∗lev(x) < ∗lev(y).
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(b) If ∗lev(x) < a < ∗lev(y), then there is z ∈ ∗N such that ∗lev(z) = a,

x ∗| z and z ∗| y.

In the following two sections we will see that the nice structure of the
∗| -hierarchy is mostly transferred to the first ω-many levels of the |̃ , but

not above them.

.3 The connection with the Stone-Čech compactification

We have already encountered several analogies between the divisibility re-

lation ∗| on ∗N and the relation |̃ on βN . First, x ∈ ∗N is divisible by

n ∈ N if and only if x ∈ ∗(nN) (Lemma 2.3(a)) and F ∈ βN is divisible by

n if and only if nN ∈ F ([10], Lemma 5.1). Also, an ultrafilter P is prime

if and only if it concentrates on the set of primes. By Lemma 2.2 the same

thing holds in ∗N for the relation ∗| , so x ∈ ∗N is prime if and only if v(x)

is a prime ultrafilter.

We will now establish a connection between the relation |̃ and the

divisibility in ∗N , showing that these similarities are not coincidental. It

also shows that |̃ is, in some sense, ”the right” divisibility relation to

investigate in βN .

Theorem 3.1. The following conditions are equivalent for every two

ultrafilters F ,G ∈ βN :

(i) F |̃ G;

(ii) in every enlargement V (∗N), there are x, y ∈ ∗N such that v(x) = F ,

v(y) = G and x ∗| y;

(iii) in some enlargement V (∗N), there are x, y ∈ ∗N such that v(x) =

F , v(y) = G and x ∗| y.

Proof. (i)⇒(ii) Let V (∗N) be an enlargement, and let F ,G ∈ βN be

such that F |̃ G. We define a binary relation ρ ⊆ P (N)×N2:

Aρ(m,n) iff (m ∈ A⇔ A ∈ F) ∧ (n ∈ A⇔ A ∈ G) ∧m | n.

We prove that ρ is concurrent. Let a finite number of subsets of N be given;

we need to find a pair (m,n) ∈ N2 such that Aρ(m,n) for all given sets A.

We sort these sets into four classes: A1
1, . . . , A

n1
1 ∈ F ∩ G, A1

2, . . . , A
n2
2 ∈

F \ G, A1
3, . . . , A

n3
3 ∈ G \ F and A1

4, . . . , A
n4
4 /∈ F ∪ G. So, if we denote
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B :=
⋂n1
i=1A

i
1∩
⋂n2
i=1A

i
2\(
⋃n3
i=1A

i
3∪
⋃n4
i=1A

i
4) and C :=

⋂n1
i=1A

i
1∩
⋂n3
i=1A

i
3\

(
⋃n2
i=1A

i
2∪
⋃n4
i=1A

i
4), we are looking for a pair (m,n) ∈ N2 such that m ∈ B,

n ∈ C and m | n. The set B belongs to F ; hence B↑= {n ∈ N : ∃b ∈ B b |
n} belongs to F ∩U , so it must be in G as well (since F |̃ G). Since the set

C is also in G, we can choose n ∈ C ∩B↑. But n ∈ B↑ means that there is

m ∈ B such that m | n.

Now, since ∗N is an enlargement, there is a pair (x, y) ∈ ∗(N2) = (∗N)2

such that ∗A ∗ρ (x, y) for all A ∈ P (N). By transfer, A ∈ F holds if and

only if ∗A ∈ ∗F . Thus we get, for all A ∈ P (N):

(x ∈ ∗A⇔ A ∈ F) ∧ (y ∈ ∗A⇔ A ∈ G) ∧ x ∗| y.

This means that v(x) = F and v(y) = G.

(ii)⇒(iii) is obvious.

(iii)⇒(i) In V (N) we have, for every A ∈ U : (∀m ∈ A)(∀n ∈ N)(m |
n ⇒ n ∈ A). Hence the same holds for ∗A in any extension V (∗N) i.e. ∗A

is closed upwards for ∗| . This means that, if x ∗| y for some x ∈ µ(F),

y ∈ µ(G), then x ∈ ∗A implies y ∈ ∗A for every A ∈ U . Thus F ∩ U ⊆ G,

i.e. F |̃ G. 2

Note that the implication (iii)⇒(i) holds in any extension, not only in

enlargements, so this proof gives us another conclusion.

