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ON THE LATTICE OF P -CONSEQUENCES

A b s t r a c t. This paper is devoted to investigation of the lattice

properties of p-consequences. Our main goal is to compare the

algebraic features of the lattices composed of all p-consequences

and all consequence operations defined on the same propositional

language.

.1 Preliminary remarks concerning p-consequence operation

A concept of p-consequence is supposed to be a formal tool in a description

of plausible reasoning [2]. This kind of reasoning is assumed to weaken the

requirement for consequence operation to two conditions only: reflexivity

and monotonicity. The third clause for consequence operation, i.e. idem-

potency expresses the fact that the conclusions of conclusions of a given

set are conclusions of that set as well. The same fact can be described in

terms of degree of certainty - conclusion is true at least in the same degree

as premises are. So, we do not require that the condition of idempotency

is valid for any plausible consequence. This approach is strictly related to
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this proposed by Ajdukiewicz [1]. It can be said that we try to capture his

notion by the formal tools.

Definition 1.1. By a p-consequence operation for a sentential language

L we mean any function Z : P(L) → P(L) that is subject to the conditions

(for all X ⊆ L,α ∈ L):

(i) X ⊆ Z(X);

(ii) Z(X) ⊆ Z(Y ) whenever X ⊆ Y .

Moreover, if a p-consequence operation Z fulfils the condition

(iii) Z(X) =
⋃
{Z(Xf ) : Xf ∈ Fin(L), Xf ⊆ X}, (Fin(L) indicates

the family of all finite sets (including the empty set) of formulas),

then Z will be called finitary.

We can additionally define the property of structurality for

p-consequence Z: Z is structural iff eZ(X) ⊆ Z(eX) for every X ⊆ L

and every endomorphism e of the language L.

Obviously, any consequence operation is a p-consequence.

The most important way of representation of p-consequence (and the

most intuitive) is that founded on the notion of p-matrix see [2]. p-matrix

M = (A,D1,D∗) consists of an algebra A = (M,F1, . . . , Fn) similar to a

propositional language and two distinguished sets D1 ⊆ D∗ ⊆ M . Every

p-matrix defines a structural p-consequence ZM in the following manner:

for every subset of formulas X and a formula α:

α ∈ ZM(X) iff
−→
h (X) ⊆ D1, then h(α) ∈ D∗, for every homomorphism

h of algebras L and M.

When the distinguished sets are equal, then the p-matrix can be re-

garded as an ordinary matrix that defines a consequence operation (an

opposite statement does not hold).

By distinguishing two sets in a p-matrix, we indicate which values are

assumed to represent the true in a strong meaning (a smaller set D1) and

which set (D∗ in our case) contains all values which are not the values of

rejecting.

For the given formula α and a valuation h a metastatement ”h(α) ∈ D1”
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expresses the fact that under this valuation α is absolutely true. In the same

way ”h(α) ∈ D∗” means that the formula is possibly true 1.

So, putting the definition of p-matrix and the above considerations to-

gether, we can say that a formula α is a p-consequence of X iff every

interpretation which takes all formulas from X as absolutely true, it takes

α as true in a weaker way (plausible). This statement reflects idea of Aj-

dukiewicz concerning plausible reasoning (see [1]).

Moreover - this way of representing of structural p-consequences is ad-

equate in the meaning that the following holds:

Theorem 1.2. (see [2])For every structural p-consequence Z, there ex-

its a family of p-matrices Mt such that: Z(X) =
⋂

t∈T

Zt(X) for every set of

formulas X. Where for t ∈ T , Zt is a p-consequence determined by Mt.

The above theorem is in the fact a counterpart of the famous Linden-

baum lemma.

It is worth mentioning that p-matrix is a notion symmetrical to q-

matrix (see [5],[6]). In our terminology q-matrix is an algebraic structure

M = (A,D∗,D1) where D1 ⊆ D∗ are the same like in a case of p-matrix.

Each q-matrix defines q-consequence operation, i.e. such one for which the

following clauses are valid:

(i) N(X) ⊆ N(Y ) for X ⊆ Y ; (ii) N(X ∪ N(X)) ⊆ N(X).

