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ON THE VARIETY OF HEYTING ALGEBRAS

WITH SUCCESSOR GENERATED

BY ALL FINITE CHAINS

A b s t r a c t. Contrary to the variety of Heyting algebras, finite

Heyting algebras with successor only generate a proper subvariety

of that of all Heyting algebras with successor. In particular, all

finite chains generate a proper subvariety, SLHω, of the latter.

There is a categorical duality between Heyting algebras with suc-

cessor and certain Priestley spaces. Let X be the Heyting space

associated by this duality to the Heyting algebra with successor

H .

If there is an ordinal κ and a filtration on X such that X =⋃
λ≤κ Xλ, the height of X is the minimun ordinal ξ ≤ κ such that

Xc
ξ = ∅. In this case, we also say that H has height ξ. This

filtration allows us to write the space X as a disjoint union of

antichains. We may think that these antichains define levels on

this space.

We study the way of characterize subalgebras and homomorphic

images in finite Heyting algebras with successor by means of their

Priestley spaces. We also depict the spaces associated to the free

algebras in various subcategories of SLHω .
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.1 Introduction

In this paper we study the successor function in Heyting algebras. This

operation was introduced by Kusnetsov in [10] and studied by Caicedo and

Cignoli in [3]. A set E(f) of equations in the signature of Heyting algebras

augmented with the unary function symbol f is said to define an implicit

operation of Heyting algebras if for any Heyting algebra H there is at

most one function fH : H → H. The function f is an implicit compatible

operation provided all fH are compatible.

The system E(S) consisting of the following equations [3] defines an

implicit compatible operation S (called successor) of Heyting algebras:

(S1) x ≤ S(x),

(S2) S(x) ≤ y ∨ (y → x),

(S3) S(x) → x = x.

Since S does not exist in the Heyting algebra [0, 1], we get that it is

not a term in the language of Heyting algebras. We say that a Heyting

algebra endowed with its successor function is a S-Heyting algebra. We

write (H,S) for a S-Heyting algebra.

We recall that Heyting duality (see [13] or [9]) establishes a dual equiv-

alence between the category HA of Heyting algebras and Heyting algebra

homomorphisms and the category HS of Heyting spaces and p-continuous

morphisms,

PF : HA ⇆ HSop : CU

Morphisms of SH are called Heyting morphisms of Heyting spaces. Here,

for every Heyting algebra H we write PF(H) for the set of prime filters of

H. For every Heyting space (X,≤), CU(X,≤) denotes the set of clopen

upsets of (X,≤). We have that ϕH(x) = {P ∈ PF(H) : x ∈ P} defines

an isomorphism of Heyting algebras between H and CU(PF(H),⊆) and

GX(x) = {U ∈ CU(X,≤) : x ∈ U} defines an isomorphism of Heyting

spaces between (X,≤) and PF(CU(X,≤)).

We write SHA for the category whose objets are S-Heyting algebras

and whose morphisms are Heyting algebras homomorphisms that commute
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with the successor. A Heyting space (X,≤) is a S-Heyting space if for

every U ∈ CU(X,≤) the set U ∪ (U c)M is clopen, where (U c)M is the set

of maximal elements in U c. We observe that (X,≤) is a S-Heyting space

if and only if it is a Heyting space such that for every clopen downset

V the set VM is clopen. Let (X,≤) and (Y,≤) be S-Heyting spaces and

g : (X,≤) → (Y,≤) a Heyting morphism of Heyting spaces. We say that g is

a S-Heyting spaces morphism if for every downset V in (X,≤) it holds that

g−1(VM ) = [g−1(V )]M . We denote by SHS the category whose objects are

S-Heyting spaces and whose morphisms are S-Heyting space morphisms.

We recall that in [4] it was proved that there exists a dual equivalence

between the category SHA and the category SHS and that if (X,≤) is a

S-Heyting space then in CU(X,≤) the successor function takes the form

S(U) = U ∪ (U c)M

In section 2 we give some general properties of the successor function.

In section 3 we study some particular cases of the duality: linear Heyting

algebras with successor and algebras of finite and ω height. In section

4 we characterize the S-subalgebras and homomorphic images. For the

case of finite S-Heyting algebras we give some pictorial examples of their

determination. Finally in section 5 we study the free algebras in finite

generators of subvarieties of the variety generated by all finite chains.

.2 Some general properties of S

Let H be a Heyting algebra and Ex the filter {y ∈ H : y → x ≤ y}. It was

proved in [4] that the function S can be defined as S(x) = min Ex.

For example, the successor operation exists in any Boolean algebra,

where it is the constant function 1. It also exists in any finite Heyting

algebra and in the free Heyting algebra with one generator. In the chain of

natural numbers with a top ω, S(n) = n + 1, for every natural number n,

and S(ω) = ω. For more examples see [7].

Proposition 2.1. Let (H,S) be a S-Heyting algebra.

(i) S(x ∧ y) = S(x) ∧ S(y), for every x, y ∈ H.
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(ii) The equations (S1) and (S3) are equivalent to the equation S(x) →

x ≤ S(x).

(iii) S(x) = x if and only if x = 1.

Proof. (i) It is a consequence of ([4], Lemma 2.2).

(ii) It is a consquence of the fact that, y → x ≤ y if and only if y → x =

x, x ≤ y.

(iii) It follows from (S1) and (S3). 2

We shall say that M is a subalgebra of (H,S) (or a S-subalgebra) if M

is a subalgebra of H such that for every x ∈ M , S(x) ∈ M .

