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ON FRONTAL HEYTING ALGEBRAS

A b s t r a c t. A frontal operator in a Heyting algebra is an

expansive operator preserving finite meets which also satisfies the

equation τ(x) ≤ y ∨ (y → x). A frontal Heyting algebra is a pair

(H, τ), where H is a Heyting algebra and τ a frontal operator on

H . Frontal operators are always compatible, but not necessarily

new or implicit in the sense of Caicedo and Cignoli (An algebraic

approach to intuitionistic connectives. Journal of Symbolic Logic,

66, No4 (2001), 1620-1636). Classical examples of new implicit

frontal operators are the functions γ, (op. cit., Example 3.1), the

successor (op. cit., Example 5.2), and Gabbay’s operation (op.

cit., Example 5.3).

We study a Priestley duality for the category of frontal Heyting

algebras and in particular for the varieties of Heyting algebras

with each one of the implicit operations given as examples.

The topological approach of the compatibility of operators seems

to be important in the research of affin completeness of Heyt-

ing algebras with additional compatible operations. This problem

have also a logical point of view. In fact, we look for some com-

plete propositional intuitionistic calculus enriched with implicit

connectives.
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.1 Introduction

We assume that the reader is familiar with the theory of Heyting alge-

bras (see [1]). If we considerer intuitionistic and intermediate propositional

calculus as logics with truth values in Heyting algebras, it is natural to

consider new connectives for these logics as operations in the algebras. For

example, it was considered in [6] the modalized Heyting calculus mHC,

which consists of an augmentation of the Heyting propositional calculus by

a modal operator. The algebraic models of mHC are Heyting algebras with

a unary operator subject to additional identities. These identities must be

the algebraic counterpart of the axioms that the modal operator satisfies

on the logic.

A frontal Heyting algebra is an algebra (H,∧,∨,→, τ, 0, 1) such that

(H,∧,∨,→, 0, 1) is a Heyting algebra and τ is a unary operator satisfying

the following equations:

(f1) τ(x ∧ y) = τ(x) ∧ τ(y),

(f2) x ≤ τ(x),

(f3) τ(x) ≤ y ∨ (y → x)

The operator τ will be called frontal.

We write (H, τ) for short. We say that a Heyting frontal algebra (H, τ)

is a Heyting algebra with successor if the operator satisfies the additional

condition

(f4) τ(x) → x ≤ x.

The class of frontal Heyting algebras is denoted by fHA.

The class fHA can be seen as the category whose objects are frontal

Heyting algebras and whose morphisms are Heyting morphisms which pre-

serve the frontal operator; these maps are called frontal Heyting morphisms.

In [2] it was proved that for any map h : H → H in a Heyting algebra

H, h is a compatible function of H if and only if h(x ∧ y) ∧ y = h(x) ∧ y,
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for all x, y ∈ H. For this reason we have that if (H, τ) is a frontal Heyting

algebra then τ is a compatible function of H, by (f1) and (f2).

A set E(h) of equations in the signature of Heyting algebras augmented

with the unary function symbol h will be said to define an implicit opera-

tion of Heyting algebras if for any Heyting algebra H there is at most one

function hH : H → H. Function h will be an implicit compatible opera-

tion provided all hH are compatible. In case that τ be a frontal implicit

operation we call (H, τ) a τ -Heyting algebra.

For each particular τ we will note τHA the full subcategory of fHA

whose objects are the τ -Heyting algebras.

In section 2 we give a sufficient condition for an operator to be frontal

and we study some examples of them: S, γ and G (see [2]). Besides we prove

properties about these functions. In section 3 we extend Heyting duality

(see [10]) to the category fHA. In section 4 we give some applications of

the duality developed in section 3. First, we give a characterization for

subalgebras of a frontal Heyting algebra. Then we give an easy description

of the representation theory of Heyting algebras that admit any of the

operators given in section 2.

.2 Frontal Heyting algebras

In this section we give a sufficient condition for an operator to be frontal

and we study some examples of them. Observe that for every Heyting

algebra H there exists a map τ : H → H such that the algebra (H, τ) is a

frontal Heyting algebra, i.e., the identity.

Proposition 2.1. Let H be a Heyting algebra and P : H × H → H a

map that satisfies the following conditions for every x, y, z ∈ H:

(a) x ≤ P (x, y),

(b) P (x, y) ≤ y ∨ (y → x),

(c) P (x ∧ y, z) = P (x, z) ∧ P (y, z),

(d) If y ≥ z then P (x, y) ≤ P (x, z).

If τ : H → H given by τ(x) = min{y ∈ H : P (x, y) ≤ y} defines a function

τ : H → H, then τ is a frontal operator on H.



204 J.L. CASTIGLIONI , M. SAGASTUME AND H.J. SAN MARTÍN

Proof. By (a) we have that x ≤ P (x, τ(x)) ≤ τ(x), so x ≤ τ(x). By

(b) we have that P (x, y ∨ (y → x)) ≤ y ∨ (y → x) ∨ ((y ∨ (y → x)) →

x)) = y ∨ (y → x), so τ(x) ≤ y ∨ (y → x). By (c) P is monotone in

the first coordinate, so if z ≤ w then P (z, τ(w)) ≤ P (w, τ(w)) ≤ τ(w).

By this reason τ(z) ≤ τ(w). Being τ monotone we have that τ(x ∧ y) ≤

τ(x)∧τ(y). On the other hand, the equations τ(x) ≤ τ(x∧y)∨P (x, τ(x∧y))

and τ(y) ≤ τ(x ∧ y) ∨ P (y, τ(x ∧ y)) hold because by (d) we have that

P (x, a∨P (x, a)) ≤ a∨P (x, a) and P (x, b∨P (y, b)) ≤ b∨P (y, b), for every

a, b ∈ H (in particular it holds for a = b = τ(x∧y)). Then taking ∧ in both

members of these inequalities we have, using (c), that τ(x)∧τ(y) ≤ τ(x∧y).

Therefore τ(x) ∧ τ(y) = τ(x ∧ y). 2

The system E(S) consisting of the following equations given in [2] (see

also [9]) defines an implicit compatible operation S of Heyting algebras:

(S1) x ≤ S(x),

(S2) S(x) ≤ y ∨ (y → x),

(S3) S(x) → x = x.