Comparative studies concerning p- and q- consequence are contained

in [7] and [2]. What is more - in a case of p-matrix, a set of premisses is

valuated in a narrower set D1 and a conclusion is valuated in a wider D∗. In

a case of q-consequence the mentioned order is reversed - conclusion must

be better than assumptions. Obviously there are more possibilities of such

relations between the distinguished sets, i.e. when the set of antidesignated

elements is not just a complementation of designated ones. These cases

(together with q- and p- consequence) are considered in [8].

p-consequence can be easily described in a syntactic way. We think that

this approach explains the best intuitions that are formalized by a notion

1A word possibly is assumed to bring some intuitions only. Probability theory is not

”complete” interpretation of p-consequence.
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of p-consequence. Let us remark a few important definitions from [2]:

Definition 1.3. Finite sequence (a1, . . . , an), n ≥ 1, of ordered pairs

from the Cartesian product L×{∗, 1} will be called p-inference for the lan-

guage L. By a p-rule of inference for the language L we mean any nonempty

set of p-inferences for L.

For example, the sequence (〈p → q, ∗〉, 〈p, 1〉, 〈q, ∗〉) is a p-inference while

the set {(〈(α → β, x1〉, 〈α, x2〉, 〈β, ∗〉) : α, β ∈ L, x1, x2 ∈ {∗, 1}, x1 = 1 or

x2 = 1} is a p-rule of inference.

Definition 1.4. p-proof of a formula α from a set X of formulas based

on a set R of p-rules of inference is a p-inference (a1, . . . , ak), k ≥ 1, for L

such that

(i) pr1(ak) = α;

(ii) for all i = 1, 2, . . . , k, either pr1(ai) ∈ X and pr2(ai) = 1 or there

exists a p-rule r ∈ R and a p-inference (b1, . . . , bj) ∈ r such that ai = bj

and {b1, . . . , bj−1} ⊆ {a1, . . . , ai−1}. (pr1, pr2 are the first and the second

projections on L × {∗, 1}, respectively).

Definition 1.5 A formula α is p-derivable from a set of formulas X by

the p-rules from R (X ‖–R α in symbols) iff there is a p-proof of α from X

on the basis of R. The relation ‖–R will be called a p-derivability relation

determined by the set of p-rules R.

For a given p-inference (a1, . . . , ak) one can say that the formulas ap-

pearing with an index 1 are these ones that are derived in a strong meaning

- for example when they are the elements of a set of premisses X. When a

formula α occurs in that sequence with index ∗, that is 〈α, ∗〉 is an element of

the sequence, than we say that α is at least plausible. It can be mentioned,

that q-consequences being operations symmetrical to p-consequences can

be syntactically described in a similar way (see [3]). However, the original

approach and contained in [5] is based on ordinary notion of proof for con-

sequence operation. The only difference is that q-proof does not include

the condition that allows for adding to a proof formulas being the members

of an initial set of premises.

For any p-inference (a1, . . . , an) let us put for each i ∈ {1, . . . , n} :
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A∗(i) = {pr1(al) : 1 ≤ l ≤ i & pr2(al) = ∗} and A1(i) = {pr1(al) : 1 ≤ l ≤

i & pr2(al) = 1}. Assume that p-consequence Z on the language L is given.

We are going to define the following set R(Z) of p-rules of inference:

r ∈ R(Z) iff for any Y ⊆ L and p-inference (a1, . . . , an) ∈ r, the condi-

tions: A∗(n − 1) ⊆ Z(Y ), Z(Y ∪ A1(n − 1)) = Z(Y ) imply that

(pr2(an) = ∗ ⇒ pr1(an) ∈ Z(Y )) & (pr2(an) = 1 ⇒ Z(Y, pr1(an)) =

Z(Y )).

