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Marcin MOSTOWSKI

TRUTH IN THE LIMIT

A b s t r a c t. We consider sl–semantics in which first order
sentences are interpreted in potentially infinite domains. A po-
tentially infinite domain is a growing sequence of finite models.
We prove the completeness theorem for first order logic under this
semantics. Additionally we characterize the logic of such domains
as having a learnable, but not recursive, set of axioms.
The work is a part of author’s research devoted to computatio-
nally motivated foundations of mathematics.

.1 Introduction

We present here some results related to logic of potential infinity. The idea
is slightly unconventional in mathematics of our days. Then we start with
intuitions and some history.
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The research reported here is motivated by searching computationally
motivated foundations of mathematics. Inspirations for this research can
be found in pre–computational era, particularly in works by Leopold Kro-
necker [13] and David Hilbert [12].

Kronecker postulates that natural numbers are based on counting pro-
cedure. So in every moment only finitely many of them are generated. Of
course mathematics deals with what can happen further.

Hilbert – evidently influenced by Kronecker – recalled the Aristotelian
notions of actual and potential infinity (see [1]). Actually infinite sets sim-
ply contain infinitely many members. Potentially infinite sets are finite, but
they allow arbitrary finite enlargements. These enlargements can be repe-
ated with no bounds. Any counting procedure determines such potentially
infinite set of natural numbers.

Paradoxically one of the last works on foundations written in the spirit
of potentially infinite mathematics was the Kurt Gödel work presenting the
first version of the completeness theorem [5]. Having no tools for operating
with the truth relation in models of arbitrary cardinality,1 he considers
semantical notions only for finite models. The countable model, which he
is constructing there, is determined by finite approximations.

In more recent times the idea was recalled by Jan Mycielski [21] and [22].
In the first paper Mycielski discuss foundations of analysis defined on initial
segments of natural numbers. His approach essentially agrees with that
presented in this paper. Nevertheless he proposes the general framework in
the style of nonstandard analysis. As a result he leaves finite framework.
It seems that Mycielski’s motivations and intuitions are in agreement with
those of our paper. Nevertheless technically his solutions go in essentially
different direction.

Last but not least, let us mention another ancient idea, namely Euclide-
an plane geometry as presented in Elements [3]. His fifth postulate “That,
if a straight line falling on two straight lines make the interior angles on
the same side less than two right angles, the two straight lines, if produced
indefinitely, meet on that side on which are the angles less than the two
right angles.”([10], vol. 1, p. 151) seems to be meaningless when we think
of straight lines as actually given.

1 It is known that the notion of truth was mathematized a few years later by Alfred
Tarski in [24].
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This can be easily understood when we recall Aristotle’s explanation
from Physics: “Our account does not rob the mathematicians of their scien-
ce, by disproving the actual existence of the infinite in the direction of in-
crease, in the sense of the untraversable. In point of fact they do not need
the infinite and do not use it. They postulate only that the finite straight
line may be produced as far as they wish.” (see [1]). It means that points
on a straight line are added during our construction.

The fifth common notion of Euclid “The whole is greater than the part.”
([10], vol. 1, p. 151) puts things even stronger. It is simply false when
understood in a spirit of actual infinity. 2

Summarizing, plain geometry of Euclid is determined by a sequence of
constructions which on every stage are finite.

.2 Potentially infinite domains

In this section we define sl–semantics or semantics of potential infinity. The
idea of this semantics was formulated in [17], and it was investigated later
in a few papers devoted to finite arithmetics: [20], [19], [16], [14], [15].

In this paper we consider sl–semantics in general setting. However we
start with recalling some ideas related to arithmetical models for two re-
asons. Firstly they adequately explain basic intuitions. Secondly, we need
them as examples for the hardest cases.

2 Quite competent modern commentator Heath tries to interpret The fifth common
notion of Euclid as misunderstanding. He writes ([10], vol. 1, p. 232)

“The whole is greater than the part.
Proclus includes this “axiom” on the same ground as the preceding one. I think however

there is force in the objection which Tannery takes to it, namely that it replaces a different
expression in Eucl. I. 6, where it is stated that “the triangle DBC will be equal to the
triangle ACB, the less to the greater: which is absurd.” The axiom appears to be an
abstraction or generalisation substituted for an immediate inference from a geometrical
figure, but it takes the form of a sort of definition of whole and part. The probabilities
seem to be against its being genuine, notwithstanding Proclus’ approval of it.