Equivalently, S can be defined as the unary function

S(x) = min {y : y → x ≤ y}.

To prove that, recall that the following fact holds in any Heyting alge-

bra:

y → x ≤ y ⇔ y → x = x and x ≤ y. (1)

We define the filter Sx = {y ∈ H : y → x ≤ y} and suppose that S(x)

satisfies equations (S1), (S2) and (S3). By (S1) and (S3) we have that

S(x) ∈ Sx. Let now y ∈ Sx. Then (S2) implies that S(x) ≤ y∨(y → x) = y,

so S(x) = min Sx. Conversely, let S(x) = min Sx. As S(x) ∈ Sx, by (1)

equations (S1) and (S3) hold. Note that (y ∨ (y → x)) → x ≤ y ∨ (y → x),

so S(x) ≤ y ∨ (y → x). Hence (S2) holds.

Lemma 2.2. Let H be a Heyting algebra such that the function S exists.

Then

S(x ∧ y) = S(x) ∧ S(y),

for all x, y ∈ H.
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Proof. It is a consequence of Proposition 2.1 and the fact that for S,

P (x, y) = y → x. 2

Proposition 2.3. The successor is also implicitly defined by equations

(f1), (f2), (f3) and (S3).

Proof. It is a consequence of Lemma 2.2. 2

Let H be a Heyting algebra. We write ¬x in place of x → 0.

The system E(γ) consisting of the following equations given in [2] defines

an implicit compatible operation γ of Heyting algebras:

(γ1) ¬γ(0) = 0,

(γ2) γ(0) ≤ (x ∨ ¬x),

(γ3) γ(x) = x ∨ γ(0).

In an equivalent way, it is easy to prove that γ can be defined as the

unary function

γ(x) = min {y : ¬y ∨ x ≤ y}.

Proposition 2.4. Let H be a Heyting algebra.

Function γ is also implicitly defined by equations (f1), (f2), (f3) and the

following additional equations:

(γ4) ¬γ(0) = 0,

(γ5) γ(x) ≤ x ∨ γ(0).

Proof. Straightforward. 2

The system E(G) consisting of the following equations given in [7] de-

fines an implicit compatible function G of Heyting algebras

(G1) G(x) ≤ y ∨ (y → x),

(G2) x → y ≤ G(x) → G(y),

(G3) x ≤ G(x),

(G4) G(x) ≤ ¬¬x,

(G5) G(x) → x ≤ ¬¬x → x.
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This function will be called Gabbay´s function. It is proven in [12] that

(G2) is a consequence of the other equations. In an equivalent way, G can

be defined as the unary function

G(x) = min {y : (y → x) ∧ ¬¬x ≤ y}.

To prove this fact recall that in any Heyting algebra H,

(y → x) ∧ ¬¬x ≤ y ⇔ y → x ≤ ¬¬x → x and x ≤ y (2)

Let Gx = {y ∈ H : (y → x) ∧ ¬¬x ≤ y}. Then by (2) we conclude that

Gx = {y ∈ H : y → x ≤ ¬¬x → x, x ≤ y}. We suppose that G exists. By

(G3) and (G5) we have that G(x) ∈ Gx. Let y ∈ Gx. Then by (G1) and

(G4) we conclude that G(x) ≤ (y∧¬¬x)∨((y → x)∧¬¬x) ≤ (y∧¬¬x)∨y =

y, so G(x) = min Gx. Conversely, let G(x) = min Gx. Then (G1) and

(G5) follow from the fact that G(x) ∈ Gx. As ¬¬x ∈ Gx we conclude that

(G4) holds. As x ≤ y ∨ (y → x) and (y ∨ (y → x)) → x ≤ ¬¬x → x then

y ∨ (y → x) ∈ Gx, so (G1) holds.

Lemma 2.5. Let H be a Heyting algebra such that the function G

exists. Then

G(x ∧ y) = G(x) ∧ G(y),

for all x, y ∈ H.

Proof. It is a consequence of Proposition 2.1 and the fact that for G,

P (x, y) = (y → x) ∧ ¬¬x. 2

Remark 2.6. Gabbay´s function is implicitly defined by equations

(f1), (f2), (f3), (G4) and (G5).

Proposition 2.7. Let H be a Heyting algebra.

Gabbay´s function exists if and only if (H,G) is a frontal Heyting algebra

and G satifies the additional equation

G(x) → x = ¬¬x → x (3)

Proof. Let G be the Gabbay´s function. By Lemma 2.5, G is a frontal

operator. By (G4) and (G5) we conclude that G(x) → x = ¬¬x → x.

Conversely, let G a frontal operator which satisfies (3). We only need to

prove (G4). We have that G(¬¬x) → ¬¬x = 1, so G(¬¬x) ≤ ¬¬x. By

(f1) we have that G is monotone, so G(x) ≤ G(¬¬x) ≤ ¬¬x. 2
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Since S, γ and G do not exist in the Heyting algebra [0, 1], we get that

they are not terms in the vocabulary of Heyting algebras.

Caicedo and Cignoli prove in [2] the following facts: γ and G are defin-

able in terms of S, since γ(x) = x∨ S(0) and G(x) = S(x)∧¬¬x. S is not

definable from G or γ. G and γ are not mutually definable. However S is

definable from G and γ as S(x) = γ(x) ∨ G(x).

.3 Representation theory

We recall that Heyting duality (see [8] or [10]) establishes a dual equiva-

lence between the category HA of Heyting algebras and homomorphisms of

Heyting algebras and the category HS of Heyting spaces and p-continuous

morphisms (called Heyting morphisms),

PF : HA ⇆ HSop : CU

For every Heyting algebra H, PF(H) denotes the set of prime filters of

H. For every (X,≤) Heyting space, CU(X,≤) denotes the set of clopen

upsets of (X,≤). We have that ϕH(x) = {P ∈ PF(H) : x ∈ P} is

an isomorphism of Heyting algebras between H and CU(PF(H),⊆) and

GX(x) = {U ∈ CU(X,≤) : x ∈ U} is an isomorphism of Heyting spaces

between (X,≤) and PF(CU(X,≤),⊆). Both isomorphisms are natural.

