REPORTS ON MATHEMATICAL LOGIC 40 (2006), 199–206

Luiz MONTEIRO, Manuel ABAD, Sonia SAVINI, Julio SEWALD and Marta ZANDER

SUBALGEBRAS OF A FINITE MONADIC BOOLEAN ALGEBRA

A b s t r a c t. It is well known that the number of subalgebras of a Boolean algebra with n atoms is the number of partitions of an n-element set. In this note we characterize the subalgebras of a finite monadic Boolean algebra and we determine the cardinality of the set of such subalgebras.

For a finite *n*-element set $X, n \ge 1$, let N[X] denote the number of elements of X and let $\mathbf{p}(n)$ denote the number of all partitions of X. If B_n is a Boolean algebra with n atoms, let $\mathcal{A}(B_n)$ be the set of all atoms of B_n . It is known that there exists a bijective correspondence between the set $\mathcal{S}(B_n)$ of all subalgebras of B_n and the set of all partitions of $\mathcal{A}(B_n)$, i.e., $N[\mathcal{S}(B_n)] = \mathbf{p}(n)$. The following recursive formula for $\mathbf{p}(n)$ can be found in [5]: if we define $\mathbf{p}(0) = 1$, then

$$\mathbf{p}(n+1) = \sum_{i=0}^{n} \binom{n}{i} \mathbf{p}(i), \quad n \ge 0.$$

Received 2 August 2005

Let (B_n, \exists) be a monadic Boolean algebra [2], and $K(B_n) = \{x \in B_n : \exists x = x\}$. Then $K(B_n)$ is a Boolean subalgebra of B_n . Furthermore if $\forall x = -\exists -x$ where -x denotes the Boolean complement of x, we have that $K(B_n) = \{x \in B_n : \forall x = x\}$. Conversely, any Boolean subalgebra K of B_n induces a unary operator \exists on B_n such that (B_n, \exists) is a monadic Boolean algebra and $K = K(B_n)$. This correspondence is bijective. If $\mathcal{A}(K) = \{c_1, c_2, \ldots, c_k\}$ is the set of atoms of K and C_i is the set of atoms of B_n preceding c_i , with $N[C_i] = n_i$, for $1 \leq i \leq k$ we will denote (B_n, \exists) , (B_n, K) or $(B_n, n_1 + n_2 + \cdots + n_k)$, the corresponding monadic Boolean algebra.

The aim of this paper is to give a construction of every element of the set $\mathcal{S}(B_n, K)$ of all subalgebras of (B_n, K) , and to determine $N[\mathcal{S}(B_n, K)]$. Let

$$\mathcal{S}_1(B_n, K) = \{ S \in \mathcal{S}(B_n, K) : S \subset K \},$$
$$\mathcal{S}_2(B_n, K) = \{ S \in \mathcal{S}(B_n, K) : K \subseteq S \},$$
$$\mathcal{S}_3(B_n, K) = \{ S \in \mathcal{S}(B_n, K) : S \text{ is incomparable to } K \}.$$

It is clear that

$$N[\mathcal{S}(B_n, K)] = N[\mathcal{S}_1(B_n, K)] + N[\mathcal{S}_2(B_n, K)] + N[\mathcal{S}_3(B_n, K)].$$

On the other hand,

$$\mathcal{S}_1(B_n, K) = \{ S \in \mathcal{S}(B_n) : S \subset K \}$$

and $\mathcal{S}_2(B_n, K) = \{ S \in \mathcal{S}(B_n) : K \subseteq S \},$

so, if K have t atoms, $1 \le t \le n$,

$$N[\mathcal{S}_1(B_n, K)] = \mathbf{p}(t) - 1$$
 and $N[\mathcal{S}_2(B_n, K)] = \prod_{i=1}^t \mathbf{p}(N[C_i]).$

H. Bass proved the following result in 1958 [1] (see also [3], [4]).

Lemma 1. If (B, \exists) is a monadic Boolean algebra such that $K = \exists B$ is finite, then for every $x \in B, x \neq 0$,

$$\exists x = \bigvee \{k \in \mathcal{A}(K) : k \land x \neq 0\}.$$

200

Let (B_n, K) be a monadic Boolean algebra, $\mathcal{A}(K) = \{c_1, c_2, \ldots, c_t\}, 1 \le t \le n$, and S a Boolean subalgebra of (B_n, K) , where $\mathcal{A}(S) = \{s_1, s_2, \ldots, s_h\}$. For every $s_i, 1 \le i \le h$, let

$$T_i = \{c_j : c_j \land s_i \neq 0\}.$$

Theorem 1. Let S be a Boolean subalgebra of B_n . Then S is a monadic subalgebra of (B_n, K) if and only if the family of different sets $T_i, 1 \le i \le h$, is a partition of $\mathcal{A}(K)$.