Lemma 2.2. Let (H1, S) and (H2, S) be S-Heyting algebras, and let f :

H1 → H2 be a Heyting algebras homomorphism. The following conditions

are equivalent:

(a) f is a morphism in SHA.

(b) For every x ∈ H1 we have that f(S(x)) ≤ S(f(x)).

(c) For every x, y ∈ H1 the following equations hold:

f(S(x)) ≤ y ∨ (y → f(x)) , (1)

f(S(x)) → f(x) = f(x) (2)

(d) Im(f) is a S-subalgebra of H2.

Proof.

(a) ⇔ (b). We only need to prove (b) ⇒ (a). We have that S(f(x)) ≤

f(S(x)) ∨ (f(S(x)) → f(x)) = f(S(x)) ∨ f(S(x) → x) = f(S(x)) ∨ f(x) =

f(x ∨ S(x)) = f(S(x)).

(a) ⇔ (c). We suppose that the equations (1) and (2) hold. Taking

y = S(f(x)) in (1), f(S(x)) ≤ S(f(x)) ∨ (S(f(x)) → f(x)) = S(f(x)) ∨

f(x) = S(f(x)). Hence (b) holds, and then (a) holds.

Conversely we suppose that (a) holds. Using (S2) we conclude that

f(S(x)) = S(f(x)) ≤ y ∨ (y → f(x)). Now using (S3) we conclude that

f(S(x)) → f(x) = S(f(x)) → f(x) = f(x).
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(a) ⇔ (d). We suppose that f commute with S. Let y ∈ Im(f). Thus

there exists x ∈ H1 such that f(x) = y. Then S(y) = S(f(x)) = f(S(x)).

Therefore S(y) ∈ Im(f).

Conversely, let Im(f) be a Heyting subalgebra of H2 closed by S. If

x ∈ H1 we have that S(f(x)) ∈ Im(f). Then there exists z ∈ H1 such

that S(f(x)) = f(z). By (S2) we conclude that S(x) ≤ z ∨ (z → x).

Hence f(S(x)) ≤ f(z) ∨ (f(z) → f(x)) = S(f(x)) ∨ (S(f(x)) → f(x)) =

S(f(x)) ∨ f(x) = S(f(x)). Then (b) holds, so (a) holds. 2

Lemma 2.3. (i) Let (H1, S) and (H2, S) be S-Heyting algebras, and

let f : H1 → H2 be a Heyting algebras homomorphism. If f is a

surjective function then it is a morphism in SHA.

(ii) Let (X,≤) and (Y,≤) be S-Heyting spaces and g : (X,≤) → (Y,≤)

a continuous p-morphism. If g is an injective function then it is a

morphism in SHS.

Proof.

(i) It is immediate from Lemma 2.2.d.

(ii) It follows from (i) and the duality between SHS and SHA. 2

.3 Particular cases of the duality

In this section we characterize the Heyting spaces asociated to linear Heyt-

ing algebras with successor. Then we define the notion of height of a Heyt-

ing space and of a Heyting algebra.

.3.1 Linear S-Heyting algebras

Linear Heyting algebras were considered by Horn in [8] as an intermediate

step between the classical calculus and intuitionistic one and were studied

also by Monteiro [12], G. Mart́ınez [11] and others. This is the subvariety of

Heyting algebras generated by the class of totally ordered Heyting algebras

and can be axiomatized by the usual equations for Heyting algebras plus

the linearity law (x → y) ∨ (y → x) = 1. In ([1], ch.IX) and in [12] there

are characterizations for linear Heyting algebras.
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If H is a Heyting algebra, for every P ∈ PF(H) we define CP = {Q ∈

PF(H) : P ⊆ Q}. We say that PF(H) is a root system if for every

P ∈ PF(H) the set CP is totally ordered in (PF(H),⊆). Horn showed

in [8] (although it was in fact proved by Monteiro, see [12]) that linear

Heyting algebras can be characterized among Heyting algebras in terms of

the prime filters. Specifically, a Heyting algebra is a linear Heyting algebra

if and only if (PF(H),⊆) is a root system.

Let SLH be the full subcategory of SHA whose objects are linear Heyt-

ing algebras with S. A SL-Heyting space is a S-Heyting space such that

for every x ∈ X the set [x) = {y ∈ X : y ≥ x} is totally ordered. The

category SLS is the full subcategory of SHS whose objects are SL-Heyting

spaces.

For the duality given between SHA and SHS we have the following

Theorem 3.1. There is a dual equivalence between the categories SLH

and SLS.

We now give an equivalent way to describe S in the algebra of clopen

upsets of an object of SLS.

Let (X,≤) be an object in SLS and V a clopen downset in (X,≤). For

every x ∈ V we write xV for the maximum of the set [x) ∩ V = {y ∈ V :

y ≥ x}.

Proposition 3.2. Let (X,≤) be an object in SLS and V a non empty

clopen downset. Then for every x ∈ V there exists xV . Morever, VM =⋃
x∈V {xV }.

In particular, if U ∈ CU(X,≤) and U 6= X then

S(U) = U ∪ (
⋃

x∈Uc

{xUc})

Proof. Let V be a non empty clopen downset. First we prove that for

every x ∈ V the set [x)∩V has maximal elements. It is equivalent to prove

that if H = CU(X,≤) then for every P ∈ PF(H) and V clopen downset in

PF(H) such that P ∈ V we have that the set {Q ∈ PF(H) : P ⊆ Q,Q ∈ V }

has maximal elements. The latter is a consequence of Zorn’s Lemma (see
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the proof of Lemma 4.4 in [4]).