In this section we extend Heyting duality to the category fHA and

we complete results given in [6] and [11] (section 5). We want to restrict

Heyting duality to the category fHA. A Rf -Heyting space is a triple (X,≤

, R), where (X,≤) is a Heyting space and R is a binary relation in X that

satisfies the following conditions:

(RF1) For every U ∈ CU(X,≤) holds that {x ∈ X : R(x) ⊆ U} ∈

CU(X,≤), where R(x) = {y ∈ X : xRy};

(RF2) R ⊆ ≤;

(RF3) < ⊆ R.
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Here < is the strict order associated to the order ≤.

Morphisms of Rf -Heyting spaces are functions g : (X1,≤, R1) → (X2,≤

, R2), where g : (X1,≤) → (X2,≤) is a morphism of Heyting spaces such

that for every U ∈ CU(X2,≤) and x ∈ X1 holds the following condition:

(C) R1(x) ⊆ g−1(U) ⇔ R2(g(x)) ⊆ U

The category fSH consists of all Rf -Heyting spaces and morphisms of

Rf -Heyting spaces.

If X is a poset, for every U ⊆ X we write U c to indicate the set

{x ∈ X : x /∈ U}. Let (X,≤) be a Heyting space. For every U, V ⊆ X we

define the following subsets of X: ↓ U = {x ∈ X : x ≤ u, for some u ∈ U}

and U → V = [↓ (U ∩ V c)]c. Let R be a binary relation in X. For every

U ⊆ X we define the following subset of X:

τR(U) = {x ∈ X : R(x) ⊆ U}

We consider the following conditions, for every U, V ∈ CU(X,≤):

(Rf2) U ⊆ τR(U),

(Rf3) τR(U) ⊆ V ∪ (V → U).

An easy computation proves that condition (RF2) is equivalent to con-

dition (Rf2), and that condition (RF3) implies condition (Rf3).

We consider the contravariant functor CU : HS → HA resricted to

fHS.

We start with some preliminary lemmas.

Lemma 3.1. Let (X,≤, R) be a Rf -space. Then (CU(X,≤),⊆, τR) is

a frontal Heyting algebra.

Proof. The well definition of τR is consequence of (RF1). Conditions

(Rf2) and (Rf3) give us the equations (f2) and (f3) respectively. Finally

(f1) is consequence of the definition of τR. 2

Remark 3.2. Let g : (X1,≤) → (X2,≤) be a morphism of Heyting

spaces and (X1,≤, R1), (X2,≤, R2) Rf -Heyting spaces.
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Then g is a Rf -morphism if and only if for every U ∈ CU(X,≤) we

have that

τR1
(CU(g)(U)) = CU(g)(τR2

(U))

Indeed,

g satisfies the condition (C) ⇔

{x ∈ X : R1(x) ⊆ g−1(U)} = {x ∈ X : R2(g(x)) ⊆ U} ⇔

{x ∈ X : R1(x) ⊆ CU(g)(U)} = CU(g)({y ∈ Y : R2(y) ⊆ U}) ⇔

τR1
(CU(g)(U)) = CU(g)(τR2

(U)).

Lemma 3.3. Let g : (X1,≤, R1) → (X2,≤, R2) be a morphism of Rf -

Heyting spaces. Then CU(g) : (CU(X2,≤), τR2
) → (CU(X1,≤), τR1

) is a

frontal Heyting morphism.

Proof. It is a consequence of Remark 3.2. 2

The previous two lemmas show that CU is a contravariant functor from

fHS to fHA. We now consider the contravariant functor PF : HA → HS

resricted to fHA.

Let H be a Heyting algebra and A ⊆ H. We will write F (A) for the

filter generated by A and I(A) for the ideal generated by A.

Lemma 3.4. Let (H, τ) be a frontal Heyting algebra and P ∈ PF(H).

Then:

(a) τ−1(P ) is a filter.

(b) τ(x) /∈ P ⇔ there exists Q ∈ PF(H) such that τ−1(P ) ⊆ Q and x /∈ Q.

Proof. (a) Straightforward.

(b) We suppose that τ(x) /∈ P , that is x /∈ τ−1(P ). Then by (a) and by

the Prime Filter Theorem, there is Q ∈ PF(H) such that τ−1(P ) ⊆ Q and

x /∈ Q. Conversely, let Q ∈ PF(H) such that τ−1(P ) ⊆ Q and x /∈ Q.

Then, x /∈ τ−1(P ), so τ(x) /∈ P . 2

Let (H, τ) be a frontal Heyting algebra. We define in PF(H) the fol-

lowing binary relation:

(P,Q) ∈ Rτ ⇔ τ−1(P ) ⊆ Q
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Lemma 3.5. Let (H, τ) be a frontal Heyting algebra. Then for every

x ∈ H we have that

ϕH(τ(x)) = {P ∈ PF(H) : Rτ (P ) ⊆ ϕH(x)}

Proof. We have that, Rτ (P ) ⊆ ϕH(x) is equivalent to (τ−1(P ) ⊆ Q ⇒

Q ∈ ϕH(x)), and by definition of ϕH , this is equivalent to (τ−1(P ) ⊆ Q ⇒

x ∈ Q). By Lemma 3.4 this last expression is equivalent to τ(x) ∈ P .

Hence we conclude that Rτ (P ) ⊆ ϕH(x) ⇔ P ∈ ϕH(τ(x)). 2

Lemma 3.6. Let (H, τ) be a frontal Heyting algebra. Then (PF(H),⊆,

Rτ ) is a Rf -space.

Proof. (RF1) Let U be a clopen upset in (PF(H),⊆), so there is a ∈ H

such that U = ϕH(a). By Lemma 3.5 condition (RF1) holds.

(RF2) Let P ∈ U and Q ∈ Rτ (P ). By this reason a ∈ P and τ−1(P ) ⊆

Q. By (f2) we have that τ(a) ∈ P , so a ∈ Q. Then Q ∈ U , so Rτ (P ) ⊆ U .

By this reason (Rf2) holds.