Corollary 3.2. For every two ultrafilters F ,G ∈ βN , F |̃ G if and

only if in some extension V (∗N) there are x, y ∈ ∗N such that v(x) = F ,

v(y) = G and x ∗| y.

The next example shows that whether or not x ∗| y holds is not inde-

pendent from the choice of representatives x ∈ µ(F) and y ∈ µ(G).

Example 3.3. Since ∗| is reflexive (by transfer), it suffices to find

a, b ∈ ∗N such that v(a) = v(b) and a ∗- b. So assume x, y ∈ ∗N are such

that v(x) = v(y), x 6= y and x ∗| y. Let f : N → N be a function such that

(∀m,n ∈ N)(m | n ∧m 6= n⇒ f(m) - f(n)) (2)

(f(n) is easily constructed by recursion on n ∈ N). Now let a = ∗f(x) and

b = ∗f(y). Then a ∗| a,

v(a) = v(∗f(x)) = f̃(v(x)) = f̃(v(y)) = v(∗f(y)) = v(b)

(by Proposition 1.3(a)), but a ∗- b, by (2) and transfer.
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A chain (in (N, |)) is a set C ⊆ N of elements linearly ordered by |; an

antichain is a set A ⊆ N of |-incomparable elements. The family of subsets

of N containing the complements of all chains and the complements of

all antichains has the finite intersection property, so there are ultrafilters

containing no chains and no antichains. On the other hand, every selective

ultrafilter contains at least one of these two types of sets.

Lemma 3.4. Let V (∗N) be an enlargement and F ∈ βN \N .

(a) F contains no infinite antichains as elements if and only if there

are distinct x, y ∈ µ(F) such that x ∗| y.

(b) F contains no infinite chains as elements if and only if there are

distinct x, y ∈ µ(F) such that neither x ∗| y nor y ∗| x.

Proof. (a) First assume there is an infinite antichain A ∈ F . In V (N)

we have (∀m,n ∈ A)(m 6= n ⇒ m - n), so the same holds in V (∗N). Thus

there are no ∗| -comparable elements in ∗A, so there are none in µ(F).

Now let F contain no infinite antichains. We define a binary relation

ρ ⊆ P (N)×N2:

Aρ(m,n) iff (m ∈ A⇔ A ∈ F) ∧ (n ∈ A⇔ A ∈ F) ∧m 6= n ∧m | n.

ρ is concurrent: if we are given finitely many subsets of N , let A1 be

the intersection of those in F , and A2 the union of those outside F . Then

A1\A2 ∈ F , so it is not an antichain. Hence there are distinctm,n ∈ A1\A2

such that m | n.

V (∗N) is an enlargement, so there are distinct x, y ∈ ∗N such that x ∗| y
and x, y ∈ ∗A for all A ∈ F ; but then x, y ∈ µ(F).

The proof for (b) is analogous. 2

Now recall the definitions of the first ω-many levels of |̃ -hierarchy de-

scribed in the introduction. Since ultrafilters on these levels contain an-

tichains (an ultrafilter on the n-th level Ln contains the set Ln), using

Lemmas 2.6 and 3.4(a) by induction on n we can easily prove that, if

F ∈ Ln then ∗lev(x) = n for every x ∈ µ(F). Hence such ultrafilters corre-

spond precisely to the first ω-many levels of ∗| -hierarchy in an enlargement

(containing x ∈ ∗N such that ∗lev(x) is finite). We will investigate in more

detail the connection of x ∈ ∗N such that ∗lev(x) = 2 with their correspond-

ing ultrafilters v(x) described in the Introduction, obtaining in particular

a better insight into the origin of the ultrafilters containing FP2 (type (2)

from the Introduction).
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Lemma 3.5. Let V (∗N) be any nonstandard extension.

(a) x ∈ ∗N is of the form p2 for some p ∈ ∗P if and only if v(x) = P2

for some prime ultrafilter P.

(b) x ∈ ∗N is of the form p · q for two distinct primes p, q such that

v(p) = v(q) = P if and only if v(x) ⊇ FP2 .

(c) x ∈ ∗N is of the form p · q for two primes p, q such that v(p) = P,

v(q) = Q and P 6= Q if and only if v(x) ⊇ FP,Q1,1 .

