Luiz MONTEIRO, Manuel ABAD, Sonia SAVINI, Julio SEWALD and Marta ZANDER

SUBALGEBRAS OF A FINITE MONADIC BOOLEAN ALGEBRA

Abstract

It is well known that the number of subalgebras of a Boolean algebra with n atoms is the number of partitions of an n-element set. In this note we characterize the subalgebras of a finite monadic Boolean algebra and we determine the cardinality of the set of such subalgebras.

For a finite n-element set $X, n \geq 1$, let $N[X]$ denote the number of elements of X and let $\mathbf{p}(n)$ denote the number of all partitions of X. If B_{n} is a Boolean algebra with n atoms, let $\mathcal{A}\left(B_{n}\right)$ be the set of all atoms of B_{n}. It is known that there exists a bijective correspondence between the set $\mathcal{S}\left(B_{n}\right)$ of all subalgebras of B_{n} and the set of all partitions of $\mathcal{A}\left(B_{n}\right)$, i.e., $N\left[\mathcal{S}\left(B_{n}\right)\right]=\mathbf{p}(n)$. The following recursive formula for $\mathbf{p}(n)$ can be found in [5]: if we define $\mathbf{p}(0)=1$, then

$$
\mathbf{p}(n+1)=\sum_{i=0}^{n}\binom{n}{i} \mathbf{p}(i), \quad n \geq 0 .
$$

[^0]Let $\left(B_{n}, \exists\right)$ be a monadic Boolean algebra [2], and $K\left(B_{n}\right)=\left\{x \in B_{n}\right.$: $\exists x=x\}$. Then $K\left(B_{n}\right)$ is a Boolean subalgebra of B_{n}. Furthermore if $\forall x=-\exists-x$ where $-x$ denotes the Boolean complement of x, we have that $K\left(B_{n}\right)=\left\{x \in B_{n}: \forall x=x\right\}$. Conversely, any Boolean subalgebra K of B_{n} induces a unary operator \exists on B_{n} such that $\left(B_{n}, \exists\right)$ is a monadic Boolean algebra and $K=K\left(B_{n}\right)$. This correspondence is bijective. If $\mathcal{A}(K)=\left\{c_{1}, c_{2}, \ldots, c_{k}\right\}$ is the set of atoms of K and C_{i} is the set of atoms of B_{n} preceding c_{i}, with $N\left[C_{i}\right]=n_{i}$, for $1 \leq i \leq k$ we will denote $\left(B_{n}, \exists\right)$, $\left(B_{n}, K\right)$ or $\left(B_{n}, n_{1}+n_{2}+\cdots+n_{k}\right)$, the corresponding monadic Boolean algebra.

The aim of this paper is to give a construction of every element of the set $\mathcal{S}\left(B_{n}, K\right)$ of all subalgebras of $\left(B_{n}, K\right)$, and to determine $N\left[\mathcal{S}\left(B_{n}, K\right)\right]$.

Let

$$
\begin{gathered}
\mathcal{S}_{1}\left(B_{n}, K\right)=\left\{S \in \mathcal{S}\left(B_{n}, K\right): S \subset K\right\} \\
\mathcal{S}_{2}\left(B_{n}, K\right)=\left\{S \in \mathcal{S}\left(B_{n}, K\right): K \subseteq S\right\} \\
\mathcal{S}_{3}\left(B_{n}, K\right)=\left\{S \in \mathcal{S}\left(B_{n}, K\right): S \text { is incomparable to } K\right\} .
\end{gathered}
$$

It is clear that

$$
N\left[\mathcal{S}\left(B_{n}, K\right)\right]=N\left[\mathcal{S}_{1}\left(B_{n}, K\right)\right]+N\left[\mathcal{S}_{2}\left(B_{n}, K\right)\right]+N\left[\mathcal{S}_{3}\left(B_{n}, K\right)\right]
$$

