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LANGUAGES

AND INVARIANCE BY AUTOMORPHISMS

A b s t r a c t. Given a LE
αβ-structure E, where LE

αβ is an infinitary
language, we show that α and β can be chosen in such way that
every orbit of the groupG of automorphisms of E is LE

αβ -definable.
It follows that two sequences of elements of the domain D of E
satisfy the same set of Lαβ-formulas if and only if they are in the
same orbit of G.

.1 Introduction

This paper is about two notions of model theory, the concepts of definability
in a given language and invariance by automorphisms of a structure. If a
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first-order structure E is an interpretation of a language L, every relation
definable in L is invariant by the group of automorphisms of E. In general,
the converse is not true but it may be asked whether a strongly enough
infinitary language L may be chosen for the converse to be true.

Let E be a first-order structure defined on a set D and let R be the
set of primitive relations of E. Given an ordinal number γ and a relation
R ⊆ Dγ , invariant by the group G of automorphisms of E, we show that
R is definable in a suitable infinitary language LEαβ . The parameters α and
β are determined by γ and by the cardinals of D and R (corollaries 3.8,
3.9, 3.10 of theorem 3.7). An easy consequence of theorem 3.7 is that given
two points p1, p2 ∈ Dγ satisfying the same set of formulas of the language
mentioned above, there exists an automorphism g of E which sends p1 into
p2, that is, g · p1 = p2.

Although it is possible to show that invariant relations are definable in
a suitably strong infinitary language, by means of explicit formulas [5], our
proof of theorem 3.7 follows a much more conceptual path. Let δ be the
cardinal of D. A point q ∈ Dδ is normal if q : δ → D is a bijection of δ onto
D. We start proving that the orbit G · q of any normal point q is definable
in a suitable language LEαβ (proposition 3.6). Next, we show that any orbit

of G operating on Dγ can be obtained from G ·q applying operators ξ∗, ξ∗−1

and remaining definable in LEαβ (theorem 3.7).

The operators ξ∗, ξ∗−1 are very natural from a set-theoretical point of
view (section 2). They behave nicely with respect to compositions of maps
and commute with the extensions of bijections of D to relations. However,
they are not immediate translations to relations of the syntactic rules of
definition of formulas. Part of our work is to translate the action of operators
ξ∗, ξ∗−1 on relations into the action of the syntactic rules (theorems 3.1 and
3.2).

We think appropriate to mention here the work of two authors M. Kras-
ner and J. Sebastião e Silva who may be considered forerunners of the in-
troduction of infinitary languages in model theory. Krasner has shown how
to construct invariant relations of a first order structures from the primitive
relations by means of set-theoretical operations [3]. In a previous paper [4],
the authors proved that the operators ξ∗, ξ∗−1 together with intersections
and the complement operation are enough to generate all invariant relations
from the primitive ones. Sebastião e Silva [6] has treated the same prob-
lem for higher order structures. For an exposition of ideas and results of
Sebastião e Silva see [1].

For the sake of simplicity, the theorems in this paper are proved for
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relational languages only. In the last section, we show how to extend the
results to structures associated to complete first order languages.

.2 LE
αβ-structures

Let α, β, π be infinite cardinal numbers, α being a regular cardinal and β, π ≤
α. By Lαβπ we denote an infinitary first order relational language, whose
formulas are sequences of less than α symbols and admitting sequences of
less than α conjunctions and blocks of sequences of less than β instantiations.
The arity of every predicate symbol of Lαβπ is less than π. Lαβπ is essentially
the infinitary relational language with parameters α, β, π as defined by C.
R. Karp [2].

In order to fix our notation, we recall the rules of formation of formulas
of Lαβπ. We use the notion of concatenation of sequences (Karp [2]) and
denote by |A| the cardinal of a set A and by ℘(A) its power set. The letters
γ and δ always denote ordinal numbers.

The symbols of Lαβπ are the logical symbols ¬,
∧
,∃, predicate symbols

including = and symbols of variables. We use the standard abbreviations
∀,

∨
. We denote by R̄ the set of predicates symbols and by V the infinite

set of variables. To each predicate symbol R̄ ∈ R̄ is associated an ordinal
number γ < π; γ is the arity of R̄. We assume that we have fixed an
enumeration χ : i ∈ |V| 7→ xi ∈ V of the set of variables and define in V the
order: xi ≤ xj ⇔ i ≤ j.