Proof. (a) Let sq : N → N2 be the squaring function: sq(n) = n2 for

n ∈ N . Then x = ∗sq(p) for some p ∈ ∗P implies v(x) = s̃q(v(p)) = (v(p))2

and v(p) ∈ P .

Now let v(x) = P2 for a prime ultrafilter P. Then x ∈ ∗(P 2) = ∗sq[∗P ]

(by Proposition 1.3(b)) so x = ∗sq(p) = p2 for some p ∈ ∗P .

(b) Let x = p · q for some p, q ∈ ∗P such that v(p) = v(q) = P. Let

A ∈ P � P . Since (∀a, b ∈ A)(a 6= b⇒ ab ∈ A(2)), by transfer

(∀a, b ∈ ∗A)(a 6= b⇒ ab ∈ ∗(A(2))) (3)

so x = pq ∈ ∗(A(2)). Thus A(2) ∈ v(x).

For the other direction let x ∈ ∗N be such that v(x) ⊇ FP2 for some

prime ultrafilter P. Then x ∈ ∗(P (2)). In V (N) we have (∀n ∈ P (2))(∃a, b ∈
P )(a 6= b ∧ n = ab) so, by transfer, x = pq for some distinct p, q ∈ ∗P . To

prove that p, q ∈ ∗A for each A ∈ P � P , assume the opposite: either

p, q ∈ ∗(P \ A) or one of them belongs to ∗A and the other to ∗(P \ A).

But if, for example, the first option holds then, as in (3), we get pq ∈
∗((P \A)(2)) ⊆ ∗(P (2) \A(2)), a contradiction since A(2) ∈ FP2 .

(c) The proof is similar to the proof of (b). 2

Thus, ultrafilters containing families of the form FP2 actually have two

distinct ”ingredients”, but such that βN can not distinguish between.

.4 Above finite levels

There are, of course, also ultrafilters not concetrating on any Ln for n ∈ N .

The investigation of |̃ becomes much more complicated at these higher

levels. Limits of ultrafilters will prove useful for this purpose.
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Lemma 4.1. Let 〈Gn : n ∈ N〉 be a |̃ -increasing sequence in βN .

(a) limn→F Gn ∩ U =
⋃
n∈N (Gn ∩ U) for any nonprincipal ultrafilter F .

(b) For any two nonprincipal ultrafilters F1 and F2,

lim
n→F1

Gn =∼ lim
n→F2

Gn.

(c) Let G = limn→F Gn for some F . If W ∈ βN is such that Gn |̃ W for

all n ∈ N , then G |̃ W.

Proof. (a) If A ∈ Gm ∩ U for some m ∈ N , then A ∈ Gn ∩ U for all

n ≥ m. Hence the set {n ∈ N : A ∈ Gn} is cofinite, so it belongs to F . It

follows that A ∈ limn→F Gn.

On the other hand, assume A ∈ U is such that A /∈ Gn for all n ∈ N .

Then N \A ∈ Gn for all n, so N \A ∈ limn→F Gn and A /∈ limn→F Gn.

(b) Follows from (a).

(c) Gn |̃ W means that Gn ∩ U ⊆ W. If this holds for all n ∈ N , by (a)

G ∩ U ⊆ W, so G |̃ W. 2

In view of Lemma 4.1(b), we will write [G]=limn→∞ Gn if G=limn→F Gn
for some nonprincipal F .

Example 4.2. There are also infinite |̃ -decreasing sequences in βN .

Let {pi : i ∈ N} be an enumeration of P . Let rnm =
∏n
i=m pi, and [Gm] =

limn→∞ r
m+n
m . Then each Gm is divisible by all rn+k

n for n ≥ m so, by

Lemma 4.1(c), Gn |̃ Gm for n > m. Also, if n > m then pm |̃ Gm but

pm -̃ Gn, so the sequence 〈Gn : n ∈ N〉 is strictly decreasing.

The following lemma is proved analogously to Lemma 4.1.

Lemma 4.3. Let 〈Gn : n ∈ N〉 be a |̃ -decreasing sequence in βN .

(a) limn→F Gn ∩ U =
⋂
n∈N (Gn ∩ U) for any nonprincipal ultrafilter F .