On the other hand,

$$
\begin{gathered}
\mathcal{S}_{1}\left(B_{n}, K\right)=\left\{S \in \mathcal{S}\left(B_{n}\right): S \subset K\right\} \\
\text { and } \mathcal{S}_{2}\left(B_{n}, K\right)=\left\{S \in \mathcal{S}\left(B_{n}\right): K \subseteq S\right\}
\end{gathered}
$$

so, if K have t atoms, $1 \leq t \leq n$,

$$
N\left[\mathcal{S}_{1}\left(B_{n}, K\right)\right]=\mathbf{p}(t)-1 \quad \text { and } \quad N\left[\mathcal{S}_{2}\left(B_{n}, K\right)\right]=\prod_{i=1}^{t} \mathbf{p}\left(N\left[C_{i}\right]\right)
$$

H. Bass proved the following result in 1958 [1] (see also [3], [4]).

Lemma 1. If (B, \exists) is a monadic Boolean algebra such that $K=\exists B$ is finite, then for every $x \in B, x \neq 0$,

$$
\exists x=\bigvee\{k \in \mathcal{A}(K): k \wedge x \neq 0\}
$$

Let $\left(B_{n}, K\right)$ be a monadic Boolean algebra, $\mathcal{A}(K)=\left\{c_{1}, c_{2}, \ldots, c_{t}\right\}, 1 \leq$ $t \leq n$, and S a Boolean subalgebra of $\left(B_{n}, K\right)$, where $\mathcal{A}(S)=\left\{s_{1}, s_{2}, \ldots, s_{h}\right\}$. For every $s_{i}, 1 \leq i \leq h$, let

$$
T_{i}=\left\{c_{j}: c_{j} \wedge s_{i} \neq 0\right\} .
$$

Theorem 1. Let S be a Boolean subalgebra of B_{n}. Then S is a monadic subalgebra of $\left(B_{n}, K\right)$ if and only if the family of different sets $T_{i}, 1 \leq i \leq h$, is a partition of $\mathcal{A}(K)$.

Proof. Suppose that the different sets T_{i} form a partition of $\mathcal{A}(K)$. Observe that if $s_{k} \wedge c_{r} \neq 0$ for some $c_{r} \in T_{i}$, then $s_{k} \wedge c_{j} \neq 0$ for every $c_{j} \in T_{i}$. Indeed, if for some $c_{j} \in T_{i}, s_{k} \wedge c_{j}=0$, then $c_{j} \notin T_{k}$, that is, $T_{k} \neq T_{i}$. On the other hand, $c_{r} \in T_{i} \cap T_{k}$, with $T_{i} \neq T_{k}$, which is a contradiction.

Besides, $\underset{c_{j} \in T_{i}}{ } c_{j}=\bigvee\left\{s_{k}: s_{k} \wedge c_{j} \neq 0\right.$ for every $\left.c_{j} \in T_{i}\right\}$. Indeed, if $x \in \mathcal{A}\left(B_{n}\right)$ and $x \leq \bigvee_{c_{j} \in T_{i}} c_{j}$, then $x \leq c_{r}$ for some $c_{r} \in T_{i}$, that is, $c_{r} \wedge s_{i} \neq 0$. On the other hand, $x \leq s_{k}$, for some $k, 1 \leq k \leq h$. Thus $x \leq s_{k} \wedge c_{r}$ and consequently, $s_{k} \wedge c_{r} \neq 0$, with $c_{r} \in T_{i}$. Then, by the previous remark, $s_{k} \wedge c_{j} \neq 0$ for every $c_{j} \in T_{i}$. So $x \leq \bigvee\left\{s_{k}: s_{k} \wedge c_{j} \neq 0\right.$ for every $\left.c_{j} \in T_{i}\right\}$.

Suppose now that $x \leq \bigvee\left\{s_{k}: s_{k} \wedge c_{j} \neq 0\right.$ for every $\left.c_{j} \in T_{i}\right\}$. Then $x \leq s_{k}$ for some s_{k} such that $s_{k} \wedge c_{j} \neq 0$ for every $c_{j} \in T_{i}$. Hence $c_{j} \in T_{k}$, and consequently, $c_{j} \in T_{k} \cap T_{i}$. So $T_{k} \cap T_{i} \neq \emptyset$ and then $T_{k}=T_{i}$. In addition, $x \leq c_{r}$ for some c_{r}, and then $x \leq c_{r} \wedge s_{k}$, that is, $c_{r} \wedge s_{k} \neq 0$. So $c_{r} \in T_{k}=T_{i}$, that is, $c_{r} \in T_{i}$. Therefore, $x \leq \bigvee_{c_{j} \in T_{i}} c_{j}$.