(RF3) Assume that (RF3) does not hold. Then there exist P,Q ∈

PF(H) such that P ⊂ Q and τ−1(P ) * Q. and hence we have that there

exist x, y ∈ H such that τ(x) ∈ P , x /∈ Q, y ∈ P and y /∈ Q. Aplying (f3)

we have that y → x ∈ Q and using that y ∈ Q we conclude that x ∈ Q, a

contradiction. 2

Lemma 3.7. Let f : (H1, τ1) → (H2, τ2) be a frontal Heyting morphism.

Then PF(f) : ((PF(H2),⊆), Rτ2) → ((PF(H1),⊆), Rτ1) is a morphism of

Rf -Heyting spaces.

Proof. Let Xi = PF(Hi) and Ri = Rτi
for i = 1, 2. We know that

ϕH2
fϕ−1

H1
= CU(PF(f)). Let U ∈ CU(PF(H1),⊆), so there is x ∈ H1

such that U = ϕH1
(x). By Lemma 3.5 we have that ϕH1

(τ1(x)) = {P ∈

PF(H1) : R1(P ) ⊆ U}. We have already shown that ϕH1
(τ1(x)) = τR1

(U).

So by hypothesis we conclude that

CU(PF(f))(τR1
(U)) = (ϕH2

fϕ−1
H1

)(ϕH1
τ1(x)) = ϕH2

fτ1(x) = ϕH2
τ2f(x).

(4)

Besides, by Lemma 3.5 we have that

τR2
(CU(PF(f))(U)) = τR2

(ϕH2
fϕ−1

H1
)ϕH1

(x) = τR2
ϕH2

f(x) =
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{P ∈ PF(H2) : Rτ2(P ) ⊆ ϕH2
f(x)} = ϕH2

(τ2f(x)). (5)

By (4) and (5) we conclude that

CU(PF(f))(τR1
(U)) = τR2

(CU(PF(f))(U)) (6)

By (6) and Remark 3.2 (taking g = PF(f)) we have that CU(g) is a mor-

phism in fHS. 2

Last two previous lemmas show that PF is a contravariant functor from

fHA to fHS. We will now see that these categories are dual equivalence to

each other.

Proposition 3.8. Let (X,≤, R) be a Rf -Heyting space. Then there ex-

ists an isomorphism of Rf -Heyting spaces GX : (X,≤, R) → (PF(CU(X,≤

), RτR
), given by

GX(x) = {U ∈ CU(X,≤) : x ∈ U}.

Proof. We write RR in place of RτR
. For every clopen upset V in

PF(CU(X,≤)) we have to prove that

R(x) ⊆ G−1
X (V ) ⇔ RR(GX(x)) ⊆ V

(⇒) Let P ∈ RR(GX(x)), so

τ−1
R (G(x)) ⊆ P (7)

Then we have that

(7) ⇔ [U ∈ τ−1
R (G(x)) ⇒ U ∈ P ] ⇔ [τR(U) ∈ GX(x) ⇒ U ∈ P ] ⇔

[x ∈ τR(U) ⇒ U ∈ P ] ⇔ [R(x) ⊆ U ⇒ U ∈ P ]

But by hypothesis R(x) ⊆ G−1
X (V ), so G−1

X (V ) ∈ P . As P ∈ PF(CU(X,≤))

there is y ∈ X such that GX(y) = P . As G−1
X (V ) ∈ GX(y) we have that

y ∈ G−1
X (V ), so GX(y) = P ∈ V .

(⇐) Let y ∈ R(x). Our hypothesis is equivalent to the condition

G−1
X RR(GX (x)) ⊆ G−1

X (V ). If we will prove that y ∈ G−1
X RR(GX (x)) then

we would have that y ∈ G−1
X (V ), which is our aim. We observe that

y ∈ G−1
X RR(GX(x)) ⇔ GX(x)RRGX(y) ⇔ τ−1

R (GX(x)) ⊆ GX(y) ⇔
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[U ∈ τ−1
R (GX(x)) ⇒ U ∈ GX(y)] ⇔ [τR(U) ∈ GX(x) ⇒ U ∈ GX(y)] ⇔

[x ∈ τR(U) ⇒ y ∈ U ] ⇔ [R(x) ⊆ U ⇒ y ∈ U ]

As y ∈ R(x), by the previous observation we have that y ∈ G−1
X RR(GX (x)).

2

Proposition 3.9. Let (H, τ) be a frontal Heyting algebra. Then there is

a frontal Heyting isomorphism ϕH : (H, τ) → (CU(PF(H),⊆), τRτ
), given

by

ϕH(h) = {P ∈ PF(H) : h ∈ P}.

Proof. It follows from Lemma 3.5 2

Since both fHA and fHS are subcategories of HA and HS and CU and

PF are the restriction to the former categories of an adjoint pair between

HA and HSop, the following Theorem follows from Propositions 3.8 and

3.9.

Theorem 3.10. Functors CU and PF establish a dual equivalence be-

tween the categories fHA and fHS.

.4 Applications of the duality

In this section we give some applications of the duality developed in section

3.

Let (H, τ) be a frontal Heyting algebra. We say that M ⊆ H is a

subalgebra of (H, τ) if M is a Heyting subalgebra of H and for each x ∈

M , τ(x) ∈ H; i.e., a subalgebra in the category fHA. We characterize

the relations associated with the subalgebras of a Heyting frontal algebra

(H, τ). This result is based on the duality given in [3] and [5]. We also give

easy descriptions of the representation theories of Heyting algebras that

admit each of the operators studied in section 2.

.4.1 Subalgebras

Let L be a bounded distributive lattice and M a sublattice of L. We define

the binary relation

RM = {(P,Q) ∈ PF(L) × PF(L) : Q ∩ M ⊆ P}
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For each binary relation R in PF(L) we define the subset of clopen upsets

of PF(L)

MR = {U ∈ CU(PF(L),⊆) : R−1(U) ⊆ U}.