Let y ∈ [x)∩ V and y be maximal in this set. If z ∈ [x)∩ V then x ≤ z

and x ≤ y. Thus y ≤ z or z ≤ y. Since y, z ∈ [x) ∩ V and y is maximal

in this set, if y ≤ z then y = z. In any case z ≤ y, so [x)∩V has a maximum.

We now prove that VM =
⋃

x∈V {xV }. If x ∈ VM then x ∈ [x) ∩ V . Let

y ∈ [x) ∩ V , so x ≤ y with y ∈ V . Using that x ∈ VM we conclude that

x = y. Hence [x) ∩ V = {x} and then x ∈
⋃

x∈V {xV }.

Conversely, let y ∈
⋃

x∈V {xV }. Thus y ∈ V and there exists x ∈ V

such that x ≤ y, and if x ≤ z and z ∈ V then z ≤ y. We want to prove

that y ∈ VM . Let y ≤ z, with z ∈ V . In particular it holds that x ≤ z and

then z ≤ y. Hence z = y. 2

.3.2 S-Heyting algebras of height ω

Let (X,≤) be a S-Heyting space. Let κ be an ordinal. We define a filtration

on (X,≤) by X∅ = XM and for λ ≤ κ, Xκ =
(⋃

λ<κ Xλ

)
∪
((⋃

λ<κ Xλ

)c)
M

.

We say that (X,≤) is a κ-filtered space if

X =
⋃

λ≤κ

Xλ (3)

We call the height of a κ-filtered space (X,≤) to the minimun ordinal

ξ ≤ κ such that Xc
ξ = ∅. We say that a S-Heyting algebra H has height ξ

if its associated Heyting space does.

Remark 3.3. Note that for the finite ordinals we have that X∅ =:

X1 ⊆ X2 ⊆ . . . ⊆ Xn ⊆ Xn+1 ⊆ . . .. Hence, if we write ω for the first

non finite ordinal, and we assume that (X,≤) is ω-filtered, then (3) can be

written as

X =
⋃

n≤ ω

Xn =
⋃

n∈ N

Xn ∪

(
⋃

n∈ N

Xn

)c

M

(4)

Let K be a class of S-Heyting algebras of height less equal to a fixed

ordinal ξ. Using the categorical duality between S-Heyting algebras and

S-Heyting spaces, it can be shown that the elements of classes H(K), S(K)

and P(K) have also height less or equal to ξ. Here H, S and P are the
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class operators of universal algebra [2]. Hence for each ordinal ξ, the class

of S-Heyting algebras of height less or equal to ξ is a variety.

For every natural number n ≥ 1 we write SHn for the variety of S-

Heyting algebras of height less or equal to n. This variety can be charac-

terized by the equation

S(n)(0) = 1

We write SHω for the variety of S-Heyting algebras of height ω.

Note that SH1 is exactly the variety of Boolean algebras, and that we

have that

SH1 ⊆ SH2 ⊆ . . . SHn ⊆ . . . ⊆ SHω

Example 1. Let Ln be the chain {0, 1, . . . , n} seen as Heyting algebra

with successor. The height of this algebra is h(Ln) = n, and in consequence

Ln ∈ SHn. Let us now consider the product algebra

L :=
∏

n∈N

Ln

Take C as the S-subalgebra of L generated by 0. It can be seen that C is

isomorphic as a chain to the first infinite ordinal. Hence C ∈ SHω. In fact,

C is in the subvariety of SHω, SLHω = SHω ∩ SLH.

Remark 2. Since the chain C of previous Example lies in SLHω, we

have on one hand that the variety V generated by C is a subvariety of

SLHω. On the other hand, since each finite chain is homomorphic image of

C, we have that SLHω is a subvariety of V. Hence, V = SLHω.

.4 Subalgebras and homomorphic images

.4.1 Subalgebras

Let L be a bounded distributive lattice and M a sublattice of L. We define

the binary relation

RM = {(P,Q) ∈ PF(L) × PF(L) : Q ∩ M ⊆ P}
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For each binary relation R in PF(L) we define the subset of clopen upsets

of PF(L)

MR = {U ∈ CU(PF(L),⊆) : R−1(U) ⊆ U}.

It was shown in [6] that MR is a bounded sublattice of CU(PF(L),⊆)

and that the relation RM is reflexive, transitive and when X = PF(L) it

verifies that

(l) If for P,Q ∈ PF(L) such that (P,Q) /∈ RM there exists U ∈ MR such

that P ∈ U and Q /∈ U then (GX (P ), GX (Q)) /∈ RMR
.

It was also shown that the correspondence M 7−→ RM establishes an

anti-isomorphism between the lattice of bounded sublattices of a bounded

distributive lattice L and the lattice of binary relations defined in the Priest-

ley space PF(L) which are reflexive, transitive and satisfies the condition

(l).

Let X be a set, R1 and R2 binary relations on X. We define the binary

relation R = R1 ◦ R2 in the following way:

(x, y) ∈ R ⇔ there exists z ∈ X such that (x, z) ∈ R1 and (z, y) ∈ R2.

Let H be a Heyting algebra. We consider the following binary relation

in PF(H):

(P,Q) ∈ RH iff for all x, y ∈ H, if x → y ∈ P and x ∈ Q, then y ∈ Q.

This relation is the inclusion (Theorem 4.24 of [5]).

