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PROFINITE STRUCTURES ARE RETRACTS
OF ULTRAPRODUCTS OF FINITE

STRUCTURES

A b s t r a c t. We show that if L is a first-order language with

equality, then profinite L-structures, the projective limits of fi-

nite L-structures, are retracts of certain ultraproducts of finite L-

structures. As a consequence, any elementary class of L-structures

axiomatized by L-sentences of the form ∀~x(ψ0(~x) → ψ1(~x)), where

ψ0(~x), ψ1(~x) are positive existential L-formulas, is closed under

the formation of profinite objects in L-mod, the category of L-

structures and L-homomorphisms. We also mention some inter-

esting applications of our main result to the Theory of Special

Groups that have already appeared in the literature.

The results presented here first appeared in Chapter 2 of [Mrn1] and

were announced with proofs in [MM1]. Our motivation came from [KMS],

that introduces the class of direct limits of finite abstract order spaces,

a theory due to M. Marshall ([Mar1]). The theory of special groups, in-

troduced in [DM2], is a first-order axiomatization of the algebraic theory

of quadratic forms, and there is a natural categorical duality between the
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category of reduced special groups and that of abstract ordered spaces, as

shown in Chapter 3 of [DM2] (first established, by a different method, in

[Lim]).

Let L be a first-order language with equality and let L-mod be the

category of L-structures and L-morphisms. As a preliminary to the proof of

our main result, Theorem 2.3, the first section recalls the notions of retract

and pure morphisms in L-mod, as well as some basic material on limits

and colimits in this category, together with the relation between colimits

and reduced products of L-structures (Proposition 1.8). Although many

of these facts are folklore, full proofs of the needed results can be found

in [MM2] and in Chapter 17 of [Mir]. Our general references for Category

Theory and Model Theory are [Mac] and [CK] or [BS], respectively.

At the end of the paper we mention some interesting applications of

our main result to the theory of special groups, some of which have already

appeared in the literature.

.1 Preliminaries

We recall the following

Definition 1.1 Let 〈 I,≤〉 be a non-empty partially ordered set (poset).

For i ∈ I, set

i← = {j ∈ I : j ≤ i} and i→ = {j ∈ I : i ≤ j}.

a) (1) 〈 I,≤ 〉 is upward directed (or filtered) if I for each i, j ∈ I,

i→ ∩ j→ 6= ∅.

(2) 〈 I,≤ 〉 is downward directed (or cofiltered) if for each i, j ∈ I,

i← ∩ j← 6= ∅.

Clearly a poset 〈 I,≤ 〉 is upward directed iff its opposite poset 〈 I,≤ 〉op

is downward directed and vice-versa. The expression directed poset will

always refer to upward directed posets.

b) A filter F on I is directed if for all i ∈ I, i→ ∈ F .

Lemma 1.2 If 〈 I,≤ 〉 is a directed poset then there is a directed ultra-

filter in 〈 I,≤ 〉.

Proof. Because 〈 I,≤ 〉 is directed we see that the set S= {i→: i ∈ I}

has the finite intersection property and so is contained in a proper ultrafilter
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on I. �

Henceforth, we fix a first-order language with equality, L and write:

∗ L-mod for the category of L-structures and L-morphisms;

∗ ∃
+(L) for the set of L-formulas that are logically equivalent, to a positive

existential L-formula;

∗ pp(L) for the set of L-formulas that are logically equivalent to a positive

primitive L-formula (pp-formula), that is, one of the form ∃x ϕ, where ϕ

is a conjunction of atomic formulas.

It is well-known that any formula in ∃+(L) is logically equivalent to a

disjunction of conjunctions of pp-formulas.

Definition 1.3 Let f : A −→ B be a L-homomorphism and n ≥ 1 be

an integer. If a = 〈 a1, . . . , an 〉 ∈ An, write f(a) for 〈 f(a1), . . . , f(an) 〉.

a) We say that f is pure if it reflects positive existential L-formulas with

parameters in A, that is, if ∃vϕ(v; a) is an existential L-formula, with a ∈

An, then B |= ∃vϕ(v; f(a)) ⇒ A |= ∃vϕ(v; a).

b) We say that f has a retract and that A is a retract of B, if there is

a L-homomorphism g : B −→ A such that g ◦ f = IdA. It is customary

to refer to g as a retraction and to f as a section.