Now we are able to express a counterpart of well known theorem from

theory of consequence:

Theorem 1.6. ([2]) For any finitary p-consequence Z on the language

L, any X ⊆ L and α ∈ L : α ∈ Z(X) iff X ‖–R(Z) α.

p-consequence operation might seems to be a very general notion. How-

ever, there exist many possibilities to limit the class of p consequences by

putting some additional conditions. For example, one can consider strongly

and weakly pseudoclosed p-consequences ([4]):

We shall say that p-consequence Z is strongly (weakly) pseudoclosed iff

∀X,Y ⊆L(∀α∈Y (Z(X,α) = Z(X)) ⇒ Z(X ∪ Y ) = Z(X))

(for every finite Yf ⊆ L

∀X⊆L[∀α∈Yf
(Z(X,α) = Z(X)) ⇒ Z(X ∪ Yf ) = Z(X)]).

Although, the above notion is not a subject of this paper, let us try

to decode these conditions. It is characteristic for p-consequence that the

statement Z(X,α) = Z(X) is stronger than α ∈ Z(X). Z(X,α) = Z(X)

can be seen as the other (but not equivalent to the considered so far)

description of strong provability. So, pseudoclosureness of Z means that if

all of formulas from Y do not extend a set of all conclusions of X, then the

set Y does not add any new p-consequences, to the set Z(X). Obviously

every logical consequence has both of these properties.

Another class of p-consequences that has been taken under considera-

tion are deductive p–consequences ([4]).
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Definition 1.7. Any finitary p-consequence Z fulfilling:

(ded) ∀X⊆L∀β∈L{Z(X,β) = Z(X) ⇒ ∃Xf∈F in(X)∀Y ⊆L(Z(Y ∪ Xf ) =

Z(Y ) ⇒ Z(Y, β) = Z(Y ))}.

is called deductive.

Lattice properties of pseudoclosed and deductive p-consequences have

been described in [4], but due to limited size of this paper we have not

decided to quote them here.

.2 The poset 〈ZL,≤〉 and its the simplest properties.

Let us consider the set ZL of all p-consequences for a language L. Let us

define a binary relation ≤ ⊆ ZL × ZL in the usual manner Z1 ≤ Z2 iff

Z1(X) ⊆ Z2(X) for every X ⊆ L. It is obvious that ≤ is a partial order on

ZL.

Fact 2.1. For any propositional language L, the tuple 〈ZL,≤〉 is a

complete, distributive, bounded lattice, with the greatest element ZL, and

the least one id (where id is the identity on P(L) and ZL is constantly

equal L). Moreover, for any A ⊆ ZL the operations of the greatest lower

bound and the least upper bound
∧

A,
∨

A are defined on P(L) by the

following clauses:

(
∧

A)(X)
def
=

⋂
Z∈A

Z(X) and (
∨

A)(X)
def
=

⋃
Z∈A

Z(X).

Proof. Straightforward. �

Now we assume that a propositional language is fixed, so we can omit

the lower index in ZL. For a sake of convenience we assume the follow-

ing notation: let Zstr,Zfin stand for the set of all structural and finitary

p-consequences, respectively. Moreover for Z1, Z2 ∈ Z, we put Z1 ∧ Z2 :=∧
{Z1, Z2} and Z1 ∨ Z2 :=

∨
{Z1, Z2}.
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Fact 2.2.

a). If A ⊆ Zstr, then
∧

A,
∨

A ∈ Zstr, which means that 〈Zstr,≤〉 is a

complete sublattice of 〈Z,≤〉.

b). If Z1, Z2 ∈ Zfin, then Z1 ∧Z2, Z1 ∨Z2 ∈ Zfin, so 〈Zfin,≤〉 is a sublat-

tice of the lattice 〈Z,≤〉. Moreover, for any A ⊆ Zfin,
∨

A ∈ Zfin.

Proof. Easy. �

.3 Comparison of Z and C

Let C denote a set of all consequence operations on the language L. Al-

though 〈C,≤〉 is also a complete lattice with the same the greatest and the

least elements, and C ⊆ Z, it is not a sublattice of 〈Z,≤〉. It follows from

the fact, that 〈C,∧,∨〉 does not fulfil, contrary to 〈Z,∧,∨〉, law of distribu-

tivity. However, it is easy to see, that C is a meet-complete subsemilattice

of Z, i.e. for any A ⊆ C :
∧

A = infC A ∈ C, where infC is the greatest

lower bound of A in the lattice of all consequences.