Let H a Heyting algebra with successor. We define the following binary

relation in PF(H):

(P,Q) ∈ RS iff S−1(P ) ⊆ Q

Theorem 4.1. Let (H,S) be a S-Heyting algebra. The correspondence

M 7−→ RM establishes an anti-isomorphism from the lattice of subalgebras

of (H,S) and the lattice of binary relations defined in the Heyting space

PF(H) which are reflexive, transitive, satisfies the condition (l) and such

that

(1) R−1
M ◦ RH ⊆ RH ◦ (R−1

M ∩ RM ),

(2) R−1
M ◦ RS ⊆ RS ◦ R−1

M .
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Proof. It follows from ([4], Corolary 4.3). 2

Lemma 4.2. If (H,S) is a non trivial S-Heyting algebra of finite height

then

(P,Q) ∈ RS ⇔ P ⊂ Q

Proof. If (P,Q) ∈ RS then S−1(P ) ⊆ Q. Thus by (S1) we conclude

that P ⊆ Q. Suppose that P = Q, then S−1(P ) = P . On the other hand,

there is n ∈ N such that S(n)(0) = 1. Thus 0 ∈ P , a contradiction. Then

P ⊂ Q. The converse is a consequence of condition (RF3) and Theorem

4.4 in [4]. 2

Corolary 4.3. Let (H,S) be a S-Heyting algebra of finite height and

M a subalgebra of H. The following conditions are equivalent:

(a) M is a S-subalgebra.

(b) If P,Q,Z ∈ PF(H) satisfy that P ∩ M ⊆ Z ⊂ Q then there is W ∈

PF(H) such that P ⊂ W and W ∩ M ⊆ Q.

Proof. It follows from Lemma 4.2 and Theorem 4.2 of [4]. 2

Let H be a finite Heyting algebra. In the last part of this section we shall

build up a bijection between the subalgebras of (H,S) and some equivalence

relations defined in (PF(H),⊆). We start with some preliminary lemmas.

Lemma 4.4. If H is a finite Heyting algebra then (PF(H),⊆) has finite

height.

Proof. As H is finite, by (iii) of Proposition 2.1 and the fact that

x ≤ S(x), there is a natural number n such that S(n)(0) = 1. Then

(PF(H),⊆) has finite height. 2

Let X0 = ∅. We define X̂i = (Xc
i−1)M , for i = 1, ..., n.

Lemma 4.5. Let (X,≤) be a S-Heyting space of height n. Then X =⋃n
i=1 X̂i.

Proof. It follows from the definitions of {Xi}i and {X̂i}i. 2

Note that previous lemma allows us to write the space X as a disjoint

union of antichains X̂i. We may think that these antichains define levels
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on the space.

Let (X,≤) be a S-Heyting space of height n and R an equivalence

relation defined in X. We write X/R for the quotient topological space.

For every x ∈ X we denote by [x]R the equivalence class of x with respect

to R. Then we can define in X/R the following partial order:

(C) [x]R ≤R [y]R iff [x]R ⊆ ↓ [y]R

i.e., if for every z ∈ [x]R there is w ∈ [y]R such that z ≤ w.

We write (R1) and (R2) for the following conditions:

(R1) R =
⋃n

i=1 Ri, where Ri = R ∩ (X̂i × X̂i) (for i = 1, ..., n).

(R2) Let x, y ∈ X. If x ≤ y then [x]R ≤R [y]R.

Let H be a S-Heyting algebra and M a subalgebra of (H,S). We define

the following equivalence relation on PF(H):

PRMQ ⇔ P ∩ M = Q ∩ M.

We can define in PF(H)/RM the following partial order:

[P ]RM ≤M [Q]RM ⇔ P ∩ M ⊆ Q ∩ M

Lemma 4.6. Let H be a finite Heyting algebra and M be a subalgebra

of (H,S). The following conditions hold:

(i) The aplication f : (PF(H),⊆) → (PF(M),⊆) given by

f(P ) = P ∩ M

is an epimorphism in the category SHS.

(ii) If ≤RM is the partial order in PF(H) given in (C) then ≤M = ≤RM .

Morever, RM satisfies the conditions (R1) and (R2).

(iii) (PF(H)/RM ,≤RM ) is a S-Heyting space.

Morever, the aplication gM : (M,S) → (CU(PF(H)/RM ,≤RM ), S)

given by

gM (x) = {[P ]RM : x ∈ P ∩ M}

is an isomorphism in the category SHA.
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Proof. (i) The inclusion i : M → H is a monomorphism in SHA.

Then, if f = CU(i) we have that f : (PF(H),⊆) → (PF(M),⊆) is given by

f(P ) = P ∩ M and it is an epimorphism in SHS .

(ii) Let P,Q ∈ PF(H). We must prove the following:

[P ]RM ≤M [Q]RM ⇔ [P ]RM ≤RM [Q]RM .

Let [P ]RM ≤M [Q]RM , so P ∩M ⊆ Q∩M . Let T ∈ [P ]RM . We consider

the function f given in (i). As T ∩ M ⊆ Q ∩ M then f(T ) ⊆ f(Q). By

(i) f is p-morphism, so there exists Z ∈ PF(H) such that T ⊆ Z and

Z ∩ M = f(Z) = f(Q) = Q ∩ M . Then [P ]RM ≤RM [Q]RM .

Conversely, let [P ]RM ≤RM [Q]RM . By definition we have that [P ]R ≤M

[Q]R.