Clavius added the axiom that the whole is the equal to the sum of its parts.”
Surely Heath knew very well the observation of Bernard Bolzano [2] that infinite sets

are equicardinal with their proper subsets. However for finite sets it cannot happen.
Therefore in potentially infinite domains the fifth common notion of Euclid is true.
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.2.1. FM–domains

Actually infinite domain of natural numbers is the set N = {0, 1, 2, . . .}.
As an explication of potentially infinite domain of natural numbers we

mean the family of finite approximations of the actually infinite domain.
This is the following family:

{0},
{0, 1},
{0, 1, 2},
{0, 1, 2, 3},
...

Therefore, having an arithmetical model M = (N,R1, . . . , Rs),
we define its potentially infinite version as the family FM(M) =

{M1,M2,M3, . . .}, where Mn = (Nn, R
<n
1 , . . . , R<n

s ), Nn = {0, 1, . . . , n−1}
and R<n

i is the restriction of Ri to the set {0, 1, . . . , n− 1}.
When the basic model M will be just the standard model of addition

and multiplication then the elements of FM(M) will be called arithmetical
models.

.2.2. π–domains

Let σ be a vocabulary. The set of σ–sentences (closed formulae) is denoted
by Fσ. We assume that all the considered vocabularies are purely relatio-
nal, it means that there are no individual constants and function symbols.
Moreover all vocabularies are finite.

Let K be a class of finite models for a given finite relational vocabulary
σ. The sl–theory of K, sl(K) is the set of all those sentences from Fσ which
are true in almost all models from K, that is

sl(K) = {φ ∈ Fσ : ∃k∀M ∈ K(card(M) > k ⇒M |= φ)}.

For a class of finite models K and a formula φ we define truth in the
limit or truth in all sufficiently large models relation |=sl as follows

K |=sl φ if and only if ∃k∀M ∈ K(card(M) > k ⇒M |= φ).
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Thus we can define sl(K) equivalently as

sl(K) = {φ ∈ Fσ : K |=sl φ}.

Let us observe that if the class K contains only models of cardinality
bounded by some natural number n then sl(K) = Fσ. So sl–theory of this
class is inconsistent.

A class K of finite σ–models is unbounded if and only if for each n there
is M ∈ K such that card(M) > n. The class K will be called unbounded
σ–class or simply unbounded class when a vocabulary will be clear from the
context.

Unbounded classes containing for each cardinality at most one (up to
isomorphisms) model approximate in a sense an infinite domain. Such clas-
ses will be called potentially infinite domains, or pi–domains, or π–domains.
When a π–domain K describes an infinite structure in a stronger sense, that
is K = {M0,M1,M2, . . .} and for all n, Mn ⊆ Mn+1, then we say that K
is a proper π–domain.

By MODσ we mean the class of all finite models of vocabulary σ.
Because we consider only finite vocabularies then there is only countably
many non isomorphic models in MODσ. Moreover we can assume that
all finite models are defined on the initial segments of natural numbers.3
Therefore we can assume that MODσ is a reasonable, computationally
manageable, countable set.

In what follows we will frequently use the set of purely logical sentences
Ainf = {ξ1, ξ2, ξ3, . . .}, where ξn is the following:

∀x1 . . . ∀xn∃y(x1 ̸= y ∧ . . . ∧ xn ̸= y).

The sentence ξn says that there are more than n objects.

3Of course it does not mean that we consider only arithmetical models. We use only
the fact that each finite model is isomorphic with a model having the set {0, 1, . . . , n−1}
as the universe, for some n.
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.3 Logics of finite models

.3.1. Logics Lsl and Lfin
When a vocabulary σ is fixed then sl–logic Lsl we define as Lsl =

sl(MODσ). The logic of finite models Lfin is defined as Lfin = th(MODσ),
where

th(K) = {φ ∈ Fσ :M |= φ, for all M ∈ K}.

Of course we have Lfin ⊆ Lsl. Additionally the inclusion is proper
because each statement ξn, for n > 0, belongs to Lsl − Lfin.

Let us define the set Asl as the union of Lfin and Ainf = {ξ1, ξ2, . . .},
that is Asl = Lfin ∪Ainf.