Remark 1.4 With notation as in Definition 1.3, the following facts

are easily established:

(1) Since L has equality, all pure L-morphisms are embeddings.

(2) Since positive existential formulas are logically equivalent to a disjunc-

tion of conjunctions of pp-formulas, f : A −→ B is a pure embedding iff it

reflects pp-formulas with parameters in A.

(3) Any morphism with a retract is a pure embedding.

(4) Let Σ be a set of L-sentences of the form ∀~x(ψ0(~x) → ψ1(~x)), where

ψ0(~x), ψ1(~x) ∈ ∃+(L). If f : M −→ N is a pure morphism and N is a

model of Σ, then the same is true of M . 2

1.5 Filtered Limits and Colimits in L-mod. If {Mk : k ∈ K} is a

family of L-structures, let M =
∏

k∈K Mk be the product L-structure and,

for each k ∈ K, write πk : M −→ Mk for the natural L-projection onto the

kth-coordinate. We now register the following

Definition 1.6 Let 〈 I,≤〉 be a directed poset.
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a) (1) An inductive system of L-structures over I,

M = 〈Mi; {fij : i ≤ j in I} 〉,

consists of a family of L-structures, {Mi : i ∈ I}, together with L-mor-

phisms, fij : Mi −→ Mj , whenever i ≤ j in I , such that fii = IdMi
and, if

i ≤ j ≤ k, the diagram (I) below is commutative:

Mi
- Mj

fik
(I) fjk

Mk

fij

A
A
A
A
AAU

�
�

�
�

���

Mi
- Mj

fi
(II) fj

D

fij

A
A
A
A
AAU

�
�

�
�

���

Mi
- D

ηi
(III) f

E

fi

A
A
A
A
AAU

�
�

�
�

���

(2) If M = 〈Mi; {fij : i ≤ j in I} 〉 is an inductive system over 〈 I,≤ 〉,

a dual cone over M, 〈D; {fi : i ∈ I} 〉, consists of a L-structure, D,

together with L-morphisms, fi : Mi −→ D, such that for all i ≤ j in I,

diagram (II) above is commutative. Such a dual cone is the inductive

limit or colimit of M, written

D = lim
−→

M or D = lim
−→ i∈I

Mi,

if for any dual cone over M, 〈E; {ηi : i ∈ I} 〉, there is a unique L-

morphism, f : D −→ E, such that for all i ∈ I, diagram (III) above is

commutative.

b) (1) A projective system of L-structures over I ,

N = 〈Ni; {gji : i ≤ j in I} 〉,

consists of a family of L-structures, {Ni : i ∈ I}, together with L -mor-

phisms, gji : Mj −→ Mi, whenever i ≤ j, such that gii = IdNi
and, for i

≤ j ≤ k, diagram (IV) below is commutative:
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Mk
- Mj

gki
(IV) gji

Mi

gkj

A
A
A
A
AAU

�
�

�
�

���

C - Mj

gi
(V) gji

Mi

gj

A
A
A
A
AAU

�
�

�
�

���

F - C

ϕi
(VI) gi

Ni

g

A
A
A
A
AAU

�
�

�
�

���

(2) If N = 〈Ni; {gji : i ≤ j in I} 〉 is a projective system over I, a cone

over N , 〈C; {gi : i ∈ I} 〉, consists of a L-structure C and L-morphisms

gi : C −→ Mi, such that for all i ≤ j in I, the diagram above right is

commutative. Such a cone is the projective limit or limit of N , written

C = lim
←−

N or C = lim
←− i∈I

Ni,

if for any cone over N , 〈F ; {ϕi : i ∈ I} 〉, there is a unique L-morphism,

g : F −→ C, such that for all i ∈ I , diagram (VI) above is commutative.

Now we have (for proofs see [MM2] or Chapter 17 in [Mir])

Theorem 1.7 The category L-mod has all filtered limits and colimits.