It was shown in [5] that MR is a bounded sublattice of CU(PF(L),⊆)

and that the relation RM is reflexive, transitive and when X = PF(L) it

verifies that

(l) If for P,Q ∈ PF(L) such that (P,Q) /∈ RM there exists U ∈ MR such

that P ∈ U and Q /∈ U then (GX (P ), GX (Q)) /∈ RMR
.

It was also shown that the correspondence M 7−→ RM establishes an

anti-isomorphism between the lattice of bounded sublattices of a bounded

distributive lattice L and the lattice of binary relations defined in the Priest-

ley space PF(L) whose are reflexive, transitive and satisfies the condition

(l).

Let X be a set, R1 and R2 binary relations in X. We define the binary

relation R = R1 ◦ R2 in the following way:

(x, y) ∈ R ⇔ there exists z ∈ X such that (x, z) ∈ R1 and (z, y) ∈ R2.

For any Heyting algebra H we write HL for underlying bounded dis-

tributive lattice. Let (H, τ) be a frontal Heyting algebra and R, RM∗ the

binary relations given by

Rτ∗ = {(I, J) : (Ic, Jc) ∈ PF(HL) × PF(HL) and J ⊆ τ−1(I)},

RM∗ = {(I, J) : (Ic, Jc) ∈ PF(HL) × PF(HL) and J ∩ M ⊆ I}

We observe that PF(H) = PF(HL).

Lemma 4.1. Let (H, τ) a frontal Heyting algebra and M a subalgebra

of HL.

The following conditions are equivalent:

(i) R−1
M ◦ Rτ ⊆ Rτ ◦ R−1

M

(ii) RM∗ ◦ Rτ∗ ⊆ Rτ∗ ◦ RM∗

Proof. ((i) ⇒ (ii)) Let (I, J) ∈ RM∗ ◦ Rτ∗ . Then there exists Kc ∈

PF(H) such that K ∩ M ⊆ I and J ⊆ τ−1(K). Thus Ic ∩ M ⊆ Kc and

τ−1(Kc) ⊆ Jc. Then (Ic,Kc) ∈ R−1
M and (Kc, Jc) ∈ Rτ , so (Ic, Jc) ∈ R−1

M ◦
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Rτ . Then by hypothesis there exists P ∈ PF(H) such that (Ic, P ) ∈ Rτ

and (P, Jc) ∈ R−1
M , so τ−1(Ic) ⊆ P and P ∩ M ⊆ Jc. Therefore we have

that P c ⊆ τ−1(I) and J ∩ M ⊆ P . Thus (I, J) ∈ Rτ∗ ◦ R∗

M .

((ii) ⇒ (i)) Let (P,Q) ∈ R−1
M ◦Rτ , so there exists Z ∈ PF(H) such that

P ∩M ⊆ Z and τ−1(Z) ⊆ Q. Then Zc ∩M ⊆ P c and Qc ⊆ τ−1(Zc). Thus

(P c, Qc) ∈ RM∗ ◦Rτ∗ , so by hypothesis there exists Kc ∈ PF(H) such that

K ⊆ τ−1(P c) and Qc ∩ M ⊆ K. Then τ−1(P ) ⊆ Kc and Kc ∩ M ⊆ Q, so

(P,Q) ∈ Rτ ◦ R−1
M . 2

For any bounded distributive lattice L we write L∗ for the lattice with

the same underlying set, but inverse order. We have the following result

for subalgebras of a frontal Heyting algebra,

Theorem 4.2. Let (H, τ) be a frontal Heyting algebra and M a subal-

gebra of H.

Then the following conditions are equivalent:

(a) M is a subalgebra of (H, τ)

(b) R−1
M ◦ Rτ ⊆ Rτ ◦ R−1

M

Proof. On one hand we have that M is a sublattice of H∗

L. Consider

the unary operator j : H∗

L → H∗

L given by j(x) = τ(x). Since τ is a frontal

operator, j preserves ∨ and top in H∗

L. Hence M is a subalgebra of (H∗

L, j).

Then, by ([3], Theorem 13) and Lemma 4.1 we conclude (b).

On the other hand, since M is a subalgebra of H, it is a sublattice of

HL. Consider again the operator j. By Lemma 4.1 and ([3], Theorem 13)

we conclude that M is a subalgebra of (H∗

L, j), and then it is a subalgebra

of (H, τ). 2

Let H be a Heyting algebra. We consider the following binary relation

in PF(H):

(P,Q) ∈ RH iff for all x, y ∈ H, if x → y ∈ P and x ∈ Q, then y ∈ Q.

The relation RH is the relation of inclusion (Theorem 4.24 of [4]).

Corolary 4.3. Let (H, τ) be a frontal Heyting algebra. The correspon-

dence M 7−→ RM establishes an anti-isomorphism from the lattice of sub-

algebras of (H, τ) and the lattice of binary relations defined in the Heyting

space PF(H) whose are reflexive, transitive, satisfies the condition (l) and

such that
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(1) R−1
M ◦ RH ⊆ RH ◦ (R−1

M ∩ RM ),

(2) R−1
M ◦ Rτ ⊆ Rτ ◦ R−1

M .

Proof. Consequence of ([4], Corollary 7.2) and Theorem 4.2. 2

.4.2 Representation theory for S-Heyting algebras

Let (X,≤) be a Heyting space and R a binary relation in X. We define the

following condition for every U ∈ CU(X,≤):

(RF4) If x /∈ U then there exists y ∈ U c such that x ≤ y and R(y) ⊆ U .

Condition (RF4) is equivalent to the condition τR(U) → U ⊆ U for

every U ∈ CU(X,≤).

In this case we write SR in place of τR.

The category SHS is that whose objects are Rf -Heyting spaces (X,≤

, R) that for every U ∈ CU(X,≤) satisfy the condition (RF4). Morphisms

are the same of the category fHS.

Theorem 4.4. There is a dual categorical equivalence between SHA

and SHS.

Proof. Consequence of Proposition 2.3 and Theorem 3.10. 2

In what follows we will prove some results which will allow us to give

an easy description of the category SHS.

We will say that a Heyting space (X,≤) is a S-Heyting space if for

every U ∈ CU(X,≤) the set U ∪ (U c)M is clopen, where (U c)M is the set

of maximal elements in U c. We observe that (X,≤) is a S-Heyting space

if and only if is a Heyting space such that for every clopen downset V the

set VM is clopen.