Definition 2.1. The set of formulas of Lαβπ is the smallest set of se-
quences of symbols of length less than α satisfying conditions 1) to 4) below:

1) If R̄ is a predicate symbol of arity γ < π and τ : γ → V is a sequence
of variables, then R̄τ is a formula.

2) If ϕ is a formula, ¬ϕ is a formula.

3) If ϕ is a formula, γ < β and η : γ → V is a sequence of variables, then
∃ηϕ is a formula.

4) If γ < α and (ϕi)i<γ is a sequence of formulas, then
∧

(ϕi)i<γ is a
formula.

We use the notation Lαβπ also to denote the set of formulas of the
language Lαβπ and denote by V(ϕ) the set of free variables of a formula ϕ,
endowed with the order induced by the order of V. The arity of ϕ is the
ordinal number of V(ϕ). If ϕ is a formula of arity γ, σϕ : γ → V(ϕ) denotes
the unique order preserving isomorphism.
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Consider a set D and an ordinal γ. A γ-tuple defined on D is a sequence
p : γ → D of elements of D defined on γ. We refer to γ-tuples also as
γ-points or points of arity γ defined on D. Let Dγ be the set of all γ-points
defined on D. A relation of arity γ or a γ-relation defined on D is a subset
of Dγ .

Given a map g : D → D, we denote by gγ its extension to γ-points. If
p ∈ Dγ , gγ(p) = g ◦ p. We use the same notation gγ to denote the extension
of gγ to γ-relations. If R ⊆ Dγ , gγ(R) is the set of points g ◦ p for all p ∈ R.
Whenever there is no danger of confusion, we write g instead of gγ .

A first order structure E is a couple 〈D,R〉 where D is a non empty set
and R is a set of relations defined on D containing the diagonal of D2. R is
the set of primitive relations and D is the domain of E.

An automorphism of E is a bijection g : D → D which preserves every
primitive relation, that is, g(R) = R for all R ∈ R. An invariant rela-

tion of E is a relation which is invariant by all elements of the group G of
automorphisms of E.

An interpretation of a language Lαβπ on a non empty set D is a map
which assigns to each predicate symbol R̄ ∈ R̄ of arity γ a relation R of arity
γ defined on D, the relation assigned to = being the diagonal of D2.

Consider a structure E = 〈D,R〉 and a language Lαβπ. We say that
E is a Lαβπ-structure when we have fixed an interpretation of Lαβπ on D
mapping R̄ onto R. In this case, considering that π may be taken as the
least upper bound of the arities of the primitive relations of E, we denote
both the language Lαβπ and its set of formulas by LEαβ and we call E a LEαβ-

structure. When considering the language LEαβ , we assume that the cardinal
of the set V of variables is greater than max{|D|, α}.

An interpretation of the variables of the language LEαβ is a map I : V →
D. The notion of an interpretation I satisfying a formula ϕ is defined by
induction on rules 1) to 4) of construction of formulas. When I satisfies a
formula ϕ ∈ LEαβ, we write I � ϕ; otherwise, we write I 2 ϕ. We recall
the definition of satisfaction with the same notation as in the definition of
formulas.

Definition 2.2. 1) If ϕ is R̄τ , then I � ϕ⇔ I ◦ τ ∈ R;
2) If ϕ is ¬ψ, then I � ϕ⇔ I 2 ψ;
3) If ϕ is ∃ηψ, then I � ϕ if and only if there exists I′ : V → D such that

I′ � ψ and I ◦ σϕ = I′ ◦ σϕ;
4) If ϕ is

∧
(ϕi)i<γ , then I � ϕ⇔ I � ϕi for all i < γ.

The definition implies that if I, I′ are interpretations of variables and
I|V(ϕ) = I′|V(ϕ), then I � ϕ if and only if I′ � ϕ.
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Given a formula ϕ ∈ LEαβ of arity γ, ||ϕ|| denotes the set of all γ-points
I◦σϕ for which I � ϕ. Sometimes, we say that ||ϕ|| is the relation defined by
ϕ. We say also that ||ϕ|| is the set of solutions of the formula ϕ. A relation
R on D is definable in the LEαβ-structure, or is LEαβ-definable, when there is

a formula ϕ ∈ LEαβ which defines R.

We shall give an alternative definition of the relation ||ϕ||, independently
of the notion of interpretation of variables. For this purpose, we need to
introduce a very natural operator on the set of relations defined on D.