For partially ordered set 〈A,≤〉 and B,C ⊆ A we shall say that B is

dense in C (w.r.t. ≤) iff for every x, y ∈ C − B: if x < y then there exists

z ∈ B such that x < z < y.

Theorem 3.1. The set C is not dense in Z, i.e. there exist Z1, Z2 ∈

Z − C such that Z1 < Z2 and there is no C ∈ C that fulfills Z1 < C < Z2.

Proof. Let us choose from the set of propositional variables a count-

able subset and arrange it into a sequence (pi)i∈N. Let us define Z1(X) :=

X ∪ {pi+1 : pi ∈ X}, Z2(X) := X ∪ {pi+1 : pi ∈ X} ∪ {pi+2 : pi ∈ X}.

It is easy to see that Z1, Z2 are p-consequences fulfilling Z1 < Z2 and

Z1, Z2 6∈ C. Assume that there exists a consequence C for which: Z1 <

C < Z2. Hence: p2 ∈ Z1(p1) ⊆ C(p1) ⊆ Z2(p1) and p3 ∈ Z1(p1, p2) ⊆

C(p1, p2) = C(p1) ⊆ Z2(p1). Similarly Z1(p1, p2, p3) ⊆ C(p1, p2, p3) =

C(p1, p2) = C(p1) ⊆ Z2(p1) = {p1, p2, p3}. Thus one can derive a contra-

diction p4 ∈ Z1(p1, p2, p3) ⊆ Z2(p1) = {p1, p2, p3}. �

Taking under consideration a structure 〈Z − C,≤〉 as a substructure of
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〈Z,≤〉 we can make a statement that it does not form a sublattice of a

lattice of all p-consequences. Moreover we are going to prove a stronger:

Theorem 3.2. Every consequence C fulfilling the condition |L−C(∅)| >

1 is the greatest lower bound of non-empty and finite set of p-consequences,

which are not consequences.

Proof. Let C be a consequence such that |L − C(∅)| > 1. We divide

this possibility on two cases:

i). |L − C(∅)| = 2;

ii). |L − C(∅)| > 2.

Ad i). Let C(∅) = L − {α, β}. Define two p-consequences:

Z1(X) =






C(X) ∪ {α}, when C(∅) ⊆ X;

C(X), in the other cases

Z2(X) =






C(X) ∪ {β}, when C(∅) ⊆ X;

C(X), in the other cases

Reflexivity and monotonicity conditions (Definition 1.1.) trivially hold

for Z1 and Z2. Moreover, Z1(Z1(∅)) = Z1(C(∅)) = Z1(L − {α, β}) =

L − {β} 6= L − {α, β} = Z1(∅). Thus Z1 6∈ C. Similarly one can show

Z2 6∈ C.

Let X ⊆ L. By definition we obtain for any set X ⊆ L : C(X) ⊆ Z1(X) ∩

Z2(X) ⊆ (C(X) ∪ {α}) ∩ (C(X) ∪ {β}) = C(X) ∪ ({α} ∩ {β}) = C(X).

Finally, C = Z1 ∧ Z2.

Ad ii). Assume that there exist different α1, α2, α3 6∈ C(∅). We will de-

fine the operations Zi : P(L) −→ P(L), i = 1, 2, 3, in the following manner:

Zi(X) =

{
C(X) ∪ {αi, αi⊕1}, when C(∅) ∪ {αi} ⊆ X

C(X) ∪ {αi}, when C(∅) ∪ {αi} 6⊆ X

where ⊕ stands for a cyclic sum.

We are going to check, that for i = 1, 2, 3, Zi is a p-consequence that is

not a consequence. Obviously X ⊆ Zi(X). When X ⊆ Y and C(∅)∪{αi} ⊆
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X, then also C(∅)∪{αi} ⊆ Y , thus Zi(X) ⊆ Zi(Y ). (The other case, when

C(∅) ∪ {αi} 6⊆ X is trivial). Moreover Zi(Zi(∅)) = Zi(C(∅) ∪ {αi}) =

C(C(∅) ∪ {αi}) ∪ {αi⊕1} 6= C(∅) ∪ {αi} = Zi(∅). So, Zi, i = 1, 2, 3 are

p-consequences and none of them is a consequence operation.