Proof. Suppose that the different sets T_i form a partition of $\mathcal{A}(K)$. Observe that if $s_k \wedge c_r \neq 0$ for some $c_r \in T_i$, then $s_k \wedge c_j \neq 0$ for every $c_j \in T_i$. Indeed, if for some $c_j \in T_i$, $s_k \wedge c_j = 0$, then $c_j \notin T_k$, that is, $T_k \neq T_i$. On the other hand, $c_r \in T_i \cap T_k$, with $T_i \neq T_k$, which is a contradiction.

Besides, $\bigvee_{c_j \in T_i} c_j = \bigvee \{s_k : s_k \land c_j \neq 0 \text{ for every } c_j \in T_i\}$. Indeed, if $x \in \mathcal{A}(B_n)$ and $x \leq \bigvee_{c_j \in T_i} c_j$, then $x \leq c_r$ for some $c_r \in T_i$, that is, $c_r \land s_i \neq 0$. On the other hand, $x \leq s_k$, for some $k, 1 \leq k \leq h$. Thus $x \leq s_k \land c_r$ and consequently, $s_k \land c_r \neq 0$, with $c_r \in T_i$. Then, by the previous remark, $s_k \land c_j \neq 0$ for every $c_j \in T_i$. So $x \leq \bigvee \{s_k : s_k \land c_j \neq 0 \text{ for every } c_j \in T_i\}$.

Suppose now that $x \leq \bigvee \{s_k : s_k \wedge c_j \neq 0 \text{ for every } c_j \in T_i\}$. Then $x \leq s_k$ for some s_k such that $s_k \wedge c_j \neq 0$ for every $c_j \in T_i$. Hence $c_j \in T_k$, and consequently, $c_j \in T_k \cap T_i$. So $T_k \cap T_i \neq \emptyset$ and then $T_k = T_i$. In addition, $x \leq c_r$ for some c_r , and then $x \leq c_r \wedge s_k$, that is, $c_r \wedge s_k \neq 0$. So $c_r \in T_k = T_i$, that is, $c_r \in T_i$. Therefore, $x \leq \bigvee_{c_j \in T_i} c_j$.

Let us see that $\exists s_i \in S$ for every atom s_i of S. Indeed, from Lemma 1,

$$\exists s_i = \bigvee_{c_j \in T_i} c_j = \bigvee \{s_k : s_k \land c_j \neq 0 \text{ for every } c_j \in T_i\} \in S.$$

Conversely, suppose that S is a monadic subalgebra of (B_n, K) and let us prove that the different sets T_i form a partition of $\mathcal{A}(K)$. Observe that $T_i \neq \emptyset$, being that for every i there exists j such that $s_i \wedge c_j \neq 0$. Suppose that $T_i \neq T_j$. From Lemma 1, $\exists s_i = \bigvee_{c_k \in T_i} c_k$ and $\exists s_j = \bigvee_{c_k \in T_j} c_k$. As S is a monadic subalgebra and s_i , s_j are distinct atoms of S, then $\exists s_i$ and $\exists s_j$ are atoms of the subalgebra of constants of S, and in addition, they are distinct since $T_i \neq T_j$. So $\exists s_i \wedge \exists s_j = 0$, and consequently, $T_i \cap T_j = \emptyset$. \Box

Examples

1. Using Theorem 1 we are going to determine the number of subalgebras of the monadic Boolean algebra $(B_n, \underbrace{1+1+\cdots+1}_k + (n-k))$, where

 $0 \le k < n.$

Let S be a subalgebra of (B_n, K) , with $\mathcal{A}(S) = \{s_1, s_2, \ldots, s_t\}$. We know that there exists $i, 1 \leq i \leq t$, such that $s_i \wedge c_{k+1} \neq 0$. Let $I = \{i : 1 \leq i \leq t, s_i \wedge c_{k+1} \neq 0\}$.