Let γ, δ be ordinal numbers and let ξ : γ → δ be a map. ξ induces
a map ξ∗ : Dδ → Dγ defined by ξ∗(p) = p ◦ ξ, p ∈ Dδ. For R ⊆ Dδ,
ξ∗(R) = {p ◦ ξ : p ∈ R}. As usual, ξ∗−1 denotes the inverse map of ξ∗ from
℘(Dγ) into ℘(Dδ). For S ⊆ Dγ , ξ∗−1(S) = {p ∈ Dδ : p ◦ ξ ∈ S}. Consider
a third ordinal ε and a map η : δ → ε, then (η ◦ ξ)∗ = ξ∗ ◦ η∗. When ξ is
bijective, ξ∗ is also bijective and (ξ∗)−1 = (ξ−1)∗. For a map g : D → D,
ξ∗ ◦ gδ = gγ ◦ ξ

∗. We denote by Cγ : ℘(Dγ) → ℘(Dγ) the map associating to
a relation R ⊆ Dγ its complement Dγ −R.

Consider again a language LEαβ. We define independently of interpreta-

tion of variables, a relation JϕK associated to every formula ϕ ∈ LEαβ . Later,
we shall prove that JϕK = ||ϕ||.

We remark the following easy facts using the same notation of definition
2.1:

1) If ϕ is R̄τ , then V(ϕ) = range(τ) ⊆ V;

2) If ϕ is ¬ψ, then V(ϕ) = V(ψ);

3) If ϕ is ∃ηψ, then V(ϕ) = V(ψ) − range(η);

4) If ϕ is
∧

(ϕi)i<γ , then V(ϕ) =
⋃
i<γ V(ϕi).

Definition 2.3. The notation being the same as in the definition of
formulas,

1) If ϕ is R̄τ , then JϕK = (σ−1
ϕ ◦ τ)∗−1(R);

2) If ϕ is ¬ψ and the arity of ψ is γ, then JϕK = Cγ(JψK);

3) If ϕ is ∃ηψ, then JϕK = (σ−1
ψ ◦ σϕ)∗(JψK);

4) If ϕ is
∧

(ϕi)i<γ , then JϕK =
⋂
i<γ(σ

−1
ϕ ◦ σϕi

)∗−1(JϕiK).

Proposition 2.4. For every ϕ ∈ LEαβ , ||ϕ|| = JϕK.

Proof. Let ϕ ∈ LEαβ be a formula of arity γ. For every p ∈ Dγ there
exists I : V → D satisfying p = I ◦ σϕ. Hence, it is enough to show that:
I � ϕ⇔ I◦σϕ ∈ JϕK. The proof is by induction on rules 1) to 4) of definition
of formulas.

1) If ϕ is the formula R̄τ , τ : γ → V, then,
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I � ϕ ⇔ I ◦ τ ∈ R
⇔ I ◦ σϕ ◦ (σ−1

ϕ ◦ τ) ∈ R

⇔ I ◦ σϕ ∈ (σ−1
ϕ ◦ τ)∗−1(R)

⇔ I ◦ σϕ ∈ JϕK.

2) Assume that the proposition holds for ψ and ϕ is ¬ψ. Then, σϕ = σψ
and

I � ϕ ⇔ I 2 ψ
⇔ I ◦ σψ /∈ ||ψ||
⇔ I ◦ σϕ /∈ JψK
⇔ I ◦ σϕ ∈ Cγ(JψK)
⇔ I ◦ σϕ ∈ J¬ψK
⇔ I ◦ σϕ ∈ JϕK.

3) Assume that ϕ is the formula ∃ηψ and that the proposition holds for
ψ. By definition, I � ϕ if and only if there exists I′ : V → D, I′ � ψ and
I ◦ σϕ = I′ ◦ σϕ. Hence,

I � ϕ ⇔ I′ � ψ
⇔ I′ ◦ σψ ∈ ||ψ||
⇔ I′ ◦ σψ ∈ JψK
⇔ I′ ◦ σϕ ◦ (σ−1

ϕ ◦ σψ) ∈ JψK

⇔ I ◦ σϕ ∈ (σ−1
ϕ ◦ σψ)∗−1(JψK)

⇔ I ◦ σϕ ∈ (σ−1
ψ ◦ σϕ)∗(JψK)

⇔ I ◦ σϕ ∈ JϕK.