(b) For any two nonprincipal ultrafilters F1 and F2,

lim
n→F1

Gn =∼ lim
n→F2

Gn.

(c) Let G = limn→F Gn for some F . If W ∈ βN is such that W |̃ Gn for

all n ∈ N , then W |̃ G.

Lemma 4.4. Let x ∈ ∗N , p ∈ P , F = v(x) and G = v(px). If there is

n ∈ N such that pn ∗‖ x, then G is an immediate successor of F in (βN, |̃ ).
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Proof. By Corollary 3.2, F |̃ G. Since pn+1N ∈ (G ∩ U) \ F , F 6=∼ G.

It remains to show that there is no H ∈ βN such that F |̃ H, H |̃ G but

F 6=∼ H 6=∼ G.

Claim. The set G ∩U is generated by (F ∩U)∪ {pn+1N}. This means

that every ultrafilter containing (F ∩ U) ∪ {pn+1N} is divisible by G. So

assume B ∈ G ∩ U and let B′ := B ∩ (pn+1N \ pn+2N). Clearly B′ ∈ G.

We can write B′ in the form B′ = pn+1A = p(pnA) for some A such that

A∩ pN = ∅. By Lemma 2.3(b), pnA ∈ F . But (pn+1A)↑= (pnA)↑ ∩pn+1N

and B ⊇ (B′)↑= (pn+1A)↑, so B must belong to every ultrafilter containing

(F ∩ U) ∪ {pn+1N}.
Now assume H is as above. If pn+1N ∈ H, by Claim we have H =∼ G.

Otherwise, if we assume A ∈ (H∩U) \F , then A1 := A∩ (pnN \ pn+1N) ∈
H \ F . But A2 := (pnN \ pn+1N) \ A1 ∈ F is disjoint from A1, so A2↑∈
(F ∩ U) \ H. This contradicts F |̃ H. 2

The following example shows that the condition of existence of n ∈ N
such that pn ∗‖ x can not be eliminated from the lemma above.

Example 4.5. Let [G] = limn→∞ p
n for some p ∈ P . We show that

µ([G]) = {px : x ∈ ∗N \ N}. By Lemma 4.1(a) G ∩ U = {A ∈ U : pnN ⊆
A for some n ∈ N} = {A ∈ U : pn ∈ A for some n ∈ N}.

First, no elements divisible by any prime other than p can belong to

µ([G]): if x ∈ µ([G]) and q ∈ ∗P \ {p} are such that q ∗| x, there is A ⊆ P

such that p /∈ A but q ∈ ∗A, so A↑∈ (v(x) ∩ U) \ G, a contradiction.

Now we prove that v(px) =∼ G for x ∈ ∗N \N . First, if A ∈ G∩U , then

pn ∈ A for some n ∈ N , so (∀m ≥ n)pm ∈ A and, by transfer, px ∈ ∗A.

So assume that there is A ∈ U \ G such that px ∈ ∗A for some x ∈ ∗N .

Then A ∩ {pn : n ∈ N} = ∅ (otherwise A ∈ G). By the Transfer Principle
∗A ∩ {px : x ∈ ∗N} = ∅, a contradiction.

It is easy to see that there is the |̃ -maximal class in βN (since U has

the finite intersection property). Let MAX denote this maximal class.

Lemma 4.6. For every x ∈ ∗N : x ∈ µ(MAX) if and only if n ∗| x for

all n ∈ N .

Proof. If x ∈ µ(MAX), then x ∈ ∗A for all A ∈ U so, for every n ∈ N ,

x ∈ ∗(nN), which is equivalent to n ∗| x by Lemma 2.3(a).
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Now assume n ∗| x (i.e. nN ∈ v(x)) for all n ∈ N . Let A ∈ U be

arbitrary and let m be a |-minimal element of A. Then mN ⊆ A, so

A ∈ v(x). Hence U ⊆ v(x), which means that x ∈ µ(MAX). 2

In particular, this means that MAX = limn→∞ n!. Thus the distribu-

tion of ultrafilters by levels, described in previous section, fails for ultrafil-

ters above finite levels by Lemma 4.1(c): MAX would be on the ω-th level,

and at the same time has predecessors on infinite levels.