Lemma 4.5. Let H be a Heyting algebra and V a clopen downset in

(PF(H),⊆). Then V =↓ (VM ).
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Proof. Let V be a downset. Then ↓ (VM ) ⊆ V . Conversely, let P ∈ V .

We have that V = ϕH(x)c, for some x ∈ H. We consider the set

Σ = {F ∈ PF(H) : P ⊆ F, x /∈ F}.

By Zorn’s Lemma there exists an element Q maximal in Σ. This Q is also

maximal in V . 2

Corolary 4.6. Let (X,≤) be a Heyting space and V a clopen downset

in (X,≤). Then V =↓ (VM ).

Lemma 4.7. Let (X,≤) be a Heyting space. If there exists a binary

relation R in X that satisfies the conditions (RF2), (RF3) and (RF4) then

for every U ∈ CU(X,≤) it holds that SR(U) = U ∪ (U c)M .

Proof. Let x ∈ SR(U), x ∈ U c and x ≤ y, with y ∈ U c. Suppose that

y � x. Then there exists V ∈ CU(X,≤) such that y ∈ V and x /∈ V . By

(Rf3) x ∈ V → U . However, as x ≤ y with y ∈ U c ∩ V , we conclude that

x /∈ V → U , a contradiction. For this reason x ∈ (U c)M .

Conversely, let x ∈ U ∪ (U c)M . If x ∈ U , by (Rf2) we have that

x ∈ SR(U). If x ∈ (U c)M , by (RF4) x /∈ SR(U) → U . Therefore x ≤ y

for some y ∈ U c and R(y) ⊆ U . But as x ∈ (U c)M results that x = y. So

R(x) ⊆ U . We have proved the equality SR(U) = U ∪ (U c)M . 2

Proposition 4.8. Let (X,≤) be a Heyting space. There exists a binary

relation R in X that satisfies the conditions (RF1), (RF2), (RF3) and

(RF4) if and only if (X,≤) is a S-Heyting space.

Proof. (⇒) By (RF1) and Lemma 4.7 we conclude that U ∪ (U c)M is

clopen.

(⇐) We define the following binary relation R in X:

xRy ⇔ (∀V ∈ CU(X,≤))[x ∈ V ∪ (V c)M ⇒ y ∈ V ]

We will prove that R satisfies (RF1), (RF2), (RF3) and (RF4):

Let U ∈ CU(X,≤), x ∈ U and y ∈ R(x). By definition of the relation

R we have that y ∈ U and for this reason R(x) ⊆ U . So we get that (Rf2)

holds.

Suppose that there exists x, y ∈ X such that x < y and that y /∈ R(x).

Then there exists U ∈ CU(X,≤) such that x ∈ U ∪ (U c)M and y /∈ U . Thus
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x /∈ U , so x ∈ (U c)M . However x < y and y /∈ U , a contradiction with the

maximality of x. Then (RF3) holds.

Let U ∈ CU(X,≤) and x ∈ U c. By Corolary 4.6 there exists y ∈ (U c)M
such that x ≤ y. In particular x ≤ y and y ∈ U c. Besides R(y) ⊆ U .

Let z ∈ R(y). Since y ∈ (U c)M it holds that z ∈ U . For this reason

x /∈ SR(U) → U , and (RF4) follows.

By Lemma 4.7 we conclude that for every U ∈ CU(X,≤) we have that

SR(U) = U ∪ (U c)M . By hypothesis results that SR(U) is clopen and by

definition this set is an upset. So we have (RF1). 2

It follows from the proof of previous lemma that if (X,≤, R) is an object

of SHS then for every U ∈ CU(X,≤), S(U) = SR(U) = U ∪ (U c)M and

also that if (X,≤) is a S-Heyting space then S exists in CU(X,≤) and it is

given by the formula

S(U) = U ∪ (U c)M .

Let (X,≤) and (Y,≤) be S-Heyting spaces and g : (X,≤) → (Y,≤) a

Heyting morphism. We will say that g is a S-Heyting morphism if for every

V downset in (Y,≤)

g−1(VM ) = [g−1(V )]M

Proposition 4.9. Let g : (X,≤) → (Y,≤) be a Heyting morphism of

Heyting spaces. There are binary relations R1 and R2 in X and Y respec-

tively such that the function g : (X,≤, R1) → (Y,≤, R2) is a morphism in

SHS if and only if g is a S-Heyting morphism.

Proof. It is a consequence of Remark 3.2, Proposition 4.8 and the

following fact: g−1[U ∪ (U c)M ] = g−1(U) ∪ [g−1(U c)]M if and only if

[g−1(U c)]M = g−1[(U c)M ]. 2

Let SHS be the category whose objects are S-Heyting spaces and whose

morphisms are S-Heyting morphisms.

Theorem 4.10. There exists an isomorphism of categories between

SHS and SHS .

Proof. It is a consequence of Propositions 4.8 and 4.9. 2
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.4.3 Representation theory for γ-Heyting algebras

Let (X,≤) be a Heyting space and R a binary relation in X. We define the

following conditions:

(Rγ4) For every x ∈ X there exists y ∈ X such that x ≤ y and R(y) = ∅.

(Rγ5) For every U ∈ CU(X,≤), if R(x) ⊆ U then R(x) = ∅ or x ∈ U .

Conditions (Rγ4) and (Rγ5) are respectively equivalent to the following

ones:

(i) ¬τR(∅) = ∅, for every x ∈ X;

(ii) τR(U) ⊆ U ∪ τR(∅), for every U ∈ CU(X,≤).

In this case we write γR in place of τR.

The category γSH is that whose objects are Rf -Heyting spaces (X,≤

, R) that satisfy the conditions (Rγ4) and (Rγ5). Morphisms are the same

of the category fHS.

Theorem 4.11. There is a dual categorical equivalence between γHA

and γHS.

Proof. It is a consequence of Proposition 2.4 and Theorem 3.10. 2

In the following we will prove some results which will allow us to give

an easy description of the category γHA.