Moreover, if 〈 I,≤ 〉 is a directed poset:

a) If M = 〈Mi; {fij : i ≤ j in I} 〉 is an inductive system over I, a dual

cone 〈D; {fi : i ∈ I} 〉 is (isomorphic to) lim
−→

M iff the following condi-

tions are satisfied:

[colim 1] : D =
⋃

{fi(Mi) : i ∈ I}.

[colim 2] : If ϕ(v1, . . . , vn) is an atomic formula in L and s ∈ Dn,

D |= ϕ[s] ⇔

{

∃ k ∈ I and x ∈ Mn
k such that

sp = fk(xp), 1 ≤ p ≤ n, and Mk |= ϕ[x].

b) Let N = 〈Ni; {{gji : i ≤ j in I} 〉 be a projective system over I and let

〈C; {gi : i ∈ I} 〉 be a cone over N . Let g : C −→
∏

i∈I Ni be the unique

L-morphism such that for all i ∈ I, πi ◦ g = gi. Then, C is (isomorphic to)

lim
←−

N iff the following conditions are verified:
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[lim 1] : The image of g in
∏

i∈INi is the set {x ∈
∏

i∈INi : for all i ≤ j

in I gji(πi(x)) = πj(x)}.

[lim 2] : If ϕ(v1, . . . , vn) is an atomic L-formula and s ∈ Cn, C |= ϕ[s]

⇔ ∀ i ∈ I, Ni |= ϕ[gi(s)]. 2

We assume that the reader is familiar with reduced products and their

basic properties. Recall that if {Mi : i ∈ I} is a family of L-structures

and F is a proper filter on I,
∏

i∈I Mi/F is the reduced product of the

Mi modulo F , referred to as an ultraproduct whenever F is an ultrafilter.

We shall describe, omitting proofs, how reduced products can be seen as

colimits, a fact that will be useful in the proof of Theorem 2.3.

If I 6= ∅ is a set and {Mi : i ∈ I} is a family of L-structures, we set, for

J ⊆ K ⊆ I:

∗ M(J) =
∏

j∈J Mj; ∗ πKJ : M(K) −→ M(J) is the projection that

forgets coordinates outside J .

If F is a proper filter on a set I, note that with opposite of the partial

order of inclusion, F is a directed poset since it is closed under intersections.

With these preliminaries, we have

Proposition 1.8 With notation as above, let F be a proper filter on

I, let M =
∏

i∈I Mi and P = M/F . Then,

M = 〈M(J); {πKJ : J ⊆ K, J ∈ F} 〉

is an inductive system over 〈 F , ⊆op 〉 and lim
−→

M ≈ 〈P ; {νJ : J ∈ F} 〉,

where for J ∈ F , νJ : M(J) −→ P is given by x 7−→ x/F = the class of

any element of M that coincides with x on J . 2

.2 Profinite Structures and Ultraproducts

Definition 2.1 A L-structure is profinite if it is L-isomorphic to the

limit of a projective system of finite L-structures over a directed poset.

Remark 2.2 If P is a profinite L-structure then there is a directed

poset, 〈 I,≤ 〉, and a diagram of finite L-structures over I ,

M = (Mi, {fji : i ≤ j})

such that (P ; {λi : i∈ I}) = lim
←−

M. By Theorem 1.7.(b) P is a substruc-

ture of the product M =
∏

i∈I Mi, i.e., there is a natural L-embedding, ι

: P −→ M , such that for all i ∈ I,
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(]) λi = πi ◦ ι.

P - M

λi πi

Mi

ι

A
A
A
A
AAU

�
�

�
�

���

where πi : M −→ Mi is the canonical projection. Furthermore, it follows

from [lim 1] in Theorem 1.7.(b) that

([) ∀ x ∈ P ∀ j,k ∈ I ( j ∈ k→ ⇒ fjk(xj) = xk ).

