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relationship to a particular sequent calculus for RW ◦
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.1 Introduction

Gentzen invented a calculus of natural deduction in [8]. His idea was to set

up a formal system which comes as close as possible to actual reasoning

and the result were natural deduction calculi NJ and NK, for intuitionistic

and classical predicate logic.

In this paper we set up a natural deduction calculus for the logic RW ◦+,

which is positive contraction–less relevant system R (see [1], p. 341), with

co–tenability ◦. Several natural deduction calculi are known for relevant

logics, including RW ◦+, however, all of them, use a kind of relevance numer-

als in order to keep track of the use of hypotheses (see Anderson and Belnap

[1], Dunn [6], [7], Brady [3], Urquhart [18], and Meyer and McRobbie [12]).

This is needed to unable the inference of irrelevant formulae. Namely, the

Gentzen rule (∧ I):

α β

α ∧ β

would license the inference of the irrelevant formula α → (β → α), even

when every application of the rule (→ I) satisfies the requirement of dis-

charging some assumption (as it is pointed out in Church [4]):

α(1) β(2)

α ∧ β
α

β → α
(→ I) (2)

(∧ E)

(∧ I)

α→ (β → α)
(→ I)(1)

Instead of the above rule (∧ I), Anderson and Belnap use in effect the

following subscripted rule:

αa βa

α ∧ βa
(the subscript a is the relevance numeral) in their Fitch–style natural de-

duction calculi for relevant logics in [1]. Each hypothesis in their derivation

is subscripted with a distinct numeral which is then passed along each ap-

plication of a rule, until the hypothesis is discharged. Then the subscript

is dropped. A formula without subscript is a theorem, since it depends
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on no hypotheses. However, in Anderson and Belnap natural deduction

calculi, subscripted introduction and elimination rules are insufficient for

the proof of the distribution of conjunction over disjunction. In order to

enable the inference of the formula α ∧ (β ∨ γ) → (α ∧ β) ∨ (α ∧ γ), they

add a special distribution rule. This rule is neither an introduction nor

an elimination rule, therefore its presence in natural deduction calculi mis-

matches Gentzen’s idea of natural deduction, where inference rules, i.e.

introduction–elimination rules, provide not just a convenient format for

proofs, but also the analysis (or meaning) of the connectives.

Dunn [6], [7] removes the need for the special distribution rule, by al-

lowing hypotheses to be introduced in two different ways, ’relevantly’ and

’irrelevantly’ – ’relevantly’ introduced hypotheses must all be used in the

derivation, whereas only some (at least one) of the hypotheses ’irrelevantly’

introduced, must be used. This is formalized by allowing several hypothe-

ses, separated by commas, to be listed within a leaf of a derivation tree,

but with a single relevance numeral attached to them (in fact, several for-

mulae, separated by commas, are allowed to be listed on every line of a

derivation tree). The comma is interpreted via ∧ and the formulae on

a line are interpreted as grouped into a set, to avoid the need for explicit

structural rules corresponding to the commutation and idempotence of con-

junction (although two explicit structural rules are still needed, one for the

introduction and the other one for the elimination of the new structural

connective).

By allowing several formulae to be listed on a line, Dunn introduced

extensional (sometimes called additive) sets, into natural deduction. It

should be mentioned that Dunn [5] and also Minc [13], discovered that

two types of sequences, intensional and extensional, are needed in sequent

calculi for relevant logics. Namely, to enable the inference of the distributive

law in the absence of the structural rule of thinning, they used two kinds

of structural connectives to build up antecedents of sequents: intensional,

corresponding to ◦, and extensional ones, corresponding to ∧, which must

be allowed to be nested within one another. (We should note that Kron

formulated sequent calculus for a contraction–less relevant logic based on

intensional sequences only, where the inference of the distributive law is

enabled by the explicit distribution rule; however, Kron’s logic is different

from RW , see [11].)

Brady sets up (normalizing Fitch–style) natural deduction calculi, for
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a wide range of relevant logics, including RW ◦+ in [3]. In order to remove

the need for the special distribution rule, Brady allows, like Dunn, several

formulae, separated by commas, to be listed on a line of a derivation tree.

However, Brady’s comma is interpreted as ∨, and it may be introduced

only in the conclusion of the disjunction elimination rule (therefore Brady’s

derivations begin with single formulae, unlike Dunn’s which may begin

with extensional sets of formulae). Brady also uses relevance numerals, like

Dunn, consisting of sets of natural numbers, possible empty, attached to

each step of a proof, to denote the assumptions upon which the proof step

depends.

Urquhart [18] also sets up a Fitch–style natural deduction calculus,

where the distributive law follows from the introduction and elimination

rules for conjunction and disjunction and where every line of a derivation

consists of a single formula. However, Urquhart’s system formalizes the

positive semilattice system which is the extension of pure relevant implica-

tion.

Meyer and McRobbie [12] formulate natural deduction calculi of R and

a number of its neighbors, including RW ◦+, however with the explicit dis-

tribution rule. They allow only a single formula on a line of a proof, like

Urquhart, but they use (intensional) multisets of active hypotheses, called

tags, for keeping track of dependence relation.

In this paper we set up a natural deduction calculus NRW ◦+ for the

logic RW ◦+, which is without explicit distribution rule and which is free

from relevance numerals.

Some basic properties of our natural deduction calculus are:

1. The calculus is based on two kinds of multisets (lists without order)

of formulae: intensional and extensional. Intensional multisets are

interpreted via intensional conjunction ◦, whereas extensional ones

are interpreted via extensional conjunction ∧. We use two differ-

ent punctuation marks to denote multisets: we use semicolons for

intensional multisets and commas for extensional multisets. Greek

capitals Γ,Π,Σ,∆,Γ1, . . . denote intensional multisets of extensional

multisets, of intensional multisets of, etc. of formulae, or extensional

multisets of intensional multisets of extensional multisets of, etc. of

formulae (’intensional’ and ’extensional’ must alternate). The formal

definition of intensional and extensional multisets is given in Section 2.
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2. To start up the inference we use initial rules of the form:

α,Γ

α

where Γ is possible empty. The standard rule of axiom α, meaning

that α can be derived from α, i.e.

α

α

comes out as the special case of our initial rule.

Premises of initial rules are called assumption multisets. Formulae

from assumption multisets are called assumptions. In our derivations,

we shall use the standard notions of discharged (closed) and active

(open) assumptions.

3. We discharge active assumptions, by the application of inference rules.

The notation α, indicates that the assumption α is discharged or

closed. Additionally, we use discharge labels, denoted by integers

within parentheses, written next to mnemonic symbol for the rule

applied and also next to the discharged assumptions. (Usually, dis-

charge of an assumption in natural deduction systems, is denoted by

square brackets, i.e., [α] denotes that the assumption α is discharged.

However, in this paper square brackets will be used to denote the

specific occurrence of a multiset within a multiset, e.g., we use Γ[α]

to denote the specific occurrence of a formula α within a multiset Γ.)

The specificity of our inferences is that open assumptions may move

from one place in a derivation, to another, by the application of some

inference rules. Moved assumptions are denoted by crossing out with

thin lines – they are treated as being discharged at the former po-

sition, but open at the new one. Additionally we use move labels,

indicated by integers (without parentheses, to distinguish them from

discharge labels) written next to the moved assumptions and also

next to mnemonic symbol for the rule applied. However, if the rule

also discharges an assumption, then a moved and a discharge label

are indicated by the same integer and then, only a discharge label

appears next to mnemonic symbol for the rule applied. Given this,
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by a moved or a discharge label, we indicate the rule applied when

an assumption is moved.

4. It is well–known that weakening corresponds to vacuous discharge of

assumptions in natural deduction. Relevant logics are free from inten-

sional weakening, but they are with extensional weakening, therefore

one could expect some form of vacuous discharge of assumptions.

However, in our calculus no vacuous discharge occurs (this is because

of the form of our initial rules), i.e. every application of the rule

(→ I) satisfies the requirement of discharging some assumptions.

On the other hand, contraction corresponds to multiple discharge of

assumptions in natural deduction. Our logic is free from intensional

contraction, but it is with extensional contraction. Therefore, our

calculus permits a form of multiple discharge of assumptions, i.e. in

some cases it is possible to discharge several occurrences of a multiset

at once.

5. We follow von Plato [16] and Negri [14], [15] in using general, instead

of standard (special) elimination rules (as is well–known, special elim-

ination rules are the special cases of the corresponding general elimi-

nation rules).

6. Our natural deduction calculus is without explicit distribution rule,

as well as the calculi of Dunn and Brady. To illustrate the differences

between those systems, we shall give, in the Appendix, the proofs of

the formula (α→ (β∧δ))∧((γ∧δ)→ γ).→ .((α∨γ)∧(α∨δ))→ (β∨γ)

in all of them.

This paper is organized as follows. In Section 2, we give the sequent cal-

culus GRW ◦+ (discussed in details in [10]), to which our natural deduction

calculus has a simple translational relationship. In Section 3, we present

the natural deduction system NRW ◦+. In Section 4, we define local trans-

lations between the sequent calculus GRW ◦+ and the natural deduction

system NRW ◦+ and show that cut–free derivations are mapped into normal

derivations, thus obtaining an indirect proof of normalization.
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.2 Sequent calculus GRW ◦
+

GRW ◦+ is presented in details in [10]. Here we only give some basic notions.