Now, we will show that C =
3∧

i=1
Zi. Let X ⊆ L. According to the fact

that {α1, α2} ∩ {α2, α3} ∩ {α3, α1} = ∅ we obtain:

C(X) ⊆ (
3∧

i=1
Zi)(X) ⊆

3⋂
i=1

(Zi(X) ∪ {αi, αi⊕1}) =

(C(X) ∪ {α1, α2}) ∩ (C(X) ∪ {α2, α3}) ∩ (C(X) ∪ {α3, α1}) =

C(X) ∪ ({α1, α2} ∩ {α2, α3} ∩ {α3, α1}) = C(X). �

The assumption concerning the cardinality of the set L − C(∅) is rele-

vant. For consider a consequence C for arbitrary but fixed language L, for

which |L − C(∅)| ≤ 1. First case when L − C(∅) = ∅, concerns the incon-

sistent operation. This consequence is the greatest element in the lattice

〈Z,≤〉, so it can not be g.l.b. of a non-empty set of p-consequences, contain-

ing an element different than C. Consider the case when |L − (C(∅))| = 1

and define the consequence C:

C(X) =

{
L − {α}, when α 6∈ X

L, when α ∈ X.

Now if Z is a p-consequence such that C < Z, then for some X fulfilling

the clause α 6∈ X, equation Z(X) = L holds. Thus monotonicity of Z

yields: Z(L − {α}) = L, so
⋂

C<Z∈Z
Z(L − {α}) = L while C(L − {α}) =

L − {α}. Finally, consequence C, for which |L − C(∅)| = 1 can not be

g.l.b. of p-consequences different from C (that is p-consequences refuting

idempotency condition).

The following is a counterpart of Theorem 3.1.:

Fact 3.3. There exist C1, C2 ∈ Cfin such that:

(i) C1 < C2 (ii) there is no Z ∈ Z such that C1 < Z < C2.

Proof. Let us choose p0 ∈ V ar and put C1(∅) = ∅, C1(X) = X ∪{p0},

whenever X 6= ∅, and for every X ⊆ L, C2(X) = X ∪ {p0}. Obvi-
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ously C1, C2 ∈ Cfin and there is no p-consequence Z fulfilling the condition

C1 < Z < C2. �

Obviously every p-consequence which is g.l.b. of some family of conse-

quences is a consequence as well. The natural counterpart of Theorem 3.2.

is

Theorem 3.4. Every p-consequence is the least upper bound of some

set of consequences. Moreover, every finitary p-consequence is l.u.b. of

some finitary consequence operations.

Proof. If p-consequence Z is a consequence, then Z =
∨
{Z}. So, let

Z ∈ Z − C. Consider the set {C ∈ C : C < Z}. Of course
∨
{C ∈ C :

C < Z} ≤ Z. To prove the converse, that is Z ≤
∨
{C ∈ C : C < Z},

assume that α ∈ Z(X0). Let C0 be an operation defined by the conditions:

C0(X) = X ∪ {α}, when X0 ⊆ X and C0(X) = X otherwise. C0 is a

consequence, α ∈ C(X0) and C0 < Z (since it could not be C0 = Z, due to

Z is not a consequence), thus α ∈ (
∨
{C ∈ C : C < Z})(X).

Let us go to the case when Z is a finitary p-consequence which is not

consequence.

Consider the set {C ∈ Cfin : C < Z} for which also
∨
{C ∈ Cfin : C <

Z} ≤ Z holds. For the converse, let for some X1 ⊆ L, α ∈ L : α ∈ Z(X1).

Thus α ∈ Z(X0) for some finite X0 ⊆ X1, since Z is finitary. The opera-

tion C0 defined as in the first part of the proof fulfills Cfin ∋ C0 < Z, and

α ∈ C0(X0) ⊆ C(X1). Finally
∨
{C ∈ Cfin : C < Z} = Z. �

It is obvious (compare to Fact 3.1) that for any nonempty C′ ⊆ C the

operation Z defined by the equation: Z(X) :=
⋃
{C(X) : C ∈ C′} is a

p-consequence. Thus by Theorem 3.4 - any p-consequence has exactly this

form.