With notation as in Proposition 1.8, if F is a filter in I then for each J ∈

F there is a natural L-morphism

νJ : M|J −→ M/F , given by x 7−→ x/F ,

where M/F is the reduced product
∏

i∈I Mi/F . 2

We now state

Theorem 2.3 Profinite L-structures are retracts of ultraproducts of fi-

nite L-structures. More precisely, and with the notation in 2.2, let 〈 I,≤ 〉

be a directed poset and

M = 〈Mi; {fij : i ≤ j in I} 〉

is a projective system of finite L-structures over I. If

lim
←−

M = 〈P ; {λi : i ∈ I} 〉,

then the composition

P
ι

−→
∏

i∈I Mi
νI−→

∏

i∈IMi/U ,

is an L-section (Definition 1.3.(b)), where U is any directed ultrafilter in I

(Definition 1.1.(b)).

P
∏

i∈IMi

∏

i∈IMi/U

P

- -

?

HHHHHHHHHHHHHj

ι νI

γUIdP

�
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Proof. By Lemma 1.2, there is a directed ultrafilter U in 〈 I,≤ 〉, which

will remain fixed throughout the proof. Let M =
∏

i∈I Mi be the product

L-structure. By Proposition 1.8 (and with the same notation),

∏

i∈IMi/U = 〈M/U ; {νJ : J ∈ U} 〉

is L-isomorphic to

lim
−→

〈M|J ; {πKJ : J ⊆ K , J ∈ U} 〉.

We shall use this fact to construct a L-morphism, γU : M/U −→ P , such

that

γU ◦ (νI ◦ ι) = IdP ,

completing the proof. As U will remain fixed, we shall write γ in place of

γU . Moreover, to ease presentation, the proof will be divided into several

Facts; all notational conventions remain in force, in particular those in 2.2.

For J ∈ U , i ∈ I, x ∈ M(J) =
∏

j∈J Mj and y ∈ Mi we define

VJ,i(x, y) = {j ∈ J ∩ i→ : fji(xj) = y}.

Fact 2.4 For J ∈ U , i ∈ I, x ∈ M(J) and y, z ∈ Mi,

a) z 6= y ⇒ VJ,i(x, y) ∩ VJ,i(x, z) = ∅.

b) J ∩ i→ =
∐

y∈Mi
VJ,i(x, y) (

∐

is disjoint union).

Proof. Item (a) follows immediately from the fact that fji is a

function. For (b), by the definition of VJ,i(x, y) it is clearly enough to show

that the left side of the equality is contained in its right side; but note that

if j ∈ J ∩ i→, then fji(xj) ∈ Mi, as required. �

Fact 2.5 For each J ∈ U and i ∈ I there is a L-morphism γJ,i :

M(J) =
∏

k∈J Mk −→ Mi, such that

a) If x ∈ M|J and y ∈ Mi then γJ,i(x) = y iff VJ,i(x, y) ∈ U .

b) If J ⊆ K are members of U and i ∈ I, then the diagram (I) below is

commutative:

M|K - M|J

γJ,i
(I) γK,i

Mi

πKJ

A
A
A
A
AAU

�
�

�
�

���

M|J - Mk

γJ,i
(II) fki

Mi

γJ,k

A
A
A
A
AAU

�
�

�
�

���



PROFINITE STRUCTURES ARE RETRACTS OF ULTRAPRODUCTS 177

c) For each J ∈ U and i ≤ k in I, diagram (II) above is commutative.

d) For each k ∈ I, γI,k ◦ ι = πk ◦ ι, where πk : M −→ Mk is the

canonical projection.

Proof. Because U is a directed filter in I, for each J ∈ U and i ∈ I,

we have J ∩ i→ ∈ U ; since U is an ultrafilter and Mi is finite, Fact 2.4.(b)

implies that there is a unique y ∈ Mi such that VJ,i(x, y) ∈ U . We define

γJ,i(x) = the unique y ∈ Mi such that VJ,i(x, y) ∈ U .

Clearly, item (a) is verified. Now, we must show that γJ,i is a L-morphism.

To ease reading, if J ∈ U , we shall use an exponent J to indicate the

interpretation of the symbols of L in M(J).