If N[I] = 1, say $I = \{i\}$, then $c_{k+1} \leq s_i$. The number of Boolean subalgebras of B_n verifying this condition equals to the number of partitions of the set $\{c_1, c_2, \ldots, c_{k+1}\}$, i.e., $\mathbf{p}(k+1)$, and clearly all these subalgebras are monadic.

If N[I] > 1, it follows from Theorem 1 that S is monadic if and only if $\bigvee_{i \in I} s_i = c_{k+1}$, where $s_i \neq c_{k+1}$ for all $i \in I$. So, in this case, there are $\mathbf{p}(k) \cdot (\mathbf{p}(n-k)-1)$ monadic subalgebras.

Then, if $1 \leq k < n$,

$$N[\mathcal{S}(B_n, \underbrace{1+1+\dots+1}_k + (n-k))] = \mathbf{p}(k+1) + \mathbf{p}(k).(\mathbf{p}(n-k)-1).$$

If k = 0 then it is clear that $N[S(B_n, n)] = \mathbf{p}(n)$.

We know that

$$N[S_1(B_n, \underbrace{1+1+\dots+1}_k + (n-k))] = \mathbf{p}(k+1) - 1,$$

and

$$N[\mathcal{S}_2(B_n, \underbrace{1+1+\dots+1}_k + (n-k))] = \mathbf{p}(n-k)$$

 \mathbf{SO}

$$N[S_3(B_n, \underbrace{1+1+\dots+1}_k + (n-k))] = \mathbf{p}(k+1) + \mathbf{p}(k) \cdot (\mathbf{p}(n-k) - 1) - (\mathbf{p}(k+1) - 1 + \mathbf{p}(n-k))) = (\mathbf{p}(k) - 1) \cdot (\mathbf{p}(n-k) - 1).$$

202

- 2. Let K be a Boolean subalgebra of B_n , $n \ge 4$, such that K is isomorphic to B_2 and $\mathcal{A}(K) = \{c_1, c_2\}$. From Theorem 1, if $N[C_1] = 1$ and $N[C_2] = n 1$ there are no monadic subalgebras incomparable to K. Suppose now $N[C_1] = j > 1$ and $N[C_2] = n j > 1$. Then there exist $\frac{(2^j 2) \cdot (2^{n-j} 2)}{2}$ monadic subalgebras isomorphic to B_2 and incomparable to K.
- 3. If $n \ge 4$ and K is a Boolean subalgebra of B_n isomorphic to B_{n-1} then there exist exactly $\binom{n-2}{2}$ monadic subalgebras isomorphic to K and incomparable to K.

Our next objective is to obtain a formula to determine the number of subalgebras of a finite monadic Boolean algebra.

It is known that the number of partitions of an n-element set X into t classes is the Stirling number of second kind

$$S(n,t) = \frac{\sum_{i=0}^{t-1} (-1)^i {t \choose i} (t-i)^n}{t!}$$

Theorem 2. The number of subalgebras of (B_n, K) is

$$\sum_{\mathcal{P}} \prod_{j=1}^k \left(\sum_{h=1}^{m_j} S(n_{j1}, h) \cdot \ldots \cdot S(n_{jl_j}, h) \cdot (h!)^{l_j - 1} \right),$$

where $\mathcal{P} = \{\{c_{11}, c_{12}, \dots, c_{1l_1}\}, \dots, \{c_{k1}, c_{k2}, \dots, c_{kl_k}\}\}$ ranges over the set of partitions of $\mathcal{A}(K)$, $n_{ji} = N[C_{ji}]$, $m_j = min\{N[C_{ji}] : i = 1, \dots, l_j\}$.

Proof. Let us count the subalgebras of (B_n, K) associated to a given partition

$$\mathcal{P} = \{\{c_{11}, c_{12}, \dots, c_{1l_1}\}, \dots, \{c_{k1}, c_{k2}, \dots, c_{kl_k}\}\}.$$

If S is the subalgebra associated to \mathcal{P} , let $\mathcal{A}(S) = \{s_1, s_2, \dots, s_t\}$. The sets T_i of Theorem 1 verify:

$$\bigvee_{j \in T_i} c_j = \bigvee \{ s_k : s_k \land c_j \neq 0, \text{ for every } c_j \in T_i \}.$$

Consider the class $C = \{c_{j1}, c_{j2}, \ldots, c_{jl_j}\}$ of \mathcal{P} .