4) Assume that ϕ is the formula
∧

(ϕi)i<γ and that the proposition holds
for each ϕi. Then,

I � ϕ ⇔ I � ϕi, for all i < γ
⇔ I ◦ σϕi

∈ ||ϕi||, for all i < γ
⇔ I ◦ σϕi

∈ JϕiK, for all i < γ
⇔ I ◦ σϕ ◦ (σ−1

ϕ ◦ σϕi
) ∈ JϕiK, for all i < γ

⇔ I ◦ σϕ ∈ (σ−1
ϕ ◦ σϕi

)∗−1(JϕiK), for all i < γ

⇔ I ◦ σϕ ∈
⋂
i<γ(σ

−1
ϕ ◦ σϕi

)∗−1(JϕiK)

⇔ I ◦ σϕ ∈ JϕK.

End of the proof. �
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.3 Definability of invariant relations

The following notation will be used in the statements of theorems 3.1 and
3.2 bellow. Given a map ξ : γ → δ, consider the equivalence relation defined
on γ: i ∼ j if and only if ξ(i) = ξ(j), i, j ∈ γ. Denote by I the set of
first elements of the equivalence classes. Let γ′ and δ′ be respectively the
ordinals of the sets γ − I and δ − ξ(γ), the orders being the orders induced
by γ and δ.

Consider a LEαβ-structure E, a LEαβ-definable relation R and a map ξ :
γ → δ whit γ < α. We have the following results:

Theorem 3.1. If R ⊆ Dδ and assuming that δ′ < β, then ξ∗(R) is

LEαβ-definable.

Theorem 3.2. If R ⊆ Dγ and assuming that γ′ < β and δ′ < α, then

ξ∗−1(R) is LEαβ-definable.

Theorems 3.1 and 3.2 play an important role in the proof of our main
result, theorem 3.7. Their proves being not related to the ideas involved in
theorem 3.7 are left to section 4.

In the remaining of this section, we denote by δ the cardinal number of
D. If δ is infinite, δ+ denotes the first cardinal greater than δ. If δ is finite,
δ+ is ω. Observe that δ+ is regular. We also remark that if γ is an ordinal,
we use the notation δγ instead of δ|γ| to express cardinal exponentiation.

A point p ∈ Dδ is a normal point if the map p : δ → D is a bijection
onto D. The main idea in the proof of theorem 3.7 consists in proving first
that orbits of normal points are LE

δ+δ+
-definable and then, showing that any

orbit of arity γ < δ+ can be obtained from an orbit of a normal point by
means of an operator ξ∗ suitably chosen.

Proposition 3.3. The set N of normal points is LE
δ+δ+

-definable.

Proof. Let y denote a variable distinct of all xi, i < δ. Then,

ϕ = ∀y[
∨

i<δ

(y = xi)] ∧ [
∧

i,j<δ,i6=j

(xi 6= xj)]

is a formula of LE
δ+ω

⊆ LE
δ+δ+

and clearly ||ϕ|| = N . �

Given a relation R of arity γ and a normal point q, let ΘR be the set of
maps ξ : γ → δ satisfying ξ∗(q) ∈ R. Define

M̄R =
⋂

ξ∈ΘR

ξ∗−1(R).
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Proposition 3.4. Assume that γ satisfies δγ < δ+. Then, for any

relation LE
δ+δ+

-definable R of arity γ and any normal point q, M̄R is LE
δ+δ+

-

definable. Moreover, for any map g : D → D, g(R) ⊆ R if and only if

g(q) ∈ M̄R.

Proof. If δ = 1 the proposition is trivial. If δ > 1, the condition on
γ yields γ < δ+. By theorem 3.2, ξ∗−1(R) is LE

δ+δ+
-definable for all maps

ξ : γ → δ. By definition of ΘR, |ΘR| ≤ δγ < δ+. Therefore, M̄R is LE
δ+δ+

-
definable. Since q is bijective, for every p ∈ R there is ξ ∈ ΘR satisfying
p = q ◦ ξ. Hence,

g(R) ⊆ R ⇔ ∀p ∈ R(gγ ◦ p ∈ R)
⇔ ∀ξ ∈ ΘR(gγ(ξ

∗(q)) ∈ R)
⇔ ∀ξ ∈ ΘR(ξ∗(gδ(q)) ∈ R)
⇔ ∀ξ ∈ ΘR(gδ(q) ∈ ξ

∗−1(R))
⇔ gδ(q) ∈ M̄R.