∗ Let c be a constant in L. Since cJ is the sequence 〈 cMj 〉 ∈ M(J) and

the fji are L-morphisms, we get

VJ,i(c
J , cMi) = {j ∈ J ∩ i→ : fji(c

J
j ) = cMi} = {j ∈ J ∩ i→ :

fji(c
Mj ) = cMi} = J ∩ i→

that belongs to U . By item (a), γJ,i(c
J ) = cMi , as needed.

∗ Let ω be a n-ary function symbol in L. If x1, . . . , xn ∈ M(J)n and j ∈ J

then, taking into account the interpretation of ω in the product L-structure

M , we have

ωJ(x1, . . . , xn)(j) = ωMj (x1j , . . . , xnj). (A)

Consider














yp = γJ,i(xp), 1 ≤ p ≤ n;

z = ωMi(y1, . . . , yn);

h = ωJ(x1, . . . , xn) (∈ M(J)).
We will show that

⋂n
p=1 VJ,i(xp, yp) ⊆ VJ,i(h, z). (B)

If j ∈
⋂n

p=1 VJ,i(xp, yp) then the definition of VJ,i implies

∀ 1 ≤ p ≤ n, fji(xpj) = yp. (C)

Because the fji are L-morphisms, (A) and (C) yield

fji(hj) = fji(ω
Mj (x1j , . . . , xnj)) = ωMi(fji(x1j), . . . , fji(xnj)) =

ωMi(y1, . . . , yn) = z,

establishing (B). As the intersection of the left-hand side in (B) belongs to

U we have VJ,i(h, z) ∈ U . By the item (a) of this Fact, this means that

γJ,i(ω
J(x1, . . . , xn)) = ωMi(γJ,i(x1, . . . , xn))

showing that γJ,i preserves the operation ω;

∗ Let R be a n-ary relation symbol in L. Consider x1, . . . , xn ∈ M(J)n.

The interpretation of R in the product L-structure yields
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M(J) |= R[x1, . . . , xn] iff ∀ j ∈ J , Mj |= R[x1j , . . . , xnj]. (D)

As above, let yp = γJ,i(xp), 1 ≤ p ≤ n. We must show that

M(J) |= R[x1, . . . , xn] ⇒ Mi |= R[y1, . . . , yn]. (E)

Because
⋂n

p=1 VJ,i(xp, yp) ∈ U , this intersection is non-empty; if j is a

member of this intersection, it is clear that (C) holds true. Hence, it follows

from (D) and the fact that fji is a L-morphism that

M|J |= R[x1, . . . , xn] ⇒ Mj |= R[x1j , . . . , xnj] ⇒

Mi |= R[fji(x1j), . . . , fji(xnj)],

which together with (C) implies (E), completing the verification that γJ,i

is a L-morphism.

b) Let t ∈ M|K and x = πKJ(t) 1. If y = γJ,i(x), then

VJ,i(x, y)⊆ VK,i(t, y).

Indeed, if j ∈ VJ,i(x, y) (obviously contained K ∩ i→), then fji(tj) =

fji(xj) = y, as required. Since VJ,i(x, y) ∈ U , we have VK,i(t, y) ∈ U and

item (a) ensures that γK,i(t) = y = γJ,i(πKJ(t)), as desired.

c) Let x ∈ M|J and z = γJ,k(x). Then

VJ,k(x, z) ⊆ VJ,i(x, fki(z)). (F)

Indeed, if j ∈ VJ,k(x, z) (contained in J ∩ i→ because i ≤ k) then fjk(xj)

= z. As M is a projective system, we get fji(xj) = fki(fjk(xj)) =

fki(z), showing that j ∈ VJ,i(x, fki(z)); but then (F) above guarantees that

this set is in U , and so item (a) implies γJ,i = fki ◦ γJ,k, as needed.

d) For each x ∈ P and k ∈ I, note that πk(ι(x)) = xk. From relation ([)

in Remark 2.2, it follows that

VI,k(ι(x), xk) = {j ∈ k→ : fjk(xj) = xk} = k→.

Because U is a directed ultrafilter, we have VI,k(ι(x), xk) ∈ U and another

application of item (a) yields the desired conclusion, ending the proof of

Fact 2.5. �

By Proposition 1.8 we have

M/U = lim
−→

〈M(J); { πKJ : J ⊆ K , J ∈ U} 〉.