The condition (R2) holds because ≤M = ≤RM . By Lemmas 4.4 and

4.5, to prove condition (R1) is enough to prove the following fact:

If P ∈ (PF(H))M and (P,Q) ∈ RM then Q ∈ (PF(H))M .

By (i) we conclude that f−1[(PF(M))M ] = (PF(H))M , so

Q ∈ (PF(H))M ⇔ f(Q) ∈ (PF(M))M ⇔ Q ∩ M ∈ (PF(M))M .

But as P ∈ (PF(H))M we conclude that P ∩M ∈ (PF(M))M . As P ∩M =

Q ∩ M then Q ∩ M ∈ (PF(M))M .

(iii) (PF(H)/RM ,≤RM ) is a S-Heyting space because H is finite. Now

we can define the bijection g : (PF(H)/RM ,≤RM ) → (PF(M),⊆) given

by g([P ]RM ) = f(P ) (it is surjective by (i) and injective by definition

of RM). Besides, as g is an isomorphism in SH, by (ii) of Lemma 2.3

it is an isomorphism in SHS too. Then g1 = CU(g) : (CU(PF(H),⊆

), S) → (CU(PF(H)/RM ,≤RM ), S) given by g1(U) = g−1(U) is also an

isomorphism in SHA and ϕM : (M,S) → (CU(PF(M),⊆), S). Thus

gM : (M,S) → (CU(PF(H))/RM ,≤RM ), S), given by gM (x) = g1(ϕM (x)),

is an isomorphism in SHA. Then we have that g1(ϕM (x)) = {[P ]RM : x ∈

P ∩ M}. 2

If X is a topological space and R is an equivalence relation in X we

define the application ρR : X → X/R given by ρR(x) = [x]R.
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Lemma 4.7. Let H be a finite Heyting algebra, R an equivalence re-

lation in PF(H) that satisfies the conditions (R1) and (R2), and ≤R the

partial order in PF(H)/R given by (C). Then CU(PF(H)/R,≤R) is iso-

morphic to some subalgebra M of (H,S). Morever, R = RM .

Proof. Since H is a finite Heyting algebra we have that (PF(H),≤) is

a S-Heyting space. The quotient map ρR : (PF(H),⊆) → (PF(H)/R,≤R)

is a morphism in SHS . The function ρR is continue because H is finite.

By (R2) we have that ρR preserves order. Let now P,Q ∈ PF(H) such

that ρR(P ) ≤R [Q]R, so [P ]R ≤R [Q]R. Therefore there is F ∈ PF(H) such

that P ⊆ F and [F ]R = [Q]R. By (R2) we have that ρR(P ) ≤R ρR(F ) =

ρR(Q) = [Q]R, so ρR is a p-morphism.

Let U ∈ CU(PF(H),⊆). We will prove that

ρ−1
R [(U c)M ] = [ρ−1

R (U c)]M .

If P ∈ [ρ−1
R (U c)]M then [P ]R ∈ U c. Let [P ]R ≤R [Q]R, with [Q]R ∈ U c.

Then there is F ∈ PF(H) such that P ⊆ F and [F ]R = [Q]R. In con-

sequence [F ]R ∈ U c, so P = F . Then [P ]R = [F ]R = [Q]R. Therefore

[ρ−1
R (U c)]M ⊆ ρ−1

R [(U c)M ]. Conversely, let P ∈ ρ−1
R [(U c)M ] and hence

[P ]R ∈ (U c)M . Let P ⊆ Q with [Q]R ∈ U c. By (R2), ρR(P ) ≤R ρR(Q).

Then [P ]R = [Q]R. By (R1) there is some natural number k such that

(P,Q) ∈ X̂k. Since P ⊆ Q, P = Q, and we get that ρ−1
R [(U c)M ] ⊆

[ρ−1
R (U c)]M . In consequence ρR is a surjective S-morphism.

Let (X,≤) = (PF(H),⊆). We have that ρR is an epimorphism in

SHS, so h1 = CU(ρR) : (CU(X/R,≤R), S) → (CU(X,≤), S) is a monomor-

phism in SHA and for this and Lemma 2.2 the function gR = ϕ−1
H h1 :

(CU(X/R,≤R), S) → (ϕ−1
H h1(CU(X/R,≤R), S) is an isomorphism in SHA.

Morever, gR(U) = ϕ−1
H (ρ−1

R (U)). Define now the following subalgebra of

(H,S):

M = ϕ−1
H h1(CU(X/R,≤R))

We have that

x ∈ M ⇔ ∃U ∈ CU(X/R,≤R) : ϕH(x) = ρ−1
R (U) (5)
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On the other hand the applications h2 = PF(gR) : (PF(M),⊆) →

PF(CU(X/R,≤R)) and GX/R : (X/R,≤R) → PF(CU(X/R,≤R) are iso-

morphisms in SHS, so h3 = G−1
X/Rh2 : (PF(M),⊆) → (X/R,≤R)) is

also an isomorphism. By (5) we have that h3(P ∩ M) = [P ]R. By simi-

lar arguments to those of the proof (iii) of Lemma 4.6 we conclude that

g : (X/RM ,≤RM ) → (PF(M),⊆) given by g([P ]RM ) = P ∩ M is an iso-

morphism in SHS and then h = h3g : (X/RM ,≤RM ) → (X/R,≤R), given

by h([P ]RM ) = [P ]R, is an isomorphism. Therefore we have that

(P,Q) ∈ R ⇔ [P ]R = [Q]R ⇔ [P ]RM = [Q]RM ⇔ (P,Q) ∈ RM

Hence R = RM . 2

Theorem 4.8. Let H be a finite Heyting algebra. There is a bijection

M 7−→ RM between the subalgebras of (H,S) and the equivalence relations

in PF(H) which satisfy (R1) and (R2).