Let L be a language of the propositional calculus with →, ◦, ∧ and

∨. Formulae of L are defined inductively, as usual. We shall use α, β,

γ, ϕ, ξ, η, α1, . . . as schematic letters for formulae of L .

A sequent is an expression of the form Γ ` γ, where Γ is the antecedent

and γ is the succedent of a sequent. Antecedents are built up from inten-

sional and extensional multisets which we define as follows:

Definition.

(i) Let α1, . . . , αn, n ≥ 1, be formulae of L. Then (α1; . . . ;αn) is the

intensional, also called i–multiset, and (α1, . . . , αn) is the extensional,

also called e–multiset. We note that a single formula is both, i– and

e–multiset. A multiset which consists of a single formula is called

atomic.

(ii) Let Γ be an i–multiset of the form (Γ1; . . . ; Γn), n ≥ 2, and let

α be a formula of L. Then with Γ;α or α; Γ we denote the i–

multiset (Γ1; . . . ; Γn;α) and with Γ, α or α,Γ we denote the e–multiset

((Γ1; . . . ; Γn), α).

Let Γ be an e–multiset of the form (Γ1, . . . ,Γn), n ≥ 2, and let

α be a formula of L. Then with Γ;α or α; Γ we denote the i–

multiset ((Γ1, . . . ,Γn);α) and with Γ, α or α,Γ we denote the e–

multiset (Γ1, . . . ,Γn, α).

(iii) Let Γ and ∆ be two multisets. Then we have the following cases:

Let both Γ and ∆ be i–multisets, such that Γ is of the form (Γ1; . . . ; Γn),

n ≥ 2, and ∆ is of the form (∆1; . . . ; ∆m), m ≥ 2. Then with Γ; ∆

or ∆; Γ we denote the i–multiset (Γ1; . . . ; Γn; ∆1; . . . ; ∆m) and with

Γ,∆ or ∆,Γ we denote the e–multiset ((Γ1; . . . ; Γn), (∆1; . . . ; ∆m)).

Let one of Γ and ∆ be an i–multiset, say Γ, and let it be of the form

(Γ1; . . . ; Γn), n ≥ 2, and let the other one, ∆, be an e–multiset of

the form (∆1, . . . ,∆m), m ≥ 2. Then with Γ; ∆ or ∆; Γ we denote

the i–multiset (Γ1; . . . ; Γn; (∆1, . . . ,∆m)) and with Γ,∆ or ∆,Γ we

denote the e–multiset ((Γ1; . . . ; Γn),∆1, . . . ,∆m).

Let both Γ and ∆ be e–multisets, such that Γ is of the form (Γ1, . . . ,Γn),

n ≥ 2, and ∆ is of the form (∆1, . . . ,∆m), m ≥ 2. Then with Γ; ∆ or
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∆; Γ we denote the i–multiset ((Γ1, . . . ,Γn); (∆1, . . . ,∆m)) and with

Γ,∆ or ∆,Γ we denote the e–multiset (Γ1, . . . ,Γn,∆1, . . . ,∆m).

Note that intensional and extensional multisets are allowed to be nested

within one another, but nested multisets of the same kind are not allowed.

As mentioned before, we use square brackets to denote a specific oc-

currence of a multiset within a multiset. Within a rule, square brackets

localize, in upper sequents, an occurrence of a multiset within a multiset

and, in lower sequents, the result of the replacement of an occurrence of a

multiset by a multiset (with the understanding that substitution does not

produce nested multisets of the same kind, e.g. a substitution of an inten-

sional multiset for an item in an intensional multiset does not produce an

intensional multiset with a nested element that is an intensional multiset).

GRW ◦+ has the following postulates:

Axiom:

α ` α
Structural rules (Π and Σ are non–empty; all other multisets are possible

empty):
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multiset within a multiset and, in lower sequents, the result of the replacement of an occurrence

of a multiset by a multiset (with the understanding that substitution does not produce nested

multisets of the same kind, e.g. a substitution of an intensional multiset for an item in an

intensional multiset does not produce an intensional multiset with a nested element that is an

intensional multiset).

GRW �
+ has the following postulates:

Axiom:

↵ ` ↵

Structural rules (⇧ and ⌃ are non–empty; all other multisets are possible empty):

0.pdf

extensional contraction: extensional weakening :

�[⇧,⇧] ` �

�[⇧] ` �
(WE)

�[⌃] ` �

�[⇧,⌃] ` �
(KE)

cut :

⇧ ` ' �['] ` �

�[⇧] ` �
(cut � i)

` ' �['; ⇧] ` �

�[⇧] ` �
(cut � ii)

` ' ' ` �

` �
(cut � iii)

where �[⇧] in (cut-i) is the result of replacing exactly one, displayed, occurrence of ' in �['] by

⇧; in (cut-ii), the single (displayed) occurrence of ' in �['; ⇧] is replaced by an empty multiset;

similarly for (cut-iii).

Operational rules :

�1 ` ↵ �2[�] ` �

�2[�1;↵ ! �] ` �
(! l)

↵; � ` �

� ` ↵ ! �
(! r)

where Γ[Π] in (cut-i) is the result of replacing exactly one, displayed, oc-

currence of ϕ in Γ[ϕ] by Π; in (cut-ii), the single (displayed) occurrence of

ϕ in Γ[ϕ; Π] is replaced by an empty multiset; similarly for (cut-iii).

Operational rules:

Γ1 ` α Γ2[β] ` γ
Γ2[Γ1;α→ β] ` γ

(→ l)
α; Γ ` β

Γ ` α→ β
(→ r)

Γ[α;β] ` γ
Γ[α ◦ β] ` γ

(◦ l)
Γ1 ` α Γ2 ` β

Γ1; Γ2 ` α ◦ β
(◦ r)
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Γ[α] ` γ
Γ[α ∧ β] ` γ

Γ[β] ` γ
Γ[α ∧ β] ` γ

(∧ l)
Γ ` α Γ ` β

Γ ` α ∧ β
(∧ r)

Γ[α] ` γ Γ[β] ` γ
Γ[α ∨ β] ` γ

(∨ l)
Γ ` α

Γ ` α ∨ β
Γ ` β

Γ ` α ∨ β
(∨ r)

In [10] we prove:

Cut–Elimination Theorem. Every GRW ◦+–derivation can be trans-

formed into a cut–free GRW ◦+–derivation with the same endsequent.

For our natural deduction derivations, with implicit extensional weaken-

ing rule, we shall need cut–free GRW ◦+–derivations, where the application

of the rule (KE) is controlled. We define a notion of a KE–normal proof,

as follows.

Definition. A cut–free proof in GRW ◦+ is called KE–normal iff every

application of (KE) in this proof is either the first rule of the proof, or it has

only applications of (KE) above it, or it is the lower rule in the following

contexts:

Γ1 ` α Γ2[β] ` γ
Γ2[Γ1;α→ β] ` γ

Γ2[Γ1; (α→ β,Σ)] ` γ
(KE)

(→ l)
Γ1 ` α Γ2 ` β

Γ1; Γ2 ` α ◦ β
(Γ1; Γ2),Σ ` α ◦ β

(KE)

(◦ r)

We prove the following lemma:

Lemma. For every cut–free GRW ◦+–derivation there is a cut–free

KE–normal GRW ◦+–derivation of the same endsequent.

Proof. Let π be a cut–free GRW ◦+–derivation. We prove that π can

be transformed into a cut–free KE–normal GRW ◦+–derivation of the same

endsequent.

Let S be the initial segment of π which ends with the first from the

top non–normal application of the rule (KE) and let (KE) be immediately

preceded by the rule (r). Then we transform S, given on the left–hand side

of 7→ into the derivation S′, given on the right–hand side of 7→, as follows.

We have the following cases.

Let (r)=(WE). Then we have:
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π1

Γ[Π,Π] ` γ
Γ[Π] ` γ

Γ[Π,Σ] ` γ
(KE)

(WE) 7→

π1

Γ[Π,Π] ` γ
Γ[Π,Π,Σ] ` γ

Γ[Π,Σ] ` γ
(WE)

(KE)

π1

Γ[Π,Π][Θ] ` γ
Γ[Π][Θ] ` γ

Γ[Π][Θ,Σ] ` γ
(KE)

(WE) 7→

π1

Γ[Π,Π][Θ] ` γ
Γ[Π,Π][Θ,Σ] ` γ

Γ[Π][Θ,Σ] ` γ
(WE)

(KE)

π1

Γ[Π[Θ],Π[Θ]] ` γ
Γ[Π[Θ]] ` γ

Γ[Π[Θ,Σ]] ` γ
(KE)

(WE) 7→

π1

Γ[Π[Θ],Π[Θ]] ` γ
Γ[Π[Θ,Σ],Π[Θ]] ` γ

(KE)

Γ[Π[Θ,Σ],Π[Θ,Σ]] ` γ
Γ[Π[Θ,Σ]] ` γ

(WE)

(KE)

Let (r)=(→ l). Then we have:

π1

Γ1 ` α
π2

Γ2[β] ` γ
Γ2[Γ1;α→ β] ` γ

Γ2[Γ1;α→ β],Σ ` γ
(KE)

(→ l) 7→

π1

Γ1 ` α

π2

Γ2[β] ` γ
Γ2[β],Σ ` γ

(KE)

Γ2[Γ1;α→ β],Σ ` γ
(→ l)

π1

Γ1 ` α
π2

Γ2[β] ` γ
Γ2[Γ1;α→ β] ` γ

Γ2[(Γ1,Σ);α→ β] ` γ
(KE)

(→ l) 7→

π1

Γ1 ` α
Γ1,Σ ` α

(KE)
π2

Γ2[β] ` γ
Γ2[(Γ1,Σ);α→ β] ` γ

(→ l)

π1

Γ1 ` α
π2

Γ2[Π][β] ` γ
Γ2[Π][Γ1;α→ β] ` γ

Γ2[Π,Σ][Γ1;α→ β] ` γ
(KE)

(→ l) 7→

π1

Γ1 ` α

π2

Γ2[Π][β] ` γ
Γ2[Π,Σ][β] ` γ

(KE)

Γ2[Π,Σ][Γ1;α→ β] ` γ
(→ l)

We note that (KE) cannot be pushed above (→ l) in:
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π1

Γ1 ` α
π2

Γ2[β] ` γ
Γ2[Γ1;α→ β] ` γ

Γ2[Γ1; (α→ β,Σ)] ` γ
(KE)

(→ l)

but this is the (KE)–normal proof.