We will say that a Heyting space (X,≤) is a γ-Heyting space if (X,≤)

is a Heyting space and for every U ∈ CU(X,≤) the set U ∪ XM is clopen.

We observe that (X,≤) is a γ-Heyting space if and only if XM is clopen.

Lemma 4.12. Let (X,≤) be a Heyting space. If there exists a binary

relation R in X that satisfies the conditions (RF2), (RF3), (Rγ4) and

(Rγ5) then for every U ∈ CU(X,≤) we have that

γR(U) = U ∪ XM .

Proof. Let A = {x ∈ X : R(x) = ∅}. Let x ∈ A and y ∈ X such that

x ≤ y. We suppose that y � x. Then there exists V ∈ CU(X,≤) such that

y ∈ V and x ∈ V c. So by (Rf3) we have that x ∈ (↓ V )c. On the other
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hand x ≤ y, where y ∈ V , and then x ∈↓ V , a contradiction. We conclude

that x = y and therefore x ∈ XM .

Conversely, let x ∈ XM . So by (Rγ4) there exists y ∈ X such that

R(y) = ∅ and x ≤ y, but as x ∈ XM results that x = y, and then R(x) = ∅.

We have proved that A = XM . By (Rf2) and (Rγ5), for every U ∈ CU(X,≤

) we have that γR(U) = U ∪ XM . 2

Proposition 4.13. Let (X,≤) be a Heyting space. There exists a bi-

nary relation R in X such that satisfies the conditions (RF1), (RF2),

(RF3), (Rγ4) and (Rγ5) if and only if (X,≤) is a γ-Heyting space.

Proof. (⇒) By (RF1) and Lemma 4.12 we conclude that for every

U ∈ CU(X,≤) the set U ∪ XM is clopen.

(⇐) We define R in the following way:

xRy ⇔ (∀V ∈ CU(X,≤))[x ∈ V ∪ XM ⇒ y ∈ V ]

We will prove that R satisfies (RF1), (RF2), (RF3), (Rγ4) and (Rγ5).

Same ideas as in the proof of Proposition 4.8 prove (RF2) and (RF3).

In order to prove (Rγ4), take x ∈ X. By Corolary 4.6, there exists

y ∈ XM such that x ≤ y. Let us see that R(y) = ∅. Take z ∈ R(y), then

y ∈ (XM ∪ ∅), and hence, z ∈ ∅ which is a contradiction.

To prove (Rγ5), suppose that R(x) ⊆ U . If x /∈ U then x /∈ R(x) and

so x ∈ XM . We can then conclude that R(x) = ∅.

Finally, by Lemma 4.12 we have that for every U ∈ CU(X,≤), γR(U) =

U ∪XM . Then γR(U) is clopen, and by definition an upset. Hence we have

(RF1). 2

As a consequence of previous proof, we have that if (X,≤, R) is an

object of γHS then for every U ∈ CU(X,≤), γ(U) = γR(U) = U ∪ XM ,

and that if (X,≤) is a γ-Heyting space, γ exists in CU(X,≤) and it is given

by the formula

γ(U) = U ∪ XM .

Let (X,≤) and (Y,≤) be γ-Heyting spaces and g : (X,≤) → (Y,≤) a

Heyting morphism. We will say that g is a γ-Heyting morphism

XM = g−1(YM )

Proposition 4.14. Let g : (X,≤) → (Y,≤) a Heyting morphism of

Heyting spaces.
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There are binary relations R1 y R2 in X and Y respectively such that the

function g : (X,≤, R1) → (Y,≤, R2) is a morphism in γHS if and only if

g is a γ-Heyting morphism.

Proof. It is a consequence of Remark 3.2, Proposition 4.13 and the

following fact:

g−1[U ∪ YM ] = g−1(U) ∪ XM if and only if XM = g−1(YM ). 2

Let SHγ be the category whose objects are γ-Heyting spaces and whose

morphisms are γ-Heyting morphisms.

Theorem 4.15. There exists an isomorphism of categories between

γHS and SHγ .

Proof. It is a consequence of Propositions 4.13 and 4.14. 2

.4.4 Representation theory for G-Heyting algebras

Let (X,≤) be a Heyting space and R a binary relation in X. We define the

following conditions:

(RG4) (∀U ∈ CU(X,≤))[R(x) ⊆ U ⇒ ∀y ≥ x ∃u ∈ U : y ≤ u].

(RG5) If x ≤ y, y ∈ U c and (∀y ≥ x ∃u ∈ U : y ≤ u) then there exists

z ∈ U c such that R(z) ⊆ U and x ≤ z.

Conditions (RG4) and (RG5) are respectively equivalent to the follow-

ing ones:

(i) τR(U) ⊆ ¬¬U , for every U ∈ CU(X,≤).

(ii) τR(U) → U ⊆ ¬¬U → U , for every U ∈ CU(X,≤).

In this case we write GR in place of τR.

The category GHS is that whose objects are Rf -Heyting spaces (X,≤

, R) that satisfy conditions (RG4) and (RG5). Morphisms are the obvious

ones.

Theorem 4.16. There is a dual categorical equivalence between GHA

and GHS.
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Proof. It is a consequence of Remark 2.6 and Theorem 3.10. 2

We now give some results that allow us to give an easy description of

the category GHS.

We say that (X,≤) is a G-Heyting space if it is a Heyting space and for

every U ∈ CU(X,≤), the set U ∪ [¬¬U ∩ (U c)M ] is clopen. In an equivalent

way, (X,≤) is a G-Heyting space if it is a Heyting space such that for every

U ∈ CU(X,≤) the set ¬¬U ∩ (U c)M is clopen.

Lemma 4.17. Let H be a Heyting algebra and (X,≤) = (PF(H),⊆).

Define in (X,≤) the following binary relation:

PRQ ⇔ (∀U ∈ CU(X,≤))[P ∈ U ∪ [¬¬U ∩ (U c)M ] ⇒ Q ∈ U ]

For every P ∈ PF(H) we have that R(P ) 6= ∅.