Theorem 3.1. Lsl is the set of all first oder consequences of Asl.

Proof. We know that Asl ⊆ Lsl. Moreover, see [17], Lsl is closed on
first oder consequences. Therefore it suffices to prove that for all φ ∈ Fσ, if
φ ∈ Lsl then Asl ⊢ φ.

Let us assume that Asl ̸⊢ φ. It means that ¬φ is consistent with Asl
and particularly the sentence (ξn ∧¬φ) is consistent, for arbitrary n. Then
(ξn ∧¬φ) has a model. We claim that it has a finite model. Let us suppose
that it has no finite model. Then ¬(ξn ∧¬φ) ∈ Lfin. It follows that ξn ⇒ φ

belongs to Lfin. Therefore φ is a first order consequence of Asl, what is
impossible by our assumption.

We have proved that the sentence (ξn∧¬φ) has a finite model, for each
n. Therefore ¬φ has arbitrary large finite models and φ cannot be true in
almost all finite models, so φ ̸∈ Lsl. □

.3.2. Trachtenbrot’s theorem

Trachtenbrot proved that the logic Lfin is not recursively enumerable. Be-
cause we need here some of the refinements of his theorem then we give
here a sketchy proof of it.

In what follows we need some properties of the Kleene predicate T and
his function U . T (e, c, n) says that e is a Turing machine and c is its
computation with the input n. U(c) gives the output of the computation
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c. The both T and U can be defined by arithmetical formulae with all
quantifiers bounded by the condition“< c”. So we get the following:

Lemma 3.2. There are arithmetical formulae φT (x, y, z) and φU (x, y)

such that for each e, c, n,m ∈ N and each arithmetical finite model M of
cardinality greater than e, c, n,m we have

T (e, c, n) if and only if M |= φT (e, c, n)

and
U(c) = m if and only if M |= φU (c,m).

Moreover in models too small – that is of cardinality ≤ c – the formulae
are false.

In other words, the Kleene predicate T and the function U are definable
in finite models.

It is known, see [18], that models isomorphic to finite arithmetical mo-
dels can be separated by finite set of axioms in the class of finite models.
Then we have the following.

Lemma 3.3. Let us assume here that σ is the arithmetical vocabulary.
There is a sentence φA such that the class K = {M ∈ MODσ :M |= φA}
contains all arithmetical models and only models isomorphic to arithmetical
models.

Now we can prove the following.

Theorem 3.4 (Trachtenbrot’s theorem). The set Lfin is Π0
1–complete.

Proof. From its definition it follows that the set Lfin is Π0
1. Then we

have to show that all Π0
1–sets are recursively reducible to Lfin. We will show

that Σ0
1–complete set H = {(e, n) : ∃cT (e, c, n)} is recursively reducible to

the consistency in finite models – the problem which is equivalent to the
complement of Lfin. The set H is so called “the halting problem”.

We define f : (e, n) 7→ (φA ∧ ∃cφT (e, c, n)). From the construction it
follows that e halts on the input n if and only if f(e, n) has a finite model.

□

As a corollary we obtain the following.
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Theorem 3.5. The set Asl is Π0
1–complete.

Proof. The set Asl is the union of two disjoint sets: Lfin – which is
Π0

1–complete, and {ξ1, ξ2, ξ3, . . .} – which is recursive. Therefore also Asl is
Π0

1–complete. □

.3.3. Complexity of sl–logic

The main advantage of axiomatic method is the possibility of giving conc-
lusive arguments for truth of our claims in a way that soundness of these
arguments can be checked in a routine way. Therefore sets of theorems of
practically useful theories have to be recursively enumerable or equivalently
Σ0
1. This is so because φ is a theorem is equivalent to:

∃D (D is a proof of φ),

and the relation “is a proof of” should be recursive.
The existence of a complete proof procedure is the main advantage

of first order logic in comparison with stronger logical systems. Therefore
applicability of first order logic for theories based on sl–semantics seems to
be a good argument for plausibility of sl–semantics. Unfortunately things
are not so simple.

Theorem 3.6. The set Lsl is Σ0
2–complete.

Proof. In the paper [20] it is proved that for the standard model of
arithmetic M , the set sl(FM(M)) is Σ0

2–complete. Therefore it suffices to
reduce this set to Lsl. For any formula φ, we define f(φ) = (φA ⇒ φ).
Then we obtain

φ ∈ sl(FM(M)) if and only if f(φ) ∈ Lsl.