Let (r)=(→ r). Then we have:

π1

α; Γ ` β
Γ ` α→ β

Γ,Σ ` α→ β
(KE)

(→ r) 7→

π1

α; Γ ` β
α; (Γ,Σ) ` β

(KE)

Γ,Σ ` α→ β
(→ r)

Let (r)=(◦ l). Then we have:

π1

Γ[α;β] ` γ
Γ[α ◦ β] ` γ

Γ[α ◦ β,Σ] ` γ
(KE)

(◦ r) 7→

π1

Γ[α;β] ` γ
Γ[(α;β),Σ] ` γ

(KE)

Γ[α ◦ β,Σ] ` γ
(◦ l)

π1

Γ[Π][α;β] ` γ
Γ[Π][α ◦ β] ` γ

Γ[Π,Σ][α ◦ β] ` γ
(KE)

(◦ r) 7→

π1

Γ[Π][α;β] ` γ
Γ[Π,Σ][α;β] ` γ

(KE)

Γ[Π,Σ][α ◦ β] ` γ
(◦ l)

Let (r)=(◦ r). Then we have:

π1

Γ1 ` α
π2

Γ2 ` β
Γ1; Γ2 ` α ◦ β

Γ1; (Γ2,Σ) ` α ◦ β
(KE)

(◦ r) 7→

π1

Γ1 ` α

π2

Γ2 ` β
Γ2,Σ ` β

(KE)

Γ1; (Γ2,Σ) ` α ◦ β
(◦ r)

We can proceed similarly when the endsequent of S is (Γ1,Σ); Γ2 ` α◦β
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and Σ is the principal multiset of (KE). The rule (KE) cannot be pushed

above (◦ r) in

π1

Γ1 ` α
π2

Γ2 ` β
Γ1; Γ2 ` α ◦ β

(Γ1; Γ2),Σ ` α ◦ β
(KE)

(◦ r)

but this is the (KE)–normal proof.

The transformations of S can be obtained analogously when (r) is one

of the rules (∧ l), (∧ r), (∨ l) or (∨ r). We continue to transform the proof,

until we obtain a proof, where all applications of the rule (KE) are normal.

�

.3 Natural deduction calculus NRW ◦
+

We present the natural deduction system NRW ◦+ for positive contraction–

less relevant logic RW ◦+. Sometimes it is easier to understand if we call

our logic intuitionistic linear logic without modalities, without constants 1,

>, 0, ⊥ and with distribution of conjunction over disjunction (the formula

α∧ (β∨γ)→ (α∧β)∨ (α∧γ) is provable in RW ◦+). It should be mentioned

that Sara Negri formulated the natural deduction system N-ILL, for intu-

itionistic linear logic, in [15], however, our system is, due to the presence

of the distribution law, significantly different from N-ILL.

NRW ◦+ has the following postulates:

The initial rule (axiom) is of the form:

α,Γ

α

where Γ is possible empty.
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Operational rules:

NATURAL DEDUCTION AND ITS CORRESPONDING SEQUENT CALCULUS 104

Operational rules:

1.pdf

⌃;⇧;

⌃i; ((↵(i); ⇧i), (↵; ⇧), . . . , (↵; ⇧)(i))

...

�

↵ ! �
(! I)(i)

�i

...

↵ ! �

⇥i

...

↵

�[⌃; �;⇥;⇧]

�i[⌃i; ((�(i); ⇧i), (�; ⇧), . . . , (�; ⇧)(i))]

...

�

�
(! E)(i)

With (↵; ⇧), (↵; ⇧), . . . , (↵; ⇧) we denote an extensional multiset where the multiset ↵; �

occurs at least once and where ⇧ may be empty. Similarly for (�; ⇧), (�; ⇧), . . . , (�; ⇧).

The extensional contraction is implicit in our system, meaning that it is built in the inference

rules. In the rule (! I), we implicitly apply the extensional contraction, by substituting the

multiset (↵; ⇧), (↵; ⇧), . . . , (↵; ⇧) with the multiset ↵; ⇧, i.e. by discharging all emphasized

occurrences of (↵; ⇧), except one (if there is more than one occurrence of the multiset ↵; �

within (↵; ⇧), (↵; ⇧), . . . , (↵; ⇧)). Then we introduce the implication !, i.e. we derive the

formula ↵ ! � and discharge the formula ↵ from the assumption multiset ⌃;↵; ⇧, taking ⌃

together with ⇧ instead; namely, in lieu of ↵ we place the intensional multiset ⌃;⇧, and we write

it above the crossed out multiset ⌃; ((↵; ⇧), (↵; ⇧), . . . , (↵; ⇧)). The discharged assumption ↵,

as well as the discharged multiset (↵; ⇧), (↵; ⇧), . . . , (↵; ⇧), are crossed out by thicker lines than

⌃ and ⇧ – the later assumption multisets are still open, however not at the starting position.

The multiset ⌃;⇧ is the multiset of moved open assumptions.

Similarly, in the rule (! E), we first substitute the multiset (�; ⇧), (�; ⇧), . . . , (�; ⇧) with

the multiset �; ⇧ and then we eliminate the implication !: we discharge the formula � from

the multiset �[⌃;�; ⇧] and we put the multiset of open assumptions �;⇥ in its place. The

multiset of moved open assumptions �[⌃; �;⇥;⇧] is written above the crossed out multiset

�[⌃; ((�; ⇧), (�; ⇧), . . . , (�; ⇧))].

In both rules, the discharge label (i) is new in the derivation so far constructed.

With (α; Π), (α; Π), . . . , (α; Π) we denote an extensional multiset where

the multiset α; Γ occurs at least once and where Π may be empty. Similarly

for (β; Π), (β; Π), . . . , (β; Π).

The extensional contraction is implicit in our system, meaning that it

is built in the inference rules. In the rule (→ I), we implicitly apply the ex-

tensional contraction, by substituting the multiset (α; Π), (α; Π), . . . , (α; Π)

with the multiset α; Π, i.e. by discharging all emphasized occurrences of

(α; Π), except one (if there is more than one occurrence of the multiset

α; Γ within (α; Π), (α; Π), . . . , (α; Π)). Then we introduce the implication

→, i.e. we derive the formula α → β and discharge the formula α from

the assumption multiset Σ;α; Π, taking Σ together with Π instead; namely,

in lieu of α we place the intensional multiset Σ; Π, and we write it above

the crossed out multiset Σ; ((α; Π), (α; Π), . . . , (α; Π)). The discharged as-

sumption α, as well as the discharged multiset (α; Π), (α; Π), . . . , (α; Π), are

crossed out by thicker lines than Σ and Π – the later assumption multisets

are still open, however not at the starting position. The multiset Σ; Π is

the multiset of moved open assumptions.

Similarly, in the rule (→ E), we first substitute the multiset (β; Π), (β; Π),

. . . , (β; Π) with the multiset β; Π and then we eliminate the implication→:

we discharge the formula β from the multiset ∆[Σ;β; Π] and we put the

multiset of open assumptions Γ; Θ in its place. The multiset of moved

open assumptions ∆[Σ; Γ; Θ; Π] is written above the crossed out multiset

∆[Σ; ((β; Π), (β; Π), . . . , (β; Π))].

In both rules, the discharge label (i) is new in the derivation so far

constructed.
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The following restrictions are needed, when the rule (→ E) is applied:

if both Γ and Θ are empty, then either at least one of Π or Σ is non–empty,

or ∆[Σ; ((β; Π), (β; Π), . . . , (β; Π))] = β, β, . . . , β.
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The following restrictions are needed, when the rule (! E) is applied: if both � and ⇥ are

empty, then either at least one of ⇧ or ⌃ is non–empty, or �[⌃; ((�; ⇧), (�; ⇧), . . . , (�; ⇧))] =

�, �, . . . , �.
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(�;⇧),⌃

↵ � �(i),⌃i

↵ � �

�i

...