Theorem 4.7. (a) Every F ∈ βN \MAX has an immediate successor

in (βN, |̃ ).
(b) Every F ∈ βN such that there are p ∈ P and n ∈ N \ {0} so that

pn |̃ F and pn+1 -̃ F has an immediate predecessor in (βN, |̃ ).

Proof. (a) Let x ∈ µ(F). Since x /∈ µ(MAX), by Lemma 4.6 there is

m ∈ N such that m - x. Thus there are p ∈ P and n ∈ N so that pn ∗‖ x.

By Lemma 4.4 v(px) is the immediate successor of F .

(b) Let x ∈ µ(F). As in (a) we can show that v
(
x
p

)
is the immediate

predecessor of F . 2

Example 4.8. We show that the condition n 6= 0 of Theorem 4.7(b)

can not be omitted. Let [G] = limn→∞ p
n, as in Example 4.5. Then G is

divisible by all powers of p and not divisible by any other prime. Assume

G has an immediate predecessor F . We consider two cases.

1◦ pn |̃ F for all n ∈ N . Then by Lemma 4.1(c) G |̃ F , a contradiction.

2◦ pn ‖̃ F for some n. Let x ∈ µ(F) and y ∈ µ(G) be such that x ∗| y.

Then, by Lemma 4.4, v(px) is a successor of F and, since pn+1 ∗| y and px

is the least common multiplier of x and pn+1, px ∗| y as well, meaning that

v(px) |̃ G. In a similar way we obtain v(p2x) |̃ G so, since v(px) 6= v(p2x),

F is not an immediate predecessor of G.

.5 Open problems and final remarks

We mention several questions, the answers to which may shed some more

light to the above results.

Question 5.1. (a) Does v(x) = v(y) imply v(xz) = v(yz) for x, y, z ∈
∗N?
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(b) More generally, does v(x) = v(y) and v(z) = v(u) imply v(xz) =

v(yu) for x, y, z, u ∈ ∗N?

Question 5.2. Does v(x)=∼v(y) imply v(xz)=∼v(yz) for x, y, z∈ ∗N?

This is true if x, y, z ∈ ∗P are distinct. Namely, assume there is A ∈
(v(xz) ∩ U) \ v(yz). Let X ∈ v(x), Y ∈ v(y) and Z ∈ v(z) be subsets of P

such that X,Y and Z are disjoint. By [11] Lemma 3.7, XZ ∈ v(xz) and

Y Z ∈ v(yz). Then A′ := A ∩ XZ ∈ v(xz). If we define f : P (2) → P by

f(ab) = a (for a ∈ X ∪ Y, b ∈ Z) and f(n) arbitrary if n /∈ (X ∪ Y )Z, then

f̃(v(xz)) = v(x), f̃(v(yz)) = v(y), f [A′] ⊆ X and f [A′]↑∈ (v(x)∩U) \ v(y),

a contradiction with v(x) =∼ v(y).

Question 5.3. Let ∗N be an enlargement.

(a) Does F |̃ G imply (∀x ∈ µ(F))(∃y ∈ µ(G))x ∗| y?

(b) Does F |̃ G imply (∀y ∈ µ(G))(∃x ∈ µ(F))x ∗| y?

Part (a) is true if the answer to Question 5.1 is ”yes”. Namely, F |̃ G
means that there are u ∈ µ(F) and z ∈ ∗N such that uz ∈ µ(G). But then

it would follow that, for every x ∈ µ(F), xz ∈ µ(G) as well.

Question 5.4. Let us call a set X ⊆ ∗N convex if for all x, y ∈ X and

z ∈ ∗N , x ∗| z and z ∗| y implies z ∈ X. Is µ(F) a convex set for every

F ∈ βN?

Clearly, every µ([F ]) is convex: if x ∈ µ(G1) and y ∈ µ(G2), then

G1 =∼ G2 =∼ F would imply that G1 ∩ U = G2 ∩ U , so x ∗| z and z ∗| y
would imply G1 ∩ U ⊆ v(z) ∩ U ⊆ G2 ∩ U , so v(z) =∼ F .

Question 5.5. Can we strengthen Example 4.5 in the following sense:

if [F ] = limn→∞ v(xpn) for some x ∈ ∗N , does µ([F ]) = {xpn : n ∈ ∗N\N}?
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