Proof. By (ii) of Lemma 4.6 the bijection is well defined. Let M and N

be subalgebras of (H,S) such that RN = RM . Then CU(PF(H)/RM ,≤RM )

coincides with CU(PF(H)/RN ,≤RN ). Let x ∈ M . By (iii) of Lemma 4.6 we

have that there is y ∈ N such that gM (x) = gN (y). We want to prove that

x = y. We suppose that x � y. Then by the Prime Filter Theorem there is

P ∈ PF(H) such that x ∈ P and y /∈ P , so x ∈ P ∩ M and y /∈ P ∩ N . In

consequence [P ]RM ∈ gM (x) and [P ]RN /∈ gN (y). Since [P ]RM = [P ]RN we

have that gM (x) 6= gN (y), a contradiction. Then x = y ∈ N , so M ⊆ N .

The other inclusion is proved in the same way. Therefore M = N .

The surjectivity is a consequence of Lemma 4.7. 2

Remark 4.9. If M is a S-subalgebra then RM = RM ∩ R−1
M .

Example 3. The description given above for the S-subalgebras of finite

algebras allows us to give a simple pictorial procedure to determine them.

Consider the following concrete example: Find all the S-subalgebras of
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L5 × L4. In order to so doing, let us draw the associated space

• •

• •

• •

•

Note that we have taken care of preserving the levelwise structure of the

space. As a consequence of Theorem 4.8, we have that the possible relations

associated to some S-subalgebra are the trivial one and those depicted

bellow

• •

• •

• •

•

• •

• •

• •

•

• •

• •

• •

•

Here we are identifying the equalized dots. Thus the spaces associated to

the nontotal S-subalgebras are

•

~~
~~

~~
~

@@
@@

@@
@

• •

• •

•

•

•

~~
~~

~~
~

@@
@@

@@
@

• •

•

•

•

•

•

Observe that, in the finite case, the levels corresponds exactly to the fibers

of the continuous map associated to the canonical inclusion of the subalge-

bra generated by the constants.
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.4.2 Homomorphic images

Let X be a S-Heyting space, Y a topological subspace of X and i : Y → X

the inclusion function. For every A ⊆ Y we define ↓Y A = {y ∈ Y : (∃a ∈

A : y ≤ a)}. We write ↓ for ↓X .

Lemma 4.10. The following conditions hold:

(a) For every U ⊆ X, if Y is an upset then UM ∩ Y = (U ∩ Y )M .

(b) For every U ⊆ X, if Y is an upset then ↓Y (U ∩ Y ) = (↓ U) ∩ Y .

(c) If Y is an upset, then i is a momomorphism in SH if and only if it is

a monomorphism in SHS .

(d) i is a monomorphism in SH if and only if Y is a closed upset.

Proof.

(a) Let x ∈ (U ∩Y )M , then x ∈ U ∩Y . It suffices to show that x ∈ UM .

Let x ≤ u with u ∈ U . Since Y is an upset, u ∈ U ∩ Y . Then x = u.

Conversely, let x ∈ UM ∩ Y . In particular, x ∈ U ∩ Y . Let x ≤ u with

u ∈ U ∩ Y . Since x ∈ UM we have that x = u.

(b) Let x ∈↓Y (U ∩ Y ). Thus x ∈ Y and there exists u ∈ U ∩ Y such

that x ≤ u. Then x ∈ (↓ U) ∩ Y . Conversely let x ∈ (↓ U) ∩ Y , so x ∈ Y

and there exists u ∈ U such that x ≤ u. Since Y is an upset we have that

u ∈ Y , so u ∈ U ∩ Y ; therefore x ∈↓Y (U ∩ Y ).

(c) Let i be a monomorphism in SH. First we will prove that Y is an

object of SHS. Let V a clopen downset in Y . Then there are an open

set A and a closed set B in X such that V = A ∩ Y = B ∩ Y . As V is

closed in Y and Y is compact, V is compact. In particular we have that

V = A∩ V . On the other hand, A is union of clopens {Ai}i∈I , and as V is

compact we have that V = (
⋃n

i=1 Ai) ∩ V , for some natural n. We define

C = (
⋃n

i=1 Ai), so C is clopen and V = C ∩ Y . Then, by (b) we have that

V =↓Y V = (↓ C)∩Y . As X is a S-Heyting space, ↓ C is a clopen downset

in X, so by (a) we conclude that VM = (↓ C)M ∩ Y . Therefore we have

that VM is clopen in Y . Besides by (a) i is a S-morphism. The converse is

inmediate.
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(d) Let i be a monomorphism in SH. As Y is compact and X Hausdorff

we have that Y is closed. Let now y ≤ x with y ∈ Y , so i(y) ≤ x. Since i is

a p−morphism there exists z ∈ Y such that y ≤ z and i(z) = i(x). Hence

z = x. Then x ∈ Y and Y is an upset. Conversely, let Y be a closed upset

of X. Besides Y is a Priestley space. Let A be an open set in Y . Then

there is an open set U in X such that A = U ∩Y . By (b) we conclude that

↓Y A = (↓ U) ∩ Y . Since X is a S-Heyting space and ↓ U is open in X we

have that ↓Y A is open in Y . 2

Theorem 4.11. i is a monomorphism in SHS if and only if Y is a

closed upset of X.