□
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.4 The Completeness Theorem

The classical completeness theorem4 says that for each T ⊆ Fσ and φ ∈ Fσ

we have the equivalence

T ⊢ φ if and only if T |= φ,

where on the left side we have the standard provability relation ⊢, and on
the right side we have the standard semantical entailment |=. What will
happen if we replace |= by |=sl?

In this section we are going to prove that the standard completeness is
also valid for sl–semantics.

Now we prove the crucial lemma needed for constructing suitable π–
domains.

Lemma 4.1. Let T ⊆ Fσ contain sl–logic (Asl ⊆ T ) and φ ∈ Fσ.
If φ is consistent with T (T ̸⊢ ¬φ) then for each finite subset

{ψ1, . . . , ψn} ⊆ T there are arbitrary large finite models M such that

M |= (ψ1 ∧ . . . ∧ ψn ∧ φ).

Proof. Let us assume that T satisfies the assumptions and T ̸⊢ ¬φ. Let
us take any finite subset {ψ1, . . . , ψn} ⊆ T . Then the formula (ψ1∧. . .∧ψn∧
φ) has a model. We have show that it has a finite model. Let us assume that
it has only infinite models. Then the formula ¬(ψ1∧ . . .∧ψn∧φ) belongs to
Lfin, so also the formula ((ψ1 ∧ . . . ∧ ψn) ⇒ ¬φ) belongs to Lfin. However
this means that T ⊢ ¬φ, what contradicts to the assumptions. Therefore
there is a finite model M such that

M |= (ψ1 ∧ . . . ∧ ψn ∧ φ).

It remains to prove that M can be arbitrary large. However we can
always put into the considered finite set at the very beginning the statement
ξm, for arbitrary large m, so the size of M should be greater than m. □

Now we are ready to prove of the main theorem of this section.
4The completeness theorem was proved for the first time in the earlier mentioned

paper by Kurt Gödel [5]. However in this general form it was proved by Leon Henkin
[11].
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Theorem 4.2 (The Completeness Theorem). For each T ⊆ Fσ conta-
ining Asl (Asl ⊆ T ) and φ ∈ Fσ we have the equivalence

T ⊢ φ if and only if T |=sl φ.

Proof. Let T ⊆ Fσ contain sl–logic (Asl ⊆ T ) and φ ∈ Fσ.
(⇒) Let us assume that T ⊢ φ. Then there is a finite subset

{ψ1, . . . , ψn} ⊆ T such that ((ψ1 ∧ . . .∧ψn) ⇒ φ) is a first order tautology.
Let K be π–domain (proper or not) such that K |=sl T . Therefore for

each i = 0, 1, . . . , n there is ki such that ψi is true in all models from K

of cardinality greater than ki. We take k = max(k0, k1, . . . , kn). Then all
the sentences ψ0, ψ1, . . . , ψn are true in all models from K of cardinality
greater than k. Hence also φ is true in all models from K of cardinality
greater than k. This proves that T |=sl φ.

(⇐) Now let us assume that T ̸⊢ φ. Therefore ¬φ is consistent with
T . Let ψ0, ψ1, ψ2, . . . be enumeration of all sentences from T . We construct
an infinite sequence of finite models M0,M1,M2, . . . such that for all n,
card(Mn) < card(Mn+1) and

Mn |= (ψ0 ∧ ψ1 ∧ . . . ∧ ψn ∧ ¬φ).

Let us assume that models M0,M1, . . . ,Mn−1 were defined. Then, by
lemma 4.1, there is a model Mn such that card(Mn) > card(Mn−1) and

Mn |= (ψ0 ∧ ψ1 ∧ . . . ∧ ψn ∧ ¬φ).

Finally we take K = {M0,M1,M2, . . .}. By the construction we have K |=sl
T and K |=sl ¬φ. Therefore T ̸|=sl φ. □

All the arithmetical FM–domains are proper π–domains. However, in
general setting we have to consider domains which are not proper.

Let us consider an example. In our language we have one unary predicate
U and two binary predicates S and R.