End of the proof. �

Proposition 3.5. Assume that γ satisfies δγ < δ+ and let q be a normal

point. For any relation R ⊆ Dγ there exists a relation MR ⊆ Dδ, LE
δ+δ+

-

definable satisfying the condition: for any bijection g : D → D, gγ(R) = R
if and only if gδ(q) ∈MR.

Proof. Let R′ be the complement of R in Dγ and let

MR = M̄R ∩ M̄R′ ∩N.

By propositions 3.3 and 3.4, MR is LE
δ+δ+

-definable. Since gδ(N) = N ,
gδ(q) ∈ MR if and only if gγ(R) ⊆ R and gγ(R

′) ⊆ R′. Since gγ is a
bijection, the last two conditions are equivalent to gγ(R) = R. �

Proposition 3.6. Let E = 〈D,R〉 be a first order structure and let

α = sup{|R|, δ}. If the arity γ of every primitive relation R ∈ R satisfies

δγ < δ+, the orbit of every normal point q by the group G of automorphisms

of E is LE
α+δ+

-definable.

Proof. Let M =
⋂
R∈R

MR. By proposition 3.5 and the definition of α,
M is LE

α+δ+
-definable. Let g : D → D be an automorphism of E. For every

R ∈ R of arity γ, gγ(R) = R. Hence, gδ(q) ∈ M . Conversely, if p ∈ M ,
g = q−1 ◦ p is a bijection of D onto D and g(q) = p. Since g(q) ∈ MR, it
follows from proposition 3.5 that g(R) = R, for all R ∈ R. Hence, g is an
automorphism of E and M is the orbit of q by G. �
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Theorem 3.7. Let E = 〈D,R〉 be a first order structure and let α =
sup{|R|, δ}. Assume that the arity γ of every primitive relation R ∈ R

satisfies δγ < δ+. Then, every orbit of the group G of automorphisms of E
of arity less than δ+ is LE

α+δ+
-definable.

Proof. Let S be an orbit of arity γ < δ+. Choose a normal point
q and consider a map ξ : γ → δ such that ξ∗(q) ∈ S. By proposition
3.6, the orbit M of q is LE

α+δ+
-definable. As γ < δ+ (since δγ < δ+) and

δ′ ≤ δ < δ+, by theorem 3.1, ξ∗(M) is LE
α+δ+

-definable. The hypothesis on
S and the commutativity gδ ◦ ξ = ξ ◦ gγ yield S = {gγ(ξ

∗(q)) : g ∈ G} and
M = {gδ(q) : g ∈ G}, hence ξ∗(M) = {ξ∗(gδ(q)) : g ∈ G} = S. Therefore, S
is LE

α+δ+
-definable. �

Corollary 3.8. Every invariant relation of E of arity γ satisfying δγ <
δ+ is LE

α+δ+
-definable.

Proof. An invariant relation R of arity γ is the union of orbits of G.
Since |Dγ | = δγ < δ+, the cardinality of the union is at most δγ . Therefore,
R is LE

α+δ+
-definable. �

Corollary 3.9. If D is finite, every invariant relation of finite arity is

LEωω-definable.

Corollary 3.10. If |D| = ω1 and |R| ≤ ω1, every invariant relation of

arity less or equal to ω is LEω2ω2
-definable.

Let E be a LEαβ-structure. Two points p1, p2 ∈ Dγ which are in the same

orbit of the action of G on Dγ satisfy the same set of formulas of LEαβ . The
converse of this statement is not true in general. However, it is natural to
ask whether α and β can be so chosen for the converse to be true. Keeping
the notation as in theorem 3.7, corollary 3.11 below answers this question.

Corollary 3.11. Two points p1, p2 ∈ Dγ which satisfy the same formu-

las of LE
α+δ+

are in the same orbit of G.

Proof. Let G · p1 be the orbit of p1 under the action of G on Dγ . By
theorem 3.7, there exists ϕ ∈ LE

α+δ+
which definesG·p1, that is, ||ϕ|| = G·p1.

If p2 /∈ G · p1, then p2 does not satisfies ϕ, against the hypothesis that p1

and p2 satisfy the same formulas of LE
α+δ+

. �
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.4 Proofs of theorems 3.1 and 3.2

Given a formula ϕ ∈ LEαβ , let V ar(ϕ) be the set of all variables of ϕ and let
λ be a bijection of V ar(ϕ) onto a subset U of the set of variables V; λ∗(ϕ)
denotes the formula obtained replacing each variable of ϕ by its image by λ.
The set of free variables of λ∗(ϕ) is λ(V(ϕ)). Let γ and δ be the arities of
ϕ and λ∗(ϕ) respectively and let σ′ : δ → λ(V(ϕ)) be the order preserving
bijection. Consider the map ξ = σ′−1 ◦ λ ◦ σϕ : γ → δ.