Proof. It is a consequence of (c) and (d) of Lemma 4.10. 2

.5 Free S-Heyting algebras in varieties generated by finite

chains

Let n ≥ 0. Write SLHn for the subvariety of SHn generated by Ln. It is

shown in ([3], Theorem 6.1), that all implicit connectives of Ln are terms.

The proof of this theorem also shows that the class of implicit connec-

tives of Ln coincides with the set of Heyting polynomials on it; identical,

by affine completeness, to the set of compatible functions of Ln. Hence,

the unary implicit connectives of Ln, which constitute the elements of the

free algebra in one generator of SLHn, may be explicitly described as those

functions f : Ln → Ln satisfying for some a ∈ Ln that f(x) ≥ x, for every

x ∈ [0, a] and f(x) = a on (a, 1].

A diagram of the free algebra in one generator of SLH3 is depicted in

([3], figure 2).

In this section we shall completely characterize the free algebras in

one generator for the varieties SLHn, for n ≥ 1 and the free algebra in

one generator for the variety SLHω. In order to get free algebras in more

generators we give at the end of this section a brief description of the

product of finite S-Heyting spaces
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.5.1 Free algebras for SLHn

For any two distributive lattices M , N , we write M ⊕ N for the ordinal

sum (as posets) of these lattices (see [1], p. 39). If M and N are finite,

then M ⊕N is also finite, and hence a Heyting algebra. We write 0 for the

lattice with only one element. Let us also write Fn for the free algebra in

one generator, xn, in the variety SLHn.

Lemma 5.1. The cardinal of the universe of Fn is

|Fn| =
n−1∑

j=0

n!

j!
(6)

Proof. A direct counting argument based on the explicit description

of the elements of the free algebra in one generator of SLHn as functions

f : Ln → Ln, given above. 2

Observe that for any n ≥ 0 we have that 0 ⊕ Fn ∈ SLHn+1; hence

we have a unique SLHn+1-morphism αn+1 : Fn+1 → 0 ⊕ Fn such that

αn+1(xn+1) = xn. We also have that Ln+1 ∈ SLHn+1, and hence a unique

morphism βn+1 : Fn+1 → Ln+1 with βn+1(xn+1) = 0. By the universal

property of the product in SLHn+1, we have a unique morphism δ making

the following diagram commute:

Fn+1

αn+1

wwnnnnnnnnnnnn
βn+1

''OOOOOOOOOOOO

δ

��

0⊕ Fn Ln+1

(0 ⊕ Fn) × Ln+1

p1

ggPPPPPPPPPPPP

p2

77ooooooooooo

(7)

Since Fn+1 and (0 ⊕ Fn) × Ln+1 both have the same finite cardinal, in

order to prove they are SLHn+1-isomorphic, it will suffice to see that δ is

onto.

Lemma 5.2. (1, 0) ∈ im δ.

Proof. By definition of δ, δ(xn+1) = (xn, 0). Consider the S-Heyting

algebra term τ(x) = S(0) → x. A straightforward computation allow us to
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see that

τ0⊕Fn(xn) = 1, and (8)

τLn+1(0) = 0 (9)

Consider now the element y0 = τFn+1(xn+1) ∈ Fn+1. By (8) and (9), this

element is such that δ(y0) = δ(τ(xn+1)) = τ (0⊕Fn)×Ln+1(xn, 0) = (1, 0). 2

Lemma 5.3. The morphism δ of (7) is onto.

Proof. Take (x, n) ∈ (0⊕Fn)× Ln+1. Since (x, n) = (x, 0)∨ (0, n), we

shall consider separately the case x = 0 and n = 0.

If x = 0, take y1 = Sn0 ∧ (xn+1 → 0). We get that δ(y1) = Sn(0, 0) ∧

[(xn, 0) → (0, 0)] = Sn(0, 0) ∧ (xn → 0, 1) = Sn(0, 0) ∧ (0, 1) = (0, Sn0) =

(0, n).

On the other hand, suppose that n = 0 and x ≥ S0. Since Fn is free,

there is an S-Heyting term t such that x = t(xn). Take t the term we get

by replacing by S0 any appearence of 0 in t. We have that x = t
0⊕Fn(xn).

Taking now y2 = t(xn+1) and y0 as in Lemma 5.2, we get that u = y0 ∧ y2

is such that δ(u) = (x, 0).

Thus, we have proved that im δ = (0 ⊕ Fn) × Ln+1. 2

As an immediate consequence of Lemmas 5.1 and 5.3, we have the

following

Theorem 5.4. There is an S-isomorphism of Heyting algebras between

Fn+1 and (0 ⊕ Fn) × Ln+1.

.5.2 Free algebra for SLHω

Let us write Fω for the free algebra in one generator, xω, in SLHω. Since

for each finite n, we have that Fn ∈ SLHω, there is a unique surjective

S-morphism of Heyting algebras Ωn : Fω → Fn, applying xω on xn. In

fact, Fn
∼= Fω/〈Sn0〉. Let us also write for n ≥ m, Ωmn : Fn → Fm for

the unique S-morphism applying xn on xm. The system Ωmn : Fn ։ Fm,

m ≤ n is directed.

Theorem 5.5. Let Ωmn : Fn ։ Fm, m ≤ n be as before. Then

Fω = colim Fn (10)
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Proof. Call H = colim Fn. Let us verify that H has the universal

property of the free algebra in one generator in the variety SLHω.