Proof. For P ∈ PF(H) we define the filter M = {y ∈ H : ¬¬y ∈ P}

and then the filter F = F (P ∪ M). We have that 0 /∈ F . Suppose that

0 ∈ F . Then, there are p ∈ P and m ∈ M such that p ≤ ¬m, and

hence ¬m ∈ P . Since m ∈ M , we have that ¬¬m ∈ P and so 0 ∈ P ,

a contradiction, because P is prime. Then by the Prime Filter Theorem

there exists Q ∈ PF(H) such that P ⊆ F ⊆ Q. Let U ∈ CU(X,≤) be such

that P ∈ U ∪ [¬¬U ∩ (U c)M ]. In particular there exists x ∈ H such that

ϕH(x) = U . Thus Q ∈ U . We have then proved that R(P ) 6= ∅. 2

Corolary 4.18. Let (X,≤) be a Heyting space and R the following

binary relation defined on X:

xRy ⇔ (∀U ∈ CU(X,≤))[x ∈ U ∪ [¬¬U ∩ (U c)M ] ⇒ y ∈ U ]

Then for every x ∈ X we have that R(x) 6= ∅.

Lemma 4.19. Let (X,≤) be a Heyting space. If there exists a binary

relation R in X that satisfies (RF2), (RF3), (RG4) and (RG5) then for

every U ∈ CU(X,≤) we have that

GR(U) = U ∪ [¬¬U ∩ (U c)M ].

Proof. Let U ∈ CU(X,≤), R(x) ⊆ U , x ∈ U c and x ≤ y, with y ∈ U c.

Suppose that y � x. Then there exists V ∈ CU(X,≤) such that y ∈ V and
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x /∈ V . By (Rf3), x ∈ V → U . However, since x ≤ y with y ∈ U c ∩ V , we

conclude that x /∈ V → U , a contradiction. Hence x ∈ (U c)M . On the the

other hand, from (RG4) we conclude that x ∈ ¬¬U .

Conversely, take x ∈ U ∪ [¬¬U ∩ (U c)M ]. If x ∈ U , by (Rf2), we have

that x ∈ GR(U). If x ∈ (U c)M ∩ ¬¬U we have by (RG5) that there exists

y ∈ U c such that x ≤ y and R(y) ⊆ U . Hence x = y and R(x) ⊆ U . 2

Lemma 4.20. Let (X,≤) be a Heyting space. There exists a binary

relation R in X that satisfies (RF1), (RF2), (RF3), (RG4) and (RG5) if

and only if (X,≤) is a G-Heyting space.

Proof. (⇒) By (RF1) and Lemma 4.19 we conclude that for every

U ∈ CU(X,≤) the set U ∪ [¬¬U ∩ (U c)M ] is clopen.

(⇐) Define the following binary relation R in X:

xRy ⇔ (∀V ∈ CU(X,≤))[x ∈ V ∪ [¬¬V ∩ (V c)M ] ⇒ y ∈ V ]

We prove that R satisfies (RF1), (RF2), (RF3), (RF4) and (RG5).

Same ideas as in the proof of Proposition 4.8 prove (RF2) and (RF3).

In order to prove (RG4), take U ∈ CU(X,≤) and R(x) ⊆ U . Suppose

that x /∈ ¬¬U . Then x ∈↓ (¬U). Hence there exists y ∈ ¬U such that

x ≤ y. In particular, y /∈ U . By hypothesis, y /∈ R(x). Then, there exists

V ∈ CU(X,≤) such that x ∈ V ∪ [(¬¬V ∩ (V c)M ] and y /∈ V . Since x ≤ y,

we conclude that x = y. Since y ∈ ¬U , x ∈ ¬U .

On the other hand, by Corolary 4.18 there exists z ∈ R(x). Hence, by

hypothesis, z ∈ U . Since x ∈ ¬U and z ∈ R(x), z ∈ ¬U . Then U ∩¬U 6= ∅,

a contradiction.

To prove (RG5) suppose that U ∈ CU(X,≤) and x /∈ ¬¬U → U . Then

x ≤ z for some z ∈ ¬¬U ∩U c. By Corolary 4.6 there exists y ∈ (U c)M such

that x ≤ z ≤ y. Let us see that R(y) ⊆ U . Take w ∈ R(y). Since z ≤ y,

y ∈ ¬¬U ∩ (U c)M . We conclude that w ∈ U .

Finally, by Lemma 4.19 we have that for every U ∈ CU(X,≤), GR(U) =

U∪[¬¬U∩(U c)M ]. Using the hypothesis we conclude that GR(U) is clopen.

It can be shown that GR(U) is an upset. Thus, we have (RF1). 2

As a consequence of the proof of previous Lemma, we have that if

(X,≤, R) is an object of GHS then for every U ∈ CU(X,≤), G(U) =

GR(U) = U ∪ [¬¬U ∩ (U c)M ] and that if (X,≤) is a G-Heyting space we
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have that G exists in CU(X,≤) and

G(U) = U ∪ [¬¬U ∩ (U c)M ]

Let (X,≤) and (Y,≤) be G-Heyting spaces and g : (X,≤) → (Y,≤)

a Heyting morphism. We will say that g is a G-Heyting morphism if for

every V downset in (Y,≤)

g−1[¬¬(V c) ∩ VM ] = g−1[¬¬(V c)] ∩ [g−1(V )]M .

Proposition 4.21. Let g : (X,≤) → (Y,≤) Heyting morphism of Heyt-

ing spaces. There are binary ralations R1 and R2 in X and Y respectively

such that the function g : (X,≤, R1) → (Y,≤, R2) is a morphism in GHS

if and only if g is a G-Heyting morphism.

Proof. It is a consequence of Remark 3.2, Proposition 4.20 and the

following fact:

g−1[U ∪ (¬¬U ∩ (U c)M )] = g−1(U) ∪ [g−1(¬¬U) ∩ [(g−1(U c)]M ]

if and only if

[g−1(U c)]M ∩ g−1(¬¬U) = g−1[(U c)M ∩ ¬¬U ].

2

Let SHG be the category whose objects are G-Heyting spaces and whose

morphisms are G-Heyting morphisms.

Theorem 4.22. There exists an isomorphism of categories between

GHS and SHG.

Proof. It is a consequence of Propositions 4.20 and 4.21. 2
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