Let us see that $\exists s_{i} \in S$ for every atom s_{i} of S. Indeed, from Lemma 1,

$$
\exists s_{i}=\bigvee_{c_{j} \in T_{i}} c_{j}=\bigvee\left\{s_{k}: s_{k} \wedge c_{j} \neq 0 \text { for every } c_{j} \in T_{i}\right\} \in S
$$

Conversely, suppose that S is a monadic subalgebra of $\left(B_{n}, K\right)$ and let us prove that the different sets T_{i} form a partition of $\mathcal{A}(K)$. Observe that $T_{i} \neq \emptyset$, being that for every i there exists j such that $s_{i} \wedge c_{j} \neq 0$. Suppose that $T_{i} \neq T_{j}$. From Lemma $1, \exists s_{i}=\bigvee_{c_{k} \in T_{i}} c_{k}$ and $\exists s_{j}=\bigvee_{c_{k} \in T_{j}} c_{k}$. As S is a monadic subalgebra and s_{i}, s_{j} are distinct atoms of S, then $\exists s_{i}$ and $\exists s_{j}$ are atoms of the subalgebra of constants of S, and in addition, they are distinct since $T_{i} \neq T_{j}$. So $\exists s_{i} \wedge \exists s_{j}=0$, and consequently, $T_{i} \cap T_{j}=\emptyset$.

Examples

1. Using Theorem 1 we are going to determine the number of subalgebras of the monadic Boolean algebra ($B_{n}, \underbrace{1+1+\cdots+1}_{k}+(n-k)$), where $0 \leq k<n$.
Let S be a subalgebra of $\left(B_{n}, K\right)$, with $\mathcal{A}(S)=\left\{s_{1}, s_{2}, \ldots, s_{t}\right\}$. We know that there exists $i, 1 \leq i \leq t$, such that $s_{i} \wedge c_{k+1} \neq 0$. Let $I=\left\{i: 1 \leq i \leq t, s_{i} \wedge c_{k+1} \neq 0\right\}$.

If $N[I]=1$, say $I=\{i\}$, then $c_{k+1} \leq s_{i}$. The number of Boolean subalgebras of B_{n} verifying this condition equals to the number of partitions of the set $\left\{c_{1}, c_{2}, \ldots, c_{k+1}\right\}$, i.e., $\mathbf{p}(k+1)$, and clearly all these subalgebras are monadic.

If $N[I]>1$, it follows from Theorem 1 that S is monadic if and only if $\bigvee_{i \in I} s_{i}=c_{k+1}$, where $s_{i} \neq c_{k+1}$ for all $i \in I$. So, in this case, there are $\mathbf{p}(k) \cdot(\mathbf{p}(n-k)-1)$ monadic subalgebras.
Then, if $1 \leq k<n$,
$N[\mathcal{S}(B_{n}, \underbrace{1+1+\cdots+1}_{k}+(n-k))]=\mathbf{p}(k+1)+\mathbf{p}(k) .(\mathbf{p}(n-k)-1)$.
If $k=0$ then it is clear that $N\left[S\left(B_{n}, n\right)\right]=\mathbf{p}(n)$.
We know that

$$
N[\mathcal{S}_{1}(B_{n}, \underbrace{1+1+\cdots+1}_{k}+(n-k))]=\mathbf{p}(k+1)-1,
$$

and

$$
N[\mathcal{S}_{2}(B_{n}, \underbrace{1+1+\cdots+1}_{k}+(n-k))]=\mathbf{p}(n-k),
$$

so

$$
\begin{aligned}
N & {[\mathcal{S}_{3}(B_{n}, \underbrace{1+1+\cdots+1}_{k}+(n-k))] } \\
& =\mathbf{p}(k+1)+\mathbf{p}(k) \cdot(\mathbf{p}(n-k)-1)-(\mathbf{p}(k+1)-1+\mathbf{p}(n-k)) \\
& =(\mathbf{p}(k)-1) \cdot(\mathbf{p}(n-k)-1) .
\end{aligned}
$$