Proposition 4.1. ||λ∗(ϕ)|| = ξ∗−1(||ϕ||).

Proof. By proposition 2.4 it is sufficient to prove that Jλ∗(ϕ)K =
ξ∗−1(JϕK). The proof is by induction on rules 1) to 4) of definition of for-
mulas. By definition,

JϕK = (σ−1
ϕ ◦ τ)∗−1(R)

and

Jλ∗(ϕ)K = (σ′−1 ◦ λ ◦ τ)∗−1(R)

Then,

p ∈ ξ∗−1(JϕK) ⇔ p ◦ (σ′−1 ◦ λ ◦ σϕ) ∈ JϕK
⇔ p ◦ (σ′−1 ◦ λ ◦ σϕ) ∈ (σ−1

ϕ ◦ τ)∗−1(R)

⇔ p ◦ (σ′−1 ◦ λ ◦ σϕ) ◦ (σ−1
ϕ ◦ τ) ∈ R

⇔ p ◦ (σ′−1 ◦ λ ◦ τ) ∈ R
⇔ p ∈ Jλ∗(ϕ)K.

The other steps of the induction are straightforward. �

If λ|V(ϕ) preserves the order, then γ = δ and ξ : γ → δ is the identity
map. Hence, by proposition 4.1, ||λ∗(ϕ)|| = ||ϕ||.

Let ξ : γ → δ be a map. The notation being the same as in section 3,
consider the ordinals γ′, δ′ and let ξ̄′1 : γ′ → γ − I and ξ̄′2 : δ′ → δ − ξ(γ) be
the order preserving bijections. Finally, consider the maps ξ′1 = ξ̄′1 ◦ id1 and
ξ′2 = ξ̄′2 ◦ id2 where id1 and id2 are respectively the identical maps of γ − I
into γ and of δ − ξ(γ) into δ.

Proposition 4.2. Let R ⊆ Dδ be a relation LEαβ-definable and let ξ :

γ → δ be an order preserving map. If δ′ < β, then ξ∗(R) is LEαβ-definable.

Proof. Consider a formula ϕ of LEαβ defining R, i.e. ||ϕ|| = R, and let
η = σϕ ◦ ξ′2 : δ′ → V(ϕ).



DEFINABILITY IN INFINITARY LANGUAGES, INVARIANCE BY AUTOMORPHISMS 129

δ′ δ-ξ′2

6

V(ϕ)

�
�

���
σϕη

@
@

@@R δ − ξ(γ)

6
id2ξ̄′2

Since δ′ < β, ψ = ∃ηϕ is a formula of LEαβ . By proposition 2.4, ||ψ|| =

(σ−1
ϕ ◦σψ)∗(R). Considering that V(ψ) = V(ϕ)−range(η), then σ−1

ϕ (V(ϕ)) =
δ − ξ(γ); since ξ is order preserving, then ξ|γ − I : (γ − I) → (δ − ξ(γ)) is
an order preserving map and then σψ = σϕ ◦ ξ. Hence,

||ψ|| = (σ−1
ϕ ◦ (σϕ ◦ ξ))∗(R) = ξ∗(R).

End of the proof. �

Proposition 4.3. Let R ⊆ Dγ be a relation LEαβ-definable and let ξ :

γ → δ be an order preserving map. If δ′ < α, then ξ∗−1(R) is also LEαβ-

definable.

Proof. Let ϕ be a formula of LEαβ satisfying ||ϕ|| = R and let V ar(ϕ) be

the set of all variables of ϕ. Consider the map λ′ = (χ|δ)◦ξ◦σ−1
ϕ : V(ϕ) → V

and extend λ′ to a bijection λ of V ar(ϕ) onto a subset U of V. Since ξ is
order preserving, so is λ′. Hence, by proposition 4.1, ||λ∗(ϕ)|| = ||ϕ||. Let
ψ1 be the formula ∧

(xξ′
2
(i) = xξ′

2
(i))i∈δ′ .