↵

⇧i

...

�

↵ � �
(� I)(i)

�i

...

↵ � �

�[⌃; �;⇧]

�i[⌃i; ((↵(i);�(i); ⇧i), (↵;�; ⇧), . . . , (↵;�; ⇧))(i)]

...

�

�
(� E)(i)

The following restrictions are needed: in the rule (� I), either ⌃ is empty, or at least one

of � or ⇧ is non–empty; in the rule (� E), if � is empty, then either at least one of ⇧ or ⌃ is

non–empty, or

�[⌃; ((↵;�; ⇧), (↵;�; ⇧), . . . , (↵;�; ⇧))] = (↵;�), (↵;�), . . . , (↵;�).1

1We note the unusual form of the rule (� I). Really, the usual formulation of this rule would be:

�

...

↵

⇧

...

�

↵ � �
(� I)

see e.g. [15]. We use di↵erent form of this rule to enable a translation of the following sequent derivation:

...

�1 ` ↵

...

�2 ` �

�1; �2 ` ↵ � �
(�1; �2),⌃ ` ↵ � �

(KE)

(� r)

into a natural deduction derivation with implicit weakening (see below).

The following restrictions are needed: in the rule (◦ I), either Σ is empty,

or at least one of Γ or Π is non–empty; in the rule (◦ E), if Γ is empty, then

either at least one of Π or Σ is non–empty, or

∆[Σ; ((α;β; Π), (α;β; Π), . . . , (α;β; Π))] = (α;β), (α;β), . . . , (α;β).1

1We note the unusual form of the rule (◦ I). Really, the usual formulation of this rule

would be:
Γ

...

α

Π

...

β

α ◦ β
(◦ I)

see e.g. [15]. We use different form of this rule to enable a translation of the following

sequent derivation:
...

Γ1 ` α

...

Γ2 ` β
Γ1; Γ2 ` α ◦ β

(Γ1; Γ2),Σ ` α ◦ β
(KE)

(◦ r)

into a natural deduction derivation with implicit weakening (see below).
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Γ

Γi

...

α

Γ i

...

β

α ∧ β
(∧ I)i

Γi

...

α ∧ β

∆[Σ; Γ; Π]

∆i[Σi; ((α(i); Πi), (α; Π) . . . , (α; Π)(i))]

...

γ

γ
(∧ E)

(i)
1

Γi

...

α ∧ β

∆[Σ; Γ; Π]

∆i[Σi; ((β(i); Πi), (β; Π) . . . , (β; Π)(i))]

...

γ

γ
(∧ E)

(i)
2

The following restrictions are needed: in the rule (∧ E)1, if Γ is empty,

then either at least one of Π or Σ is non–empty, or

∆[Σ; ((α; Π), (α; Π), . . . , (α; Π))] = α, α, . . . , α.

Similarly for (∧ E)2.
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�

�i

...

↵

� i

...

�

↵ ^ �
(^ I)i

�i

...

↵ ^ �

�[⌃; �;⇧]

�i[⌃i; ((↵(i); ⇧i), (↵; ⇧) . . . , (↵; ⇧)(i))]

...

�

�
(^ E)

(i)
1

�i

...

↵ ^ �

�[⌃; �;⇧]

�i[⌃i; ((�(i); ⇧i), (�; ⇧) . . . , (�; ⇧)(i))]

...

�

�
(^ E)

(i)
2

The following restrictions are needed: in the rule (^ E)1, if � is empty, then either at least

one of ⇧ or ⌃ is non–empty, or

�[⌃; ((↵; ⇧), (↵; ⇧), . . . , (↵; ⇧))] = ↵, ↵, . . . , ↵.

Similarly for (^ E)2.

3.pdf

�i

...

↵ _ �

�[⌃; �;⇧]

�i[⌃i; ((↵(i); ⇧i), (↵; ⇧), . . . , (↵; ⇧)(i))]

...

�

�i[⌃i; ((�(i); ⇧i), (�; ⇧), . . . , (�; ⇧)(i))]

...

�

�
(_ E)(i)

The following restrictions are needed: in the rule (∨ E), if Γ is empty,

then either at least one of Π or Σ is non–empty, or we have that both

∆[Σ; ((α; Π), (α; Π), . . . , (α; Π))] = α, α, . . . , α and

∆[Σ; ((β; Π), (β; Π), . . . , (β; Π))] = β, β, . . . , β.

In our elimination rules, we differentiate two types of premises: major

and minor. The major premise is the premise whose principal connective is

the connective of the rule in question, whereas all other premises are minor.

The major premise appears on the left hand side of elimination rules.

A formula α is a theorem of RW ◦+ iff it depends on no hypotheses, i.e. iff

there is an NRW ◦+–derivation, with α at the bottom, where all assumptions

are discharged.
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.4 Translations

We define translations from sequent calculus to natural deduction and vice

versa. Our translations are defined bottom–up, i.e. we start with the last

step of a derivation, working upwards step by step, until we reach axioms.

First we give a translation of a cut–free KE–normal GRW ◦+–derivation

π, of a sequent ` γ, to natural deduction. The last applied rule in π can

be one of: (→ r), (◦, r), (∧ r) or (∨ r). Then we have the following cases:

π1

α ` β
` α→ β

(→ r) 7→

π1

α(i) ` β
α→ β

(→ I)(i)

π1

` α
π2

` β
` α ◦ β

(◦ r) 7→

π1

` α
π2

` β
α ◦ β

(◦ I)

π1

` α
π2

` β
` α ∧ β

(∧ r) 7→

π1

` α
π2

` β
α ∧ β

(∧ I)

π

` α
` α ∨ β

(∨ r) 7→

π

` α
α ∨ β

(∨ I)

π

` β
` α ∨ β

(∨ r) 7→

π

` β
α ∨ β

(∨ I)

Every translation on the right–hand side of 7→ consists of the sequent

calculus derivation(s) in the upper part, the rule in natural deduction nota-

tion and the conclusion of that rule in the lower part. The sequent calculus

derivation(s) in the upper part will be called the sequent calculus segments

of the translation, and they are the same as the corresponding sequent cal-

culus derivations given on the left–hand side of 7→. Those derivations will

be translated in the further steps of the translation.

The formula α, in the sequent calculus segment of the first translation

above, is assigned with the discharge label (i): this formula will be dis-

charged by the application of the rule (→ I). We cross out this formula,

but we treat it in the same way as other formulae in subsequent transla-

tions.

Let Tr be the translation so far constructed and let one of its sequent

calculus segments be the segment S, which is given on the left–hand side
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of 7→ below. If the last rule in S is an operational rule, then we have:

π

α; Γ ` β
Γ ` α→ β

(→ r) 7→

π

α(i); Γ ` β
α→ β

(→ I)(i)

provided (i) is new discharge label in the translation so far constructed.

With Γ we denote the multiset Γ where every formula is with discharge label

(although discharge labels are not visible). Furthermore, every formula

from Γ of the sequent Γ ` α → β on the left hand side of 7→ has the

same discharge label as its corresponding formula from Γ of the sequent

α(i); Γ ` β on the right hand side of 7→ . As mentioned before, crossed

out formulae are treated in the same way as other formulae in subsequent

translations.
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the lower part. The sequent calculus derivation(s) in the upper part will be called the sequent

calculus segments of the translation, and they are the same as the corresponding sequent calculus

derivations given on the left–hand side of 7!. Those derivations will be translated in the further

steps of the translation.

The formula ↵, in the sequent calculus segment of the first translation above, is assigned

with the discharge label (i): this formula will be discharged by the application of the rule (!
I). We cross out this formula, but we treat it in the same way as other formulae in subsequent

translations.

Let Tr be the translation so far constructed and let one of its sequent calculus segments

be the segment S, which is given on the left–hand side of 7! below. If the last rule in S is an

operational rule, then we have:

⇡

↵; � ` �

� ` ↵ ! �
(! r) 7!

⇡

↵(i); � ` �

↵ ! �
(! I)(i)

provided (i) is new discharge label in the translation so far constructed. With � we denote the

multiset � where every formula is with discharge label (although discharge labels are not visible).

Furthermore, every formula from � of the sequent � ` ↵ ! � on the left hand side of 7! has

the same discharge label as its corresponding formula from � of the sequent ↵(i); � ` � on the

right hand side of 7! . As mentioned before, crossed out formulae are treated in the same way

as other formulae in subsequent translations.

4.pdf

⇡1

�1 ` ↵

⇡2

�2[�] ` �

�2 [�1;↵ ! �(k)] ` �
(! l) 7!

↵ ! �

↵ ! �

i
(k) ⇡1

�1 ` ↵

⇡2

�2 [�(i)] ` �

�
(! E)(i)

Superscripts i
(k) indicate that the formula ↵ ! � has the discharge label (k) and moved label

i.

⇡1

�1 ` ↵

⇡2

�2 ` �

�1; �2 ` ↵ � �
(� r) 7!

↵ � �
↵ � �

(i)
⇡1

�1 ` ↵

⇡2

�2 ` �

↵ � �
(� I)(i)

Superscripts i
(k) indicate that the formula α→ β has the discharge label

(k) and moved label i.