The universal property of colimits and 2.5.(b) yield, for each i ∈ I, a unique

L-morphism, γi : M/U −→ Mi, such that for all J ∈ U the diagram below

left commutes:

1Recall that πKJ is the projection that forgets the coordinates outside K.
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M(J) - M/U

γJ,i γi

Mi

νJ

A
A
A
A
AAU

�
�

�
�

���

M/U - Mk

γi fki

Mi

γk

A
A
A
A
AAU

�
�

�
�

���

(*)

Fact 2.6 For each i ≤ k in I, the diagram above right in (∗) is com-

mutative.

Proof. For each i ≤ k in I and J ∈ U , Fact 2.5.(c) gives γJ,i = fki

◦ γJ,k. Then, the commutativity of the diagram above left in (*) − for k

and i −, implies that, for all J ∈ U we have

fki ◦ γk ◦ νJ = fki ◦ γJ,k = γJ,i = γi ◦ νJ .

Now, the uniqueness of the γi making the left diagram commutative implies

fki ◦ γk = γi, as required. �

Fact 2.6 shows that 〈M/U ; {γ i : i ∈ I } 〉 is a cone over M. Thus, the

universal property of limits yields a unique L-morphism,

γ : M/U −→ P = lim
←−

M,

such that the following diagram is commutative, for all i ∈ I:

M/U - P

γi λi

Mi

γ

A
A
A
A
AAU

�
�

�
�

���

(**)

We shall now check that

γ ◦ νI ◦ ι = IdP . (G)

Since 〈P ; {λi : i ∈ I } 〉 = lim
←−

M, the universal property of limits en-

sures that to prove (G) it is enough to show that for all k ∈ I

λk ◦ (γ ◦ νI ◦ ι) = λk. (H)

Since















λk ◦ γ = γk by diagram (**);

γk ◦ νI = γI,k by the left diagram in (*);

πk ◦ ι = λk by (]) in Remark 2.2,
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(H) is equivalent to γI,k ◦ ι = πk ◦ ι, precisely the content of the Fact

2.5.(d), completing the proof. �

Theorem 2.3 yield the following result, whose part (b) appears, with

different proofs, as Corollary 3.25 in [DM3] and as Proposition 1.9.8 in

[Lim].

Corollary 2.7 a) If T is a theory axiomatized by L-sentences of the

form ∀~x(ψ0(~x) → ψ1(~x)), where ψ0(~x), ψ1(~x) are formulas in ∃+(L), any

projective limit of finite models of T is also a model of T .

b) If G = 〈Gi; {fji : i ≤ j in I} 〉 is a projective system of finite special

groups over the directed poset 〈 I,≤ 〉, then its projective limit in the category

of groups, G, has a natural special group structure, with which it is the

projective limit of G in the category of special groups. Moreover, G is

reduced iff R = {i ∈ I : Gi is reduced} is cofinal in I 2.

Proof. Item (a) follows from item (4) in 1.4, Theorem 2.3 and  Lós’

Theorem for ultraproducts. Item (b) is a consequence of (a) and the fact

that the theory of special groups is a first-order theory, whose axioms have

the form ∀~x(ψ0(~x) → ψ1(~x)), where ψ0(~x), ψ1(~x) are positive existential

formulas (see Definition 1.2, [DM2]). �

Noteworthy applications of Theorem 2.3 are the following:

∗ In Proposition 2.15, [DMM], it is used to show that all reduced profinite

special groups are lattice ordered;

∗ In Theorem 5.9, [DM4], it is instrumental in proving that all reduced profi-

nite special groups satisfy a powerful K-theoretic property − the [SMC]-

property −, that implies both Marshall’s signature conjecture and a gener-

alization of Milnor’s Witt-ring conjecture for mod 2 K-theory. The inter-

ested reader may consult [DM4] for details.

Since profinite structures, particularly profinite groups, appear frequen-

tly in many branches of Mathematics, it is envisaged that Theorem 2.3

might have further applications in obtaining interesting first-order proper-

ties of these structures.

2I.e., for all i ∈ I, i
→ ∩ K 6= ∅.
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