Since δ′ < α, ψ1 is a formula of LEαβ and ||ψ1|| = Dδ′ . Then, the formula

λ∗(ϕ)∧ψ1, denoted by ψ, is also a formula of LEαβ . By construction, V(ψ) =
V(λ∗(ϕ)) ∪ V(ψ1) = range(χ|ξ(γ)) ∪ range(χ|δ − ξ(γ)) = range(χ|δ), and
then we have

σψ = χ|δ, σλ∗(ϕ) = (χ|δ) ◦ ξ, σψ1
= (χ|(δ − ξ(γ))) ◦ ξ′2.

Hence,
σ−1
ψ ◦ σλ∗(ϕ) = ξ, σ−1

ψ ◦ σψ1
= ξ′2.

By proposition 2.4,

||ψ|| = ξ∗−1(||λ∗(ϕ)||
⋂

(ξ′2)
∗−1(||ψ1||))

= ξ∗−1(||ϕ||
⋂

Dδ)
= ξ∗−1(R).
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End of the proof. �

We now prove theorems 3.1 and 3.2.

Proof of theorem 3.1. Let γ̄ and δ̄ be the ordinals of I and ξ(γ)
respectively, the notation being as in section 3. Let also ξ̄1 : γ̄ → I, ξ̄2 :
δ̄ → ξ(γ) be the order preserving bijections. Then,

ξ̄ = ξ̄−1
2 ◦ (ξ|I) ◦ ξ̄1 : γ̄ → δ̄

is a bijection.
Consider the maps ξ1 = id1 ◦ ξ̄1 and ξ2 = id2 ◦ ξ̄2 where id1 : I → γ and

id2 : ξ(γ) → δ are the identical maps.

γ̄

6
δ̄

- I

6
ξ(γ)-

-

-

γ

δ
6

- V(ϕ)

ξ̄ ξ|I ξ

ξ̄1 id1

ξ̄2 id2 σϕ

Let S be the set of points p ∈ Dγ satisfying the condition: for all i, j ∈ γ,
if ξ(i) = ξ(j), then p(i) = p(j). For i ∈ I, let Pi be the set of elements j ∈ γ
satisfying ξ(j) = ξ(i) and let γi be the ordinal of Pi. Denote by σi : γi → Pi
the order preserving bijection. Since |γi| ≤ |γ| ≤ γ < α, for each i ∈ I, the
formula ∧

(xσi(0) = xσi(j))j∈γi

is a LEαβ-formula. Denoting the last formula by ψi, the formula

∧
(ψξ̄1(k))k∈γ̄ ,

denoted by ψ, is also a LEαβ-formula. Clearly, ||ψ|| = S, proving that S is

LEαβ-definable.
Since ξ2 is order preserving and δ′ < β, proposition 4.2 applies yielding

that ξ∗2(R) is LEαβ-definable. Remarking that ξ̄ is a bijection from γ̄ onto

δ̄, by proposition 4.1, ξ̄∗(ξ∗2(R)) is also LEαβ-definable. Since ξ1 is order

preserving and |γ′| ≤ |γ| ≤ γ < α, by proposition 4.3, ξ∗−1
1 (ξ̄∗(ξ∗2(R))) is

LEαβ-definable.
To complete the proof it is enough to show that

ξ∗(R) = ξ∗−1
1 (ξ̄∗(ξ∗2(R)))

⋂
S.
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Denote by A the second member of the equality above and let p ∈ Dγ .
Then, we have

p ∈ A ⇔ p ◦ ξ1 ∈ (ξ2 ◦ ξ̄)
∗(R) and p ∈ S

⇔ p ◦ ξ1 = q ◦ (ξ2 ◦ ξ̄) and q ∈ R, p ∈ S
⇔ p ◦ ξ1 = (q ◦ ξ) ◦ ξ1 and q ∈ R, p ∈ S.

Since p and q ◦ ξ belong to S, the last equality yields

p ∈ A⇔ p = q ◦ ξ and q ∈ R, p ∈ S.

Hence, p ∈ A⇔ p ∈ ξ∗(R). �

Let R ⊆ Dδ be a relation LEαβ-definable and let ξ : γ → δ be a map.

If γ < α and δ < β, it follows from theorem 3.1 that ξ∗(R) is also LEαβ-
definable.