π1

Γ1 ` α
π2

Γ2 ` β
Γ1; Γ2 ` α ◦ β

(◦ r) 7→

α ◦ β
α ◦ β

(i)
π1

Γ1 ` α
π2

Γ2 ` β
α ◦ β

(◦ I)(i)

π1

Γ[α;β] ` γ
Γ[α ◦ β(k)] ` γ

(◦ l) 7→

α ◦ β
α ◦ β

i
(k) π1

Γ [α(i);β(i)] ` γ
γ

(◦ E)(i)

π1

Γ ` α
π2

Γ ` β
Γ ` α ∧ β

(∧ r) 7→

π1

Γ ` α
π2

Γ ` β
α ∧ β

(∧ I)

π1

Γ[α] ` γ
Γ [α ∧ β(k)] ` γ

(∧ l) 7→

α ∧ β
α ∧ β

i
(k) π1

Γ [α(i)] ` γ
γ

(∧ E)(i)
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π1

Γ[β] ` γ
Γ[α ∧ β(k)] ` γ

(∧ l) 7→

α ∧ β
α ∧ β

i
(k) π1

Γ [β(i)] ` γ
γ

(∧ E)(i)
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⇡1

�[↵;�] ` �

�[↵ � �(k)] ` �
(� l) 7!

↵ � �
↵ � �

i
(k) ⇡1

� [↵(i);�(i)] ` �

�
(� E)(i)

⇡1

� ` ↵

⇡2

� ` �

� ` ↵ ^ �
(^ r) 7!

⇡1

� ` ↵

⇡2

� ` �

↵ ^ �
(^ I)

⇡1

�[↵] ` �

� [↵ ^ �(k)] ` �
(^ l) 7!

↵ ^ �

↵ ^ �

i
(k) ⇡1

� [↵(i)] ` �

�
(^ E)(i)

⇡1

�[�] ` �

�[↵ ^ �(k)] ` �
(^ l) 7!

↵ ^ �

↵ ^ �

i
(k) ⇡1

� [�(i)] ` �

�
(^ E)(i)

5.pdf

⇡1

� ` ↵

� ` ↵ _ �
(_ r) 7!

⇡1

� ` ↵

↵ _ �
(_ I);

⇡1

� ` �

� ` ↵ _ �
(_ r) 7!

⇡1

� ` �

↵ _ �
(_ I)

⇡1

�[↵] ` �

⇡2

�[�] ` �

�[↵ _ �(k)] ` �
(_ l) 7!

↵ _ �

↵ _ �

i
(k) ⇡1

� [↵(i)] ` �

⇡2

� [�(i)] ` �

�
(_ E)(i)

If the last rule in S is structural, then we have:

⇡1

�[⇧,⇧] ` �

�[⇧] ` �
(WE) 7!

⇡1

� [⇧,⇧] ` �

If the last rule in S is structural, then we have:

π1

Γ[Π,Π] ` γ
Γ[Π] ` γ

(WE) 7→
π1

Γ [Π,Π] ` γ

(We duplicate the multiset of formulae Π, together with their discharge

labels.)
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(We duplicate the multiset of formulae ⇧, together with their discharge labels.)

6.pdf

↵ ` ↵

· · ·
finitely many applications of (KE)
followed by finitely many applica-
tions (including 0–many) of (WE)

↵(k),� ` ↵
7! ↵(k), �

↵

⇡1

�1 ` ↵

⇡2

�2[�] ` �

�2[�1;↵ ! �] ` �
(! l)

�2 [�1; (↵ ! �(k),⌃)] ` �
(KE) 7!

↵ ! �
i

(k) ,⌃

↵ ! �

⇡1

�1 ` ↵

⇡2

�2 [�(i)] ` �

�
(! E)(i)

7.pdf

⇡1

�1 ` ↵

⇡2

�2 ` �

�1; �2 ` ↵ � �
(� r)

(�1; �2),⌃ ` ↵ � �
(KE) 7!

↵ � �
i

(k) ,⌃

↵ � �
⇡1

�1 ` ↵

⇡2

�2 ` �

↵ � �
(� I)(i)
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(We duplicate the multiset of formulae ⇧, together with their discharge labels.)
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(! l)

�2 [�1; (↵ ! �(k),⌃)] ` �
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(k) ,⌃

↵ ! �

⇡1
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�2 [�(i)] ` �
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�1 ` ↵

⇡2

�2 ` �

�1; �2 ` ↵ � �
(� r)

(�1; �2),⌃ ` ↵ � �
(KE) 7!

↵ � �
i

(k) ,⌃

↵ � �
⇡1

�1 ` ↵

⇡2

�2 ` �

↵ � �
(� I)(i)
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The translation of axioms is given as follows:

α(k) ` α 7→ α(k)

α
.

Our translation produces natural deduction derivations with discharges

fully formalized. On the other hand, multisets of moved assumptions are

missing, and therefore those derivations are not, strictly speaking, syntac-

tically correct. To obtain syntactically correct derivations, we have to add

them, which can easily be done, starting from the top (see the example in

the Appendix, for a better understanding of how it should be done). The

presence of multisets of moved assumptions in natural deduction derivations

is crucial for the translation of those derivations into the sequent calculus

derivation, as we shall see below.

In NRW ◦+, instead of standard (special) elimination rules, we use gen-

eral elimination rules, for the reasons briefly explained in [16], [14] and

[15]. Consequently, we can adopt the following definition of the normal

derivation:

Definition. An NRW ◦+–derivation is normal when all major premises

of elimination rules are conclusions of initial rules.

We note that in the above translations, all major premises of the elim-

ination rules are conclusions of the initial rules, therefore our translations

are normal natural deduction derivations. Thus we have proved:

Theorem 1. If π is a cut–free KE–normal GRW ◦+–derivation of a se-

quent ` γ, then its translation is a normal NRW ◦+–derivation of γ from

the empty multiset of open assumptions.

Now we give a translation of a natural deduction derivation of a formula

γ from a multiet of open assumptions Γ, to sequent calculus. Translation

is defined inductively, according to the last rule used.

Multisets of open assumptions Π, Σ, Γ and Θ, which appear in our

natural deduction derivations, are possible empty. The initial multisets in

natural deduction derivations are either upper multisets of initial rules, or

multisets of moved assumptions.
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If the last rule is (→ I), then we have the following cases:

Π

Πi; α(i)

...

β

α→ β
(→ I)(i) 7→

Π;α

...

β

Π ` α→ β
(→ r)

Note that the formula α, which is discharged on the left hand side of

7→ is an open assumption on the right–hand side of 7→.
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assumption on the right–hand side of 7!.

8.pdf

⌃;⇧;

⌃i; ((⇧i;↵(i)), (⇧;↵), . . . , (⇧;↵)(i))

...

�

↵ ! �
(! I)(i) 7!

⌃; ((⇧;↵), (⇧;↵), . . . , (⇧;↵))

...

�

⌃;⇧;↵ ` �

⌃;⇧ ` ↵ ! �
(! r)

(WE)

where with (⇧;↵), (⇧;↵), . . . , (⇧;↵) we denote an extensional multiset where the multiset ⇧;↵

occurs at least twice and where ⇧ may be empty. Double line next to (WE) denotes possible

several extensional contractions (at least one).

If the last rule is (! E), then we have the following cases:

9.pdf

where with (Π;α), (Π;α), . . . , (Π;α) we denote an extensional multiset where

the multiset Π;α occurs at least twice and where Π may be empty. Dou-

ble line next to (WE) denotes possible several extensional contractions (at

least one).

If the last rule is (→ E), then we have the following cases:NATURAL DEDUCTION AND ITS CORRESPONDING SEQUENT CALCULUS 113

�i

...

↵ ! �

⇥i

...

↵

�[⌃; �;⇥]

�i[⌃i;�(i)]

...

�

�
(! E)(i) 7!

�

...

↵ ! �

⇥

...

↵

�[⌃;�]

...

�

�[⌃;⇥;↵ ! �] ` �
(! l)

�[⌃;⇥; �] ` �
(cut)

where

- (cut)=(cut–i), if � is non–empty,

- (cut)=(cut–ii), if � is empty and at least one of ⇥ or ⌃ is non–empty,

- (cut)=(cut–iii), if � and ⇥ are empty and �[⌃;�] = �.

where

- (cut)=(cut–i), if Γ is non–empty,

- (cut)=(cut–ii), if Γ is empty and at least one of Θ or Σ is non–empty,
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- (cut)=(cut–iii), if Γ and Θ are empty and ∆[Σ;β] = β.
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�i

...

↵ ! �

⇥i

...

↵

�[⌃; �;⇥;⇧]

�i[⌃i; ((�; ⇧i), (�; ⇧), . . . , (�; ⇧)(i))]

...

�

�
(! E)(i) 7!

7!

�

...

↵ ! �

⇥

...

↵

�[⌃; ((�; ⇧), (�; ⇧), . . . , (�; ⇧))]

...

�

�[⌃;�; ⇧] ` �
(WE)

�[⌃;⇥;↵ ! �; ⇧] ` �
(! l)

�[⌃;⇥; �;⇧] ` �
(cut)

where

- (cut)=(cut–i), if � is non–empty,

- (cut)=(cut–ii), if � is empty and at least one of ⇥, ⌃ or ⇧ is non–empty,

- (cut)=(cut–iii), if � and ⇥ are empty and

�[⌃; ((�; ⇧), (�; ⇧), . . . , (�; ⇧))] = �, �, . . . , �.

where

- (cut)=(cut–i), if Γ is non–empty,

- (cut)=(cut–ii), if Γ is empty and at least one of Θ, Σ or Π is non–

empty,

- (cut)=(cut–iii), if Γ and Θ are empty and

∆[Σ; ((β; Π), (β; Π), . . . , (β; Π))] = β, β, . . . , β.