T1 = {∀x∀y∀y′(S(x, y) ∧ S(x, y′) ⇒ y = y′),

∀x∀x′∀y(S(x, y) ∧ S(x′, y) ⇒ x = x′),

∀x∃y S(x, y),

∀y∃x S(x, y),



TRUTH IN THE LIMIT 85

∀x∀y(S(x, y) ⇒ x ̸= y),

∃=1x ¬U(x),

R restricted to U is a linear ordering with S as the successor},

T = T1 ∪Asl.
There is no proper π–domain K such that K |=sl T .

.5 Characteristic π–domains

In this section we prove a generalization of the theorem of Michał Krynicki,
Jerzy Tomasik, and Konrad Zdanowski [15].

Theorem 5.1 (Existence of characteristic π–domains). For each con-
sistent T ⊆ Fσ containing Asl (Asl ⊆ T ) there is a π–domain K such that
sl(K) is the set of all first order consequences of T .

Proof. Let T ⊆ Fσ be a consistent theory such that Asl ⊆ T . Let us
fix φ0, φ1, φ2, . . . enumeration of all elements of T . Let ψ0, ψ1, ψ2, . . . be
enumeration of all sentences ψ ∈ Fσ such that T ̸⊢ ψ. Moreover we assume
that all such ψ are repeated infinitely many times in this enumeration.

Now we construct – using lemma 4.1 – the sequence of models
M0,M1,M2, . . . such that for all n: card(Mn) < card(Mn+1) and

Mn |= (φ0 ∧ φ1 ∧ . . . ∧ φn ∧ ¬ψn).

Finally we take K = {M0,M1,M2, . . .}.
Now let us assume that T ⊢ φ. Then sl(K) ⊢ φ and φ ∈ sl(K).
Now let us assume that T ̸⊢ φ. Then – by the construction – there are

infinitely many models in K not satisfying φ. Therefore φ ̸∈ sl(K). □
Let us observe that we cannot claim that the above would be a proper π–

domain. Let us consider an example. Take K as the class of all finite fields.
We claim that there is no proper π–domain K ′ such that sl(K) = sl(K ′).

Let us suppose that there is a proper π–domain K ′ such that sl(K) =

sl(K ′). Let us observe that for F, F ′ ∈ K ′, if F ⊆ F ′ then F is a subfield of
F ′ in usual sense and fields F , F ′ are of the same characteristic. Then all
the fields in K ′ are of the same characteristic, say p. Therefore the sentence
χp, saying that the characteristic is p, belongs to sl(K ′), but not to sl(K).
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.6 Some conclusions

We have shown that the first order logic is correct and complete inferen-
ce tool for sl–semantics. Unfortunately, interesting theories of potentially
infinite domains usually are not axiomatizable in the standard sense. Ho-
wever this is true also for classical semantics which allows actually infinite
models. We have no standard axiomatization of standard number theory
either. Only some partial approximations are available, such as Peano Ari-
thmetic.

We claim that sl–semantics is in much better situation than the classical
one. The main problem is that we have the set of logical axioms Asl being
Π0

1–complete. Then it cannot be replaced by any recursive set. Nevertheless
it is ∆0

2, so it is algorithmically learnable.5 The classical number theory is in
much worse position. The arithmetical truth – by the Tarski undefinability
of truth theorem [24] – is beyond the arithmetical hierarchy.

In our times, by a common agreement, mathematics is based on the
axiomatic method. We assume some well justified and well checked state-
ments as axioms, then we apply first order logic for getting mathematical
truths. The method works quite well in majority of cases.

However we know that it does not work in general. In 1931 Kurt Gödel
proved that no reasonable proof system can decide all real mathematical
truths (see [6]). Then the method started to be moore and more popular.
It would seem surprising, because no real working mathematician could
accept his theorems as a result of a formalist game in the style of Rudolf
Carnap. They want to prove true theorems about mathematical facts.

Nevertheless truth of this theorems depends not only on a quality of
reasonings, but also on truth of the axioms. We learn these axioms mainly
by our computational experience. We claim that learning axioms can be
described in terms of algorithmic learnability.

∗ ∗ ∗

The following picture shows our impression of looking at infinity. This
is Ahlambra Palace in Granada, Spain. Of course it is a shadow of shadow,
to get real impression of infinity you have to visite Granada.6

5In the sense independently invented by Mark Gold [8], [9] and Hilary Putnam [23].
6The picture by Vaughan Williams, Wikimedia Commons, Creative Commons 2.0.
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