Similarly as in the theory of ordinary consequence operation we have

the following:

Theorem 3.5. For any p-consequence Z, operation Z∗ : P(L) −→

P(L) defined by the condition: Z∗(X) =
⋃
{Z(Xf ) : Xf ∈ Fin(X)} is the

greatest finitary p-consequence Z ′ such that Z ′ ≤ Z.
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Theorem 3.6. For any p-consequence Z there exists a maximal ele-

ment in the set of all finitary consequences C, such that C ≤ Z.

Proof. Without lost of generality we can assume that Z is not a conse-

quence. Let ∅ 6=  L be a chain in the poset 〈{C ∈ Cfin : C < Z},≤〉. By Zorn

lemma it is enough to show, that
∨

 L ∈ Cfin. Obviously
∨

 L ∈ Zfin (Fact

2.2.b). Assume that α ∈ (
∨

 L)((
∨

 L)(X)). This implies α ∈ C1((
∨

 L)(X))

for some element C1 of the chain  L. Because C1 is finitary, we have

α ∈ C1(C2(X)) for some C2 ∈  L. Due to C1 ≤ C2 or C2 ≤ C1 we ob-

tain α ∈ C1(X) or α ∈ C2(X). Finally – α ∈ (
∨

 L)(X). �

According to Theorem 3.5. we can say, that if Z is a consequence,

then the greatest finitary p-consequence Z∗ among those p-consequences

Z ′ which validate Z ′ ≤ Z, is a consequence. It is the only maximal element

among all finitary consequences C such that C ≤ Z.

.4 Definability of p-consequence by its theories

Every operation of logical consequence is uniquely defined by the family of

its theories, i.e. by the set Th(C) = {X ∈ P(L) : X = C(X)}. In this

paragraph we will show that this statement is not valid for p-consequence

operation.

Fact 4.1. For any propositional language L = (L, f1, . . . , fn) there ex-

ists a family of p-consequences of power 2c = |P(L)P(L)| : {Zt}t∈T such

that {X ∈ P(L) : X = Zt(X)} = {∅, L} for any t ∈ T .

Proof. First of all we will proof our statement for a language without

any connective (i.e. just consisting with countable set of propositional

variables). Of course we can assume that V ar = {pū : ū ∈ N
∗}, where N

∗

stands for the set of all finite sequences of natural numbers (including the

empty set).

For any infinite set of natural numbers A let Â be a sequence of all

elements from the set A ordered in a natural way.
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For any set H of such A′s we define an operation ZH as follows:

ZH(X) =






∅, whenever X = ∅

X ∪ {ps(ū)}pū∈X , if ∃A∈H∀pū∈X ū ≺ Â

L (= V ar), otherwise

where s(〈u1, . . . , uk〉) = 〈u1 + 1, . . . , uk + 1〉 and ≺ is a prefix relation.

It is easy to check, that for any such H, operation ZH is a p-consequence

operation, such that its fixed point are exactly: ∅ and V ar. It is enough to

check that for different H,G, ZH 6= ZG is true. Assume that A ∈ H − G,

and A = {h1, h2, . . .}, where h1 < h2 < . . .. Then:

ZH({p〈h1,h2,...hi〉}i∈N) = ZH({p〈h1,h2,...,hi〉}i∈N∪{p〈h1+1,h2+2,...,hi+1〉}i∈N)

6= L = ZG({p〈h1,h2,...hi〉}i∈N)

We have proved the fact for a language without connectives. Now we

will show that it holds in a general case. Let a propositional language

L = (L, f1, . . . , fn) be given. Then from the fact, that |V ar| = |L| = ℵ0,

there exists a bijection f : L −→ V ar. Now checking that operations

Z
f
H : P(L) −→ P(L), where: α ∈ Z

f
H(X) iff fα ∈ ZH(

−→
f (X)) have required

properties we finishes the proof. �
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