If the last rule is (◦ I), then we have the following cases. If Σ is non–

empty, then:
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If the last rule is (� I), then we have the following cases. If ⌃ is non–empty, then:
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(�;⇧),⌃

↵ � �(i),⌃i

↵ � �

�i

...

↵

⇧i

...

�

↵ � �
(� I)(i) 7!

�

...

↵

⇧

...

�

�;⇧ ` ↵ � �
(� r)

↵ � � ` ↵ � �
⌃, ↵ � � ` ↵ � �

(KE)

(�;⇧),⌃ ` ↵ � �
(cut � i)

By the definition of the rule (� I), when ⌃ is non–empty, then at least one of � or ⇧ is

non–empty, therefore the application of the rule (cut–i) is correct. Otherwise, we have:

�;⇧

↵ � �(i)

↵ � �

�

...

↵

i
⇧

...

�

i

↵ � �
(� I)(i) 7!

�

...

↵

⇧

...

�

�;⇧ ` ↵ � �
(� r)

If the last rule is (� E), then we have the following cases:

�i

...

↵ � �

�[⌃; �]

�i[⌃i;↵(i);�(i)]

...

�

�
(� E)(i) 7!

�

...

↵ � �

�[⌃;↵;�]

...

�

�[⌃;↵ � �] ` �
(� l)

�[⌃; �] ` �
(cut)

where (cut) is one of (cut–i), (cut–ii) or (cut–iii), depending on the multisets � and �[⌃;↵;�],

as above. Or:

By the definition of the rule (◦ I), when Σ is non–empty, then at least

one of Γ or Π is non–empty, therefore the application of the rule (cut–i) is
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correct. Otherwise, we have:

Γ; Π

α ◦ β(i)

α ◦ β

Γ

...

α

i
Π

...

β

i

α ◦ β
(◦ I)(i) 7→

Γ

...

α

Π

...

β

Γ; Π ` α ◦ β
(◦ r)

If the last rule is (◦ E), then we have the following cases:

Γi

...

α ◦ β

∆[Σ; Γ]

∆i[Σi;α(i);β(i)]

...

γ

γ
(◦ E)(i) 7→

Γ

...

α ◦ β

∆[Σ;α;β]

...

γ

∆[Σ;α ◦ β] ` γ
(◦ l)

∆[Σ; Γ] ` γ
(cut)

where (cut) is one of (cut–i), (cut–ii) or (cut–iii), depending on the multisets

Γ and ∆[Σ;α;β], as above. Or:
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�i

...

↵ � �

�[⌃; �;⇧]

�i[⌃i; ((↵(i);�(i); ⇧i), (↵;�; ⇧), . . . , (↵;�; ⇧)(i))]

...

�

�
(� E)(i) 7!

7!

�

...

↵ � �

�[⌃; ((↵;�; ⇧), (↵;�; ⇧), . . . , (↵;�; ⇧))]

...

�

�[⌃;↵;�; ⇧] ` �

�[⌃;↵ � �; ⇧] ` �
(� l)

(WE)

�[⌃; �;⇧] ` �
(cut).

If the last rule is (^ I), then we have:

�

�i

...

↵

� i

...

�

↵ ^ �
(^ I)(i) 7!

�

...

↵

�

...

�

� ` ↵ ^ �
(^ r)
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If the last rule is (∧ I), then we have:

Γ

Γi

...

α

Γ i

...

β

α ∧ β
(∧ I)(i) 7→

Γ

...

α

Γ

...

β

Γ ` α ∧ β
(∧ r)

If the last rule is (∧ E)1, then we have the following cases:
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If the last rule is (^ E)1, then we have the following cases:
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�i

...

↵ ^ �

�[⌃; �]

�i[⌃i;↵(i)]

...

�

�
(^ E)

(i)
1 7!

�

...

↵ ^ �

�[⌃;↵]

...

�

�[⌃;↵ ^ �] ` �
(^ l)

�[⌃; �] ` �
(cut)

�i

...

↵ ^ �

�[⌃; �;⇧]

�i[⌃i; ((↵(i); ⇧i), (↵; ⇧) . . . , (↵; ⇧))(i)]

...

�

�
(^ E)

(i)
1 7!

�

...

↵ ^ �

�[⌃; ((↵; ⇧), (↵; ⇧), . . . , (↵; ⇧))]

...

�

�[⌃;↵; ⇧] ` �

�[⌃;↵ ^ �; ⇧] ` �
(^ l)

(WE)

�[⌃; �;⇧] ` �
(cut),

where (cut) is defined similarly as above. We can proceed similarly when the last rule is (^ E)2.

where (cut) is defined similarly as above. We can proceed similarly when

the last rule is (∧ E)2.

If the last rule is (∨ I), then we have:
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If the last rule is (_ I), then we have:
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�

...

↵

↵ _ �
(_ I)1 7!

�

...

↵

� ` ↵ _ �
(_ r) and

�

...

�

↵ _ �
(_ I)2 7!

�

...

�

� ` ↵ _ �
(_ r).
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If the last rule is (∨ E), then we have the following cases:
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If the last rule is (_ E), then we have the following cases:
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�i

...

↵ _ �

�[⌃; �]

�i[⌃i;↵(i)]

...

�

�i[⌃i;�(i)]

...

�

�
(_ E)(i) 7!

�

...

↵ _ �

�[⌃;↵]

...

�

�[⌃;�]

...

�

�[⌃;↵ _ �] ` �
(_ l)

�[⌃; �] ` �
(cut)
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�i

...

↵ _ �

�[⌃; �;⇧]

�i[⌃i; ((↵(i); ⇧i), (↵; ⇧), . . . , (↵; ⇧)(i))]

...

�

�i[⌃i; ((�(i); ⇧i), (�; ⇧), . . . , (�; ⇧)(i))]

...

�

�
(_ E)(i) 7!

7!

�

...

↵ _ �

�[⌃; ((↵; ⇧), (↵; ⇧), . . . , (↵; ⇧))]

...

�

�[⌃;↵; ⇧] ` �
(WE)

�[⌃; ((�; ⇧), (�; ⇧), . . . , (�; ⇧))]

...

�

�[⌃;�; ⇧] ` �
(WE)

�[⌃;↵ _ �; ⇧] ` �
(_ l)

�[⌃; �;⇧] ` �
(cut)

where (cut) is as above.

If the last rule is an initial rule, then we have:

↵,�

↵
7! ↵ ` ↵

↵,� ` ↵
(KE).

By the translation defined we have:

Theorem 2. If d is an NRW �
+–derivation of � from the multiset of open assumptions �, then

its translation is a GRW �
+–derivation of � ` �.

where (cut) is as above.

If the last rule is an initial rule, then we have:

α,Γ

α
7→ α ` α

α,Γ ` α
(KE).

By the translation defined we have:

Theorem 2. If d is an NRW ◦+–derivation of γ from the multiset of open

assumptions Γ, then its translation is a GRW ◦+–derivation of Γ ` γ.

GRW ◦+ and NRW ◦+ are equivalent systems meaning that:

Theorem 3. For any formula γ, the sequent ` γ is provable in GRW ◦+ iff

γ is derivable from the empty multiset of open assumptions in NRW ◦+.
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Proof. From left to right, by Theorem 1., from right to left by The-

orem 2. �

Now we prove the following theorem:

Normalization Theorem. For every NRW ◦+–derivation of γ from the

empty multiset of open assumptions, there is a normal NRW ◦+–derivation

of γ from the empty multiset of open assumptions.

Proof. Let d be a NRW ◦+–derivation of γ from the empty multiset of

open assumptions. Then by the translation defined, we obtain a GRW ◦+–

proof π of ` γ. We eliminate cut in π, by the procedure given in [10] and

then we transform that proof into the cut–free KE–normal GRW ◦+ proof

π′. Finally, by the translation defined, we transform π′ into the normal

NRW ◦+–derivation of γ from the empty multiset of open assumptions. �

Corollary. In a normal derivation of γ from the empty multiset of open

assumptions, each formula in the derivation is a subformula of γ.

.5 Appendix

We give the proof of the formula (α → (β ∧ δ)) ∧ ((γ ∧ δ) → γ). → .((α ∨
γ) ∧ (α ∨ δ))→ (β ∨ γ) in Brady’s, Dunn’s and in our system.