If $\{s_{\alpha} : s_{\alpha} \land c_{ji} \neq 0 \text{ for every } c_{ji} \in C\} = \{s_{\alpha 1}, s_{\alpha 2}, \ldots, s_{\alpha h}\}$, then $C_{ji} \cap S_{\alpha t} \neq \emptyset$ for $1 \leq i \leq l_j$ and $1 \leq t \leq h$, and $C_{ji} \cap S_{\alpha} = \emptyset$ for any other S_{α} . So every C_{ji} is partitioned into h classes, where $1 \leq h \leq m_j = \min\{N[C_{ji}] : i = 1, \ldots, l_j\}$. This can be done in

$$\sum_{h=1}^{m_j} S(n_{j1}, h) \cdot \ldots \cdot S(n_{jlj}, h) \cdot (h!)^{l_j - 1}$$

different ways.

So the number of subalgebras associated to the partition \mathcal{P} is

$$\prod_{j=1}^{k} \left(\sum_{h=1}^{m_j} S(n_{j1}, h) \cdot \ldots \cdot S(n_{jl_j}, h) \cdot (h!)^{l_j - 1} \right).$$

Finally, the number of subalgebras of (B_n, K) is

$$\sum_{\mathcal{P}} \prod_{j=1}^k \left(\sum_{h=1}^{m_j} S(n_{j1}, h) \cdot \ldots \cdot S(n_{jl_j}, h) \cdot (h!)^{l_j - 1} \right),$$

where \mathcal{P} ranges over the set of all partitions of $\mathcal{A}(K)$.

204

NUMBER OF MONADIC SUBALGEBRAS										
Boolean	Partition of the			Incom-						
Algebra	atoms of B_i	$S \subset K$	$K\subseteq S$	parable	Number					
B_1	1	0	1	0	1					
B_2	2	0	2	0	2					
	1+1	1	1	0	2					
	3	0	5	0	5					
B_3	1 + 2	1	2	0	3					
	1 + 1 + 1	4	1	0	5					
	4	0	15	0	15					
	1 + 3	1	5	0	6					
B_4	2 + 2	1	4	2	7					
	1 + 1 + 2	4	2	1	7					
	1 + 1 + 1 + 1	14	1	0	15					
	5	0	52	0	52					
B_5	1 + 4	1	15	0	16					
	2 + 3	1	10	6	17					
	1 + 1 + 3	4	5	4	13					
	1 + 2 + 2	4	4	4	12					
	1 + 1 + 1 + 2	14	2	4	20					
	1 + 1 + 1 + 1 + 1	51	1	0	52					
	6	0	203	0	203					
	1 + 5	1	52	0	53					
B_6	2 + 4	1	30	14	45					
	3 + 3	1	25	24	50					
	1 + 1 + 4	4	15	14	33					
	1 + 2 + 3	4	10	11	25					
	2 + 2 + 2	4	8	19	31					
	1 + 1 + 1 + 3	14	5	16	35					
	1 + 1 + 2 + 2	14	4	13	31					
	1 + 1 + 1 + 1 + 2	51	2	14	67					
	1 + 1 + 1 + 1 + 1 + 1	202	1	0	203					

D	an annlightion	ofthe	n norti otta	magnita		the	fallerring	tabla
БV	an application	ortne	previous	results.	we give	tne	10110W1116	taple.
•/								

References

- [1] H. Bass, Finite monadic algebras, Proc. Amer. Math. Soc. 9 (1958), pp. 258–268.
- [2] P.R. Halmos, Algebraic Logic, Chelsea Pub. Co. New York 1962.
- [3] A. Masse, Anneaux monadiques libres sur un ensemble fini, (I) et (II), Seminaire de Logique Algèbrique , Faculté des Sciences, Université de Lyon, (1970).
- [4] L. Monteiro, M. Abad, S. Savini, J. Sewald, Notes on free monadic Boolean algebras, Order 16 (1999), pp. 277–289.
- [5] O. Ore, Theory of equivalence relations, Duke Math. Journal 9 (1942), pp. 573-627.

INMABB-CONICET and Departamento de Matemática Universidad Nacional del Sur

Av. Alem 1253 8.000 Bahia Blanca Argentina

{luizmont, imabad, ssavini, jsewald, mzander}@criba.edu.ar