Proof of theorem 3.2. Since γ′ < β, by proposition 4.2, we have
that ξ∗1(R) is LEαβ-definable. By proposition 4.1, (ξ̄−1)∗(ξ∗1(R)) is also LEαβ-

definable. By proposition 4.3 and the hypothesis δ′ < α, ξ∗−1
2 ((ξ̄−1)∗(ξ∗1(R)))

is LEαβ-definable. The notation being as in the proof of theorem 3.1, the

hypothesis γ < α yields that S is LEαβ-definable. To complete the proof it is
enough to show that

ξ∗−1(R) = ξ∗−1
2 ((ξ̄−1)∗(ξ∗1(R ∩ S))).

Let B be the second member of the equality above and let p ∈ Dγ . Then,

p ∈ B ⇔ p ◦ ξ2 ∈ (ξ1 ◦ ξ̄
−1)∗(R ∩ S)

⇔ p ◦ ξ2 = q ◦ (ξ1 ◦ ξ̄
−1) and q ∈ R ∩ S

⇔ p ◦ ξ2 ◦ ξ̄ = q ◦ ξ1 and q ∈ R ∩ S
⇔ p ◦ ξ ◦ ξ1 = q ◦ ξ1 and q ∈ R ∩ S.

Since p ◦ ξ and q belong to S, p ◦ ξ ◦ ξ1 = q ◦ ξ1 ⇔ p ◦ ξ = q. Hence,

p ∈ B ⇔ p ◦ ξ = q and q ∈ R ∩ S.

But, p ◦ ξ = q and q ∈ R ∩ S ⇔ p ∈ ξ∗−1(R). Therefore, B = ξ∗−1(R),
completing the proof. �

A consequence of theorem 3.2 is that if R is LEαβ-definable and γ <

α, γ < β, δ < α, then ξ∗−1(R) is LEαβ-definable.
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.5 Complete first order languages

In this section, we extend the results we have obtained to complete first
order languages. Let LEαβ be a language associated to a structure E over a

domain D. We add to the symbols of LEαβ a set C̄ of constant symbols and

a set F̄ of functions symbols; each function symbol f̄ ∈ F̄ has an ordinal
arity γ < α. To each constant symbol c̄ ∈ C̄ it is associated an element
c ∈ D which is added to the structure E and to each function symbol f̄ ∈ F̄

of arity γ it is associated a function f of arity γ defined on D with values
in D which is added to E also. We denote by L̄Eαβ the complete first order

language obtained in this way and we say that E is an L̄Eαβ-structure.

The set T of terms of L̄Eαβ is defined by induction as usual. T is the least
set of sequences satisfying the following conditions:

1) If xi is a variable, the sequence 〈xi〉 ∈ T;

2) If c̄ is a symbol of constant, 〈c̄〉 ∈ T;

3) If f̄ ∈ F̄ has arity γ, and τ : γ → T is a sequence of terms, the
concatenation f̄ τ ∈ T.

We add to the set of formulas of LEαβ the formulas obtained by the

following rule: If R̄ is a predicate symbol of LEαβ of arity γ < π and γ, and

τ : γ → T is a sequence of terms, then R̄τ is a formula of L̄Eαβ. Since α is a

regular cardinal, the arity of R̄τ is less then α.

Given an interpretation of the variables I : V → D, we extend I to an
interpretation of the terms I∗ : T → D in the following way:

1) If τ is 〈xi〉, then I∗(τ) = I(〈xi〉);

2) If τ is 〈c̄〉, then I∗(τ) = c;

3) If τ is fσ where f is a function symbol of arity γ, then I∗(τ) =
f((I∗(σ(i)))i<γ).

It remains to define when a formula R̄τ , where τ is a sequence of terms,
is satisfied by an interpretation of variables. We say that:

I � R̄τ ⇔ I
∗ ◦ τ ∈ R.

The notion of relation ||ϕ|| defined by a formula ϕ ∈ L̄Eαβ remains unchanged.

Let Ẽ be the relational structure over D obtained adding to the primitive
relations of E the following relations:

1) For each constant symbol c̄ ∈ C̄, the unary relation {c};

2) For each function symbol f̄ ∈ F̄ of arity γ, the γ+ 1-relation f̃ which
defines the function f .
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Let LẼαβ the relational language obtained adding to the predicate symbols

of LEαβ a predicate symbol for every relation which was added to the relations

of the structure E. The structure Ẽ is a LẼαβ-relational structure.
A straightforward induction on the rules of construction of formulas

shows that the set of definable relations of the complete L̄Eαβ-structure is

the same as the set of definable relations of the relational LẼαβ-structure

Ẽ. Thus, theorem 3.7 and its corollaries apply without change to the L̄Eαβ-
structure.
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