Dunn’s proof:
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(↵ _ �) ^ (↵ _ �)
(2)
{5}

↵ _ �{5}

(↵ ! (� ^ �)) ^ ((� ^ �) ! �)
(3)
{2}

(↵ ! (� ^ �)), ((� ^ �) ! �){2}

↵ ! (� ^ �){2}

↵, ↵
(1)
{1}

↵{1}

� ^ �{1,2}

�{1,2}

� _ �{1,2}

(↵ ! (� ^ �)) ^ ((� ^ �) ! �)
(3)
{4}

(↵ ! (� ^ �)), ((� ^ �) ! �){4}

↵ ! (� ^ �){4}

↵, �
(2)
{3}

↵{3}

� ^ �{3,4}

�{3,4}

� _ �{3,4}
� _ �{2,5}

((↵ _ �) ^ (↵ _ �)) ! (� _ �){2}
(! I)(2)

(↵ ! (� ^ �)) ^ ((� ^ �) ! �). ! .((↵ _ �) ^ (↵ _ �)) ! (� _ �){}
(! I)(3)

(_ E)
(1),(2)

{2}!{4}

In this proof, at least one of the formulae from the assumption set ↵, ↵ is used (i.e. the

crossed out formula ↵) and at least one of the formulae from the assumption set ↵, � is used

(i.e. the crossed out formula �). Those formulae are discharged by the application of the

disjunction elimination rule. This is a context–sharing rule, meaning that the derivations of its

premises � _ �{1,2} and � _ �{3,4}, should share the same assumptions; thus the assumptions

(↵ ! (� ^ �))^ ((� ^ �) ! �){2} and (↵ ! (� ^ �))^ ((� ^ �) ! �){4} must be equal. To achieve

that in practice, we reassign {4} with {2}.

Brady’s proof (as it is given in [3]):



126 MIRJANA ILIĆ

In this proof, at least one of the formulae from the assumption set α, α

is used (i.e. the crossed out formula α) and at least one of the formulae

from the assumption set α, δ is used (i.e. the crossed out formula δ). Those

formulae are discharged by the application of the disjunction elimination

rule. This is a context–sharing rule, meaning that the derivations of its

premises β ∨ γ{1,2} and β ∨ γ{3,4}, should share the same assumptions; thus

the assumptions (α→ (β∧δ))∧((γ∧δ)→ γ){2} and (α→ (β∧δ))∧((γ∧δ)→
γ){4} must be equal. To achieve that in practice, we reassign {4} with {2}.
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1 (↵ ! (� ^ �)) ^ ((� ^ �) ! �){1}

2 ↵ ! (� ^ �){1} ^E, 1

3 (� ^ �) ! �{1} ^E, 1

4 (↵ _ �) ^ (↵ _ �){2}

5 ↵ _ �{2} ^E, 4

6 ↵ _ �{2} ^E, 4

7 ↵, �{2} _E, 5

8 ↵, �{2} _E, 6

9 ↵, � _ �{2} _I, 7

10 � ^ �, �{1,2} !E, 2, 7

11 �, �{1,2} ^E, 10

12 � _ �, �{1,2} _I, 11

13 � _ �, � _ �{1,2} _I, 12

14 � _ �{1,2} ,E, 13

15 (↵ _ �) ^ (↵ _ �) ! (� _ �){1} !I, 4, 14

16 (↵ ! (� ^ �)) ^ ((� ^ �) ! �). ! .(↵ _ �) ^ (↵ _ �) ! (� _ �){} !I, 1, 16

We now describe our proof of the same formula. We begin our derivation with the initial

rules:
↵ ! (� ^ �)

↵ ! (� ^ �)
,
�, ↵

↵
and

� ^ �

�
. The initial rule

�, ↵

↵
means that from �, ↵ we can derive

↵. This is the correct derivation, since �, ↵ stands in for � ^ ↵ and from � ^ ↵ we can derive

↵ in our logic. Then we apply the rule (! E) (see below). We derive � and discharge the

assumption �^�, taking ↵ ! (�^�) together with �, ↵ instead; namely, in lieu of �^� we place

the intensional multiset ↵ ! (� ^ �); (�, ↵), and we write it above the discharged assumption

� ^ �. The discharged assumption � ^ � is crossed out by the thicker line than ↵ ! (� ^ �) and

�, ↵ – the later assumptions are still open, however not at the starting position. The multiset

We now describe our proof of the same formula. We begin our derivation

with the initial rules:
α→ (β ∧ δ)
α→ (β ∧ δ)

,
γ, α

α
and

β ∧ γ
β

. The initial rule
γ, α

α
means that from γ, α we can derive α. This is the correct derivation, since

γ, α stands in for γ ∧ α and from γ ∧ α we can derive α in our logic.

Then we apply the rule (→ E) (see below). We derive β and discharge the



A NATURAL DEDUCTION AND ITS CORRESPONDING SEQUENT CALCULUS 127

assumption β ∧ δ, taking α → (β ∧ δ) together with γ, α instead; namely,

in lieu of β ∧ δ we place the intensional multiset α→ (β ∧ δ); (γ, α), and we

write it above the discharged assumption β∧δ. The discharged assumption

β ∧ δ is crossed out by the thicker line than α → (β ∧ δ) and γ, α – the

later assumptions are still open, however not at the starting position. The

multiset α→ (β∧δ); (γ, α) is the multiset of moved open assumptions. The

derivation:

α→ (β ∧ δ)
α→ (β ∧ δ)

1
γ, α

α

1

α→ (β ∧ δ); (γ, α)

β ∧ δ
β

(1)

β
(→ E)(1)

is the derivation of β from the multiset of open assumptions α → (β ∧
δ); (γ, α) (this multiset has the same informal meaneing as the formula

(α → (β ∧ δ)) ◦ (γ ∧ α) from which we can derive β). Then we apply the

rule (∨ I) and after that, the rule (∧ E):
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↵ ! (� ^ �); (�, ↵) is the multiset of moved open assumptions. The derivation:

↵ ! (� ^ �)

↵ ! (� ^ �)

1
�, ↵

↵

1

↵ ! (� ^ �); (�, ↵)

� ^ �

�

(1)

�
(! E)(1)

is the derivation of � from the multiset of open assumptions ↵ ! (� ^ �); (�, ↵) (this multiset

has the same informal meaneing as the formula (↵ ! (�^ �))� (� ^↵) from which we can derive

�). Then we apply the rule (_ I) and after that, the rule (^ E):
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(⇤)

(↵ ! (� ^ �)) ^ ((� ^ �) ! �)

(↵ ! (� ^ �)) ^ ((� ^ �) ! �)

2

↵ ! (� ^ �)

↵ ! (� ^ �)

1
�, ↵

↵

1

(↵ ! (� ^ �)) ^ ((� ^ �) ! �); (�, ↵)

↵ ! (� ^ �)(2); (�, ↵)

� ^ �

�

(1)

2

�

� _ �
(_ I)

(! E)(1)

� _ �
(^ E) (2)

By the application of the rule (^ E) the formula ↵ ! (� ^ �) from the assumption multiset

↵ ! (�^�); (�, ↵) has been discharged and substituted by the formula ↵ ! (�^�))^((�^�) ! �.

The new assumption multiset is now (↵ ! (�^ �))^ ((� ^ �) ! �); (�, ↵) and it is written above

↵ ! (� ^ �); (�, ↵). We shall denote the above derivation as:

der1 :

(↵ ! (� ^ �)) ^ ((� ^ �) ! �); (�, ↵)

D1

� _ �

.

By the application of the rule (∧ E) the formula α→ (β ∧ δ) from the

assumption multiset α→ (β∧δ); (γ, α) has been discharged and substituted

by the formula α→ (β ∧ δ)) ∧ ((γ ∧ δ)→ γ. The new assumption multiset

is now (α → (β ∧ δ)) ∧ ((γ ∧ δ) → γ); (γ, α) and it is written above α →
(β ∧ δ); (γ, α). We shall denote the above derivation as:

der1 :

(α→ (β ∧ δ)) ∧ ((γ ∧ δ)→ γ); (γ, α)

D1

β ∨ γ
.
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The formulae α → (β ∧ δ)1 and α → (β ∧ δ)(2) are one and the same.

The former one indicates that the formula α → (β ∧ δ) is moved by the

application of the rule (→ E)(1) and the later one indicates that it is

discharged by the application of the rule (∧ E)(2). Given that, the above

derivation could also be presented in the following form:
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(↵ ! (� ^ �)) ^ ((� ^ �) ! �)

(↵ ! (� ^ �)) ^ ((� ^ �) ! �)

2

↵ ! (� ^ �)

↵ ! (� ^ �)

1
(2) �, ↵

↵

1
� ^ �

�

(1)

�

� _ �
(_ I)

(! E)(1)

� _ �
(^ E) (2)

(Note the double superscript 1
(2) in ↵ ! (� ^ �)

1
(2) .)

Remember that our translations from sequent calculus to natural deduction have this form,

i.e. they are without explicitly given multisets of moved open assumptions. However, those

multisets can be easily restored, as follows. Given the above derivation, we first generate an

intensional multiset of all assumption multisets with moved label 1, i.e. we generate the multiset

↵ ! (� ^ �); (�, ↵), which we then place in lieu of the formula with the discharge label (1). i.e.

in lieu of the formula � ^ �(1):

↵ ! (� ^ �)

↵ ! (� ^ �)

1
�, ↵

↵

1

↵ ! (� ^ �)(2); (�, ↵)

� ^ �

�

(1)

�

� _ �
(_ I)

(! E)(1)

Now, by the application of the rule (^ E), we substitute the formula ↵ ! (� ^ �)(2) (whose

discharge label (2)) with the formula (↵ ! (� ^ �))^ ((� ^ �) ! �) (whose moved label is 2) and

we obtain the derivation (⇤) above.