Let us first give an explicit construction of H. Take H ′ =
∏

j≥1 Fj .

We take H as the subalgebra of H ′ whose elements a = (a1, a2, ...) are such

that Ωij(aj) = ai for i ≤ j. We have in particular that x = (x1, x2, ...) ∈ H.

Let u ∈ H, hence u = (u1, u2, ...) with Ωij(uj) = ui for i ≤ j. Since

ui ∈ Fi there must be an SLHω-term t such that ui = tFi(xi), for every

i ≥ 1. By the finiteness of the length of terms, there must be some m ≥ 1

such that t is a term in SLHm. Hence u = tH(x), showing that H is gener-

ated by x. It is straightforward to verify that H = colim Fn.

Let A be any algebra in SLHω, and a ∈ A. Let ϕj : H → A/ < Sj0 =

1 > be the S-morphism given by ϕj(u) := tA(a)j , the class modulo the

filter generated by Sj(0) of tA(a), being t the SLHω-term that defines u.

For each term t there is a j such that ϕj is completely determined by the

condition of applying xj to a. Thus, the condition ϕ(x) = a defines a

unique SLHω-morphism ϕ : H → A, that given by ϕ(x) := tA(a). 2

.5.3 Priestley spaces for Fn

We have seen that there are dualities between the categories SLHm, m =

1, 2, ..., ω and certain categories of Heyting spaces. In this section we use

the recursive nature of the definition of Fn and the “good” properties of

any categorical duality to make explicit constructions for these spaces.

Condition S(0) = 1 forces an S-Heyting algebra to be boolean. Hence

SLH1 = Boole, and hence F1 is the free boolean algebra in one generator,

whose Stone space is

• •

We have seen that F2
∼= (0⊕F1)×L2. Since PF is part of a categorical

duality, it sends products into coproducs, and PF(F2) ∼= PF(0 ⊕ F1) ⊔

PF(L2), which is simply the coproduct of the topological spaces. On the
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other hand, PF(0 ⊕ F1) can be seen to be

•

~~
~~

~~
~

@@
@@

@@
@

• •

Thus, PF(F2) is

• •

~~
~~

~~
~

@@
@@

@@
@

• • •

Observe that in general PF(0⊕Fn) is built up from PF(Fn) by adding

a new point over it. Then, for instance, we get that PF(F3) is

• •

~~
~~

~~
~

@@
@@

@@
@

• • •

~~
~~

~~
~

@@
@@

@@
@

• • • •

This procedure allows us to effectively built up the space of any one of the

free algebras in one generator of the varieties generated by one finite chain.

Since Fω = colim Fn as we have previously seen, PFFω is the forest Xω

of infinite height depicted above, whose topology is given by the subbases

of upper clopens of the form Ux = {u ∈ Xω | u ≥ x} where x is any element

of Xω.

• •

~~
~~

~~
~

@@
@@

@@
@

• • •

~~
~~

~~
~

@@
@@

@@
@

• • • •

~~
~~

~~
~

@@
@@

@@
@

•

�

�

� •

�

�

� •

�

�

� •

�

�

� •

|
|

|
|

?
?

?
?
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.5.4 Product of finite Priestley spaces in SHS

Since SHS is dually categorically equivalent to a variety, it has arbitrary

products. In this subsection we want to give a simple explicit description

for the product of two finite spaces in SHS .

As we have already noted at the end of Example 3, the levelwise struc-

ture of finite spaces in SHS plays an important role in their description. Let

X and Y be two finite spaces in SHS . Since they are finite, they both have

finite height. Suppose that h(X) = m ≤ n = h(Y ). Write Ln the Priest-

ley space of Ln. Hence we have morphisms iX : X → Ln, iY : Y → Ln

and i : X × Y → Ln induced by the unique SH-maps from Ln to CU(X),

CU(Y ) and CU(X ×Y ) respectively. The following diagram must commute

in SHS :

X × Y
pX

{{ww
ww

ww
ww

w
pY

##GG
GG

GG
GG

G

i

��

X

iX ##GG
GG

GG
GG

G Y

iY{{ww
ww

ww
ww

w

Ln

(11)

Thus, the projections must send fibers in fibers, i.e, the product must

preserve the levelwise structure.

Proposition 5.6. Let X and Y be two finite spaces in SHS. Suppose

that X =
⋃m

i=1 X̂i and Y =
⋃n

i=1 Ŷi and X̂i and Ŷi are as in Lemma 4.5.

Assume that m ≤ n, and write X =
⋃n

i=1 X̂i, with X̂i = ∅, if i > m. Then,

we have that

X × Y =
n⋃

i=1

(X̂i × Ŷi)

the union is disjoint and the order is the induced by the usual product order.

Since we are considering finite spaces, the topology is the discrete one.

Example 4. Let us illustrate the product of two finite spaces in SHS

by calculating the Priestley space of the free algebra in two generators in

SLH2, 2F2. Since 2F2
∼= F1

∐
F1 and PF is part of a duality, PF(2F2) ∼=

PF(F1) × PF(F1). A straightforward calculation shows that PF(2F2) may
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be depicted as

• •

~~
~~

~~
~

@@
@@

@@
@ •

~~
~~

~~
~

@@
@@

@@
@

• • • • •

•

oooooooooooooo

~~
~~

~~
~

@@
@@

@@
@

OOOOOOOOOOOOOO

• • • •
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