We now go back to our derivation. Next we construct the derivation of the formula � _ �

from the multiset of open assumptions (↵ ! (� ^ �) ^ ((� ^ �) ! �); (�, �):

(Note the double superscript 1
(2) in α→ (β ∧ δ)

1
(2) .)

Remember that our translations from sequent calculus to natural de-

duction have this form, i.e. they are without explicitly given multisets of

moved open assumptions. However, those multisets can be easily restored,

as follows. Given the above derivation, we first generate an intensional

multiset of all assumption multisets with moved label 1, i.e. we generate

the multiset α→ (β ∧ δ); (γ, α), which we then place in lieu of the formula

with the discharge label (1). i.e. in lieu of the formula β ∧ δ(1):

α→ (β ∧ δ)
α→ (β ∧ δ)

1
γ, α

α

1

α→ (β ∧ δ)(2); (γ, α)

β ∧ δ
β

(1)

β

β ∨ γ
(∨ I)

(→ E)(1)

Now, by the application of the rule (∧ E), we substitute the formula

α→ (β∧ δ)(2) (whose discharge label (2)) with the formula (α→ (β∧ δ))∧
((γ ∧ δ) → γ) (whose moved label is 2) and we obtain the derivation (∗)
above.

We now go back to our derivation. Next we construct the derivation of

the formula β ∨ γ from the multiset of open assumptions (α → (β ∧ δ) ∧
((γ ∧ δ)→ γ); (γ, δ):
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4
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�
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�

� ^ �

3

(^ I)3

(↵ ! (� ^ �)) ^ ((� ^ �) ! �); (�, �)

(� ^ �) ! �;(5) (�, �)5

� ^ �

�

(4)

�

� _ �
(_ I)

(! E)(4)

� _ �
(^ E)(5)

First we apply the rule (^ I). This is a context–sharing rule meaning that the derivation

of its premises � and � must share the same assumptions. Therefore �, � in
�, �

�
and �, � in

�, �

�
must be equal. To obtain that, instead of these two multisets, we take a single multiset

�, �. This is denoted by crossing out multisets �, � and �, � and writing a single multiset �, �

above them. (Sara Negri in her natural deduction calculus for linear logic [15] uses assumption

labels and she takes the control over the assumptions in context–sharing rules by assigning the

same label to those assumptions, treating formulae with the same label as if they were the same

formulae. Using assumption labels in our natural deduction calculus would be very complicated

due to the presence of two types of multisets of formula, extensional and intensional ones, which

must be allowed to be nested within one another.)

We shall denote the above derivation as:

der2 :

(↵ ! (� ^ �)) ^ ((� ^ �) ! �); (�, �)

D2

� _ �

.

With der1 and der2 we construct the derivation of the formula � _ � from the multiset of

First we apply the rule (∧ I). This is a context–sharing rule meaning

that the derivation of its premises γ and δ must share the same assump-

tions. Therefore γ, δ in
γ, δ

γ
and γ, δ in

γ, δ

δ
must be equal. To obtain

that, instead of these two multisets, we take a single multiset γ, δ. This is

denoted by crossing out multisets γ, δ and γ, δ and writing a single mul-

tiset γ, δ above them. (Sara Negri in her natural deduction calculus for

linear logic [15] uses assumption labels and she takes the control over the

assumptions in context–sharing rules by assigning the same label to those

assumptions, treating formulae with the same label as if they were the same

formulae. Using assumption labels in our natural deduction calculus would

be very complicated due to the presence of two types of multisets of for-

mula, extensional and intensional ones, which must be allowed to be nested

within one another.)

We shall denote the above derivation as:

der2 :

(α→ (β ∧ δ)) ∧ ((γ ∧ δ)→ γ); (γ, δ)

D2

β ∨ γ
.

With der1 and der2 we construct the derivation of the formula β∨γ from

the multiset of open assumptions (α→ (β ∧ δ))∧ ((γ ∧ δ)→ γ); (γ, α∨ δ):
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↵ _ �

↵ _ �

6

(↵ ! (� ^ �)) ^ ((� ^ �) ! �); (�, ↵ _ �)

(↵ ! (� ^ �)) ^ ((� ^ �) ! �)6; (�6, ↵(6))

D1

� _ �

(↵ ! (� ^ �)) ^ ((� ^ �) ! �)6; (�6, �(6))

D2

� _ �

� _ �
(_ E)(6).

By the application of the rule (_ E), we discharge the formula ↵ from the multiset of open

assumptions (↵ ! (� ^ �)) ^ ((� ^ �) ! �); (�, ↵) (the discharged formula is crossed out) and

also the formula � from the multiset (↵ ! (� ^ �)) ^ ((� ^ �) ! �); (�, �) and take the formula

↵ _ � instead of them. The assumption multisets of the derivations D1 and D2 are now equal.

The rule (_ E) is a context–sharing rule, meaning that the derivation D1 and D2 should share

the same assumptions. For this reason, instead of two equal assumption multisets, we take a

single multiset of moved open assumptions of the form (↵ ! (� ^ �)) ^ ((� ^ �) ! �); (�, ↵ _ �)

and we write it above them.

We shall denote the above derivation as:

(↵ ! (� ^ �)) ^ ((� ^ �) ! �); (�, ↵ _ �)

D3

� _ �

.

Similarly we construct the derivation of � _ � from the multiset of open assumptions (↵ !
(� ^ �)) ^ ((� ^ �) ! �); (↵, ↵ _ �):
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By the application of the rule (∨ E), we discharge the formula α from

the multiset of open assumptions (α→ (β ∧ δ))∧ ((γ ∧ δ)→ γ); (γ, α) (the

discharged formula is crossed out) and also the formula δ from the multiset

(α → (β ∧ δ)) ∧ ((γ ∧ δ) → γ); (γ, δ) and take the formula α ∨ δ instead

of them. The assumption multisets of the derivations D1 and D2 are now

equal. The rule (∨ E) is a context–sharing rule, meaning that the derivation

D1 and D2 should share the same assumptions. For this reason, instead of

two equal assumption multisets, we take a single multiset of moved open

assumptions of the form (α → (β ∧ δ)) ∧ ((γ ∧ δ) → γ); (γ, α ∨ δ) and we

write it above them.

We shall denote the above derivation as:

(α→ (β ∧ δ)) ∧ ((γ ∧ δ)→ γ); (γ, α ∨ δ)
D3

β ∨ γ
.

Similarly we construct the derivation of β∨γ from the multiset of open

assumptions (α→ (β ∧ δ)) ∧ ((γ ∧ δ)→ γ); (α, α ∨ δ):
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↵ ! (� ^ �)

↵ ! (� ^ �)

7
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↵

7

(↵ ! (� ^ �)) ^ ((� ^ �) ! �); (↵, ↵ _ �)

↵ ! (� ^ �)(8); (↵, ↵ _ �)

� ^ �

�

(7)

8

�

� _ �
(_ I)

(! E)(7)

� _ �
(^ E) (8)

We shall denote the above derivation as:

(↵ ! (� ^ �)) ^ ((� ^ �) ! �); (↵, ↵ _ �)

D4

� _ �

.

We now give the whole derivation of the formula (↵ ! (� ^ �)) ^ ((� ^ �) ! �). ! .((↵ _
�) ^ (↵ _ �)) ! (� _ �) in our natural deduction calculus:

We shall denote the above derivation as:

(α→ (β ∧ δ)) ∧ ((γ ∧ δ)→ γ); (α, α ∨ δ)
D4

β ∨ γ
.

We now give the whole derivation of the formula (α→ (β ∧ δ)) ∧ ((γ ∧
δ)→ γ).→ .((α∨γ)∧ (α∨ δ))→ (β ∨γ) in our natural deduction calculus:
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(↵ _ �) ^ (↵ _ �)

(↵ _ �) ^ (↵ _ �)

10

↵ _ �

↵ _ �

9

(↵ ! (� ^ �)) ^ ((� ^ �) ! �)(13)

(↵ ! (� ^ �)) ^ ((� ^ �) ! �)12; ((↵ _ �) ^ (↵ _ �), (↵ _ �) ^ (↵ _ �)(12))

(↵ ! (� ^ �)) ^ ((� ^ �) ! �11); ((↵ _ �) ^ (↵ _ �)11, ↵ _ �(11))

(↵ ! (� ^ �)) ^ ((� ^ �) ! �10); (↵ _ �(10), ↵ _ �10)

(↵ ! (� ^ �)) ^ ((� ^ �) ! �9); (↵(9), ↵ _ �9)

D4

� _ �

(↵ ! (� ^ �)) ^ ((� ^ �) ! �)9; (�(9), ↵ _ �9)

D3

� _ �

� _ �
(_ E)(9)

� _ �
(^ E)(10)

� _ �
(^ E)(11)

((↵ _ �) ^ (↵ _ �)) ! (� _ �)
(! I)(12)

(↵ ! (� ^ �)) ^ ((� ^ �) ! �). ! .((↵ _ �) ^ (↵ _ �)) ! (� _ �)
(! I)(13)

Our proof is neither the shortest one nor the simplest one, however it is the only one which is

without relevance numerals, and the only one which admits the simple translation into a sequent

calculus proof and vice versa, as we have seen above.
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