2. Let K be a Boolean subalgebra of $B_{n}, n \geq 4$, such that K is isomorphic to B_{2} and $\mathcal{A}(K)=\left\{c_{1}, c_{2}\right\}$. From Theorem 1, if $N\left[C_{1}\right]=1$ and $N\left[C_{2}\right]=n-1$ there are no monadic subalgebras incomparable to K. Suppose now $N\left[C_{1}\right]=j>1$ and $N\left[C_{2}\right]=n-j>1$. Then there exist $\frac{\left(2^{j}-2\right) \cdot\left(2^{n-j}-2\right)}{2}$ monadic subalgebras isomorphic to B_{2} and incomparable to K.
3. If $n \geq 4$ and K is a Boolean subalgebra of B_{n} isomorphic to B_{n-1} then there exist exactly $\binom{n-2}{2}$ monadic subalgebras isomorphic to K and incomparable to K.

Our next objective is to obtain a formula to determine the number of subalgebras of a finite monadic Boolean algebra.

It is known that the number of partitions of an n-element set X into t classes is the Stirling number of second kind

$$
S(n, t)=\frac{\sum_{i=0}^{t-1}(-1)^{i}\binom{t}{i}(t-i)^{n}}{t!} .
$$

Theorem 2. The number of subalgebras of $\left(B_{n}, K\right)$ is

$$
\sum_{\mathcal{P}} \prod_{j=1}^{k}\left(\sum_{h=1}^{m_{j}} S\left(n_{j 1}, h\right) \cdot \ldots \cdot S\left(n_{j l_{j}}, h\right) \cdot(h!)^{l_{j}-1}\right)
$$

where $\mathcal{P}=\left\{\left\{c_{11}, c_{12}, \ldots, c_{1 l_{1}}\right\}, \ldots,\left\{c_{k 1}, c_{k 2}, \ldots, c_{k l_{k}}\right\}\right\}$ ranges over the set of partitions of $\mathcal{A}(K), n_{j i}=N\left[C_{j i}\right], m_{j}=\min \left\{N\left[C_{j i}\right]: i=1, \ldots, l_{j}\right\}$.

Proof. Let us count the subalgebras of $\left(B_{n}, K\right)$ associated to a given partition

$$
\mathcal{P}=\left\{\left\{c_{11}, c_{12}, \ldots, c_{1 l_{1}}\right\}, \ldots,\left\{c_{k 1}, c_{k 2}, \ldots, c_{k l_{k}}\right\}\right\} .
$$

If S is the subalgebra associated to \mathcal{P}, let $\mathcal{A}(S)=\left\{s_{1}, s_{2}, \ldots, s_{t}\right\}$.
The sets T_{i} of Theorem 1 verify:

$$
\bigvee_{j \in T_{i}} c_{j}=\bigvee\left\{s_{k}: s_{k} \wedge c_{j} \neq 0, \text { for every } c_{j} \in T_{i}\right\}
$$

Consider the class $C=\left\{c_{j 1}, c_{j 2}, \ldots, c_{j l_{j}}\right\}$ of \mathcal{P}.

If $\left\{s_{\alpha}: s_{\alpha} \wedge c_{j i} \neq 0\right.$ for every $\left.c_{j i} \in C\right\}=\left\{s_{\alpha 1}, s_{\alpha 2}, \ldots, s_{\alpha h}\right\}$, then $C_{j i} \cap S_{\alpha t} \neq \emptyset$ for $1 \leq i \leq l_{j}$ and $1 \leq t \leq h$, and $C_{j i} \cap S_{\alpha}=\emptyset$ for any other S_{α}. So every $C_{j i}$ is partitioned into h classes, where $1 \leq h \leq m_{j}=$ $\min \left\{N\left[C_{j i}\right]: i=1, \ldots, l_{j}\right\}$. This can be done in

$$
\sum_{h=1}^{m_{j}} S\left(n_{j 1}, h\right) \cdot \ldots \cdot S\left(n_{j l j}, h\right) \cdot(h!)^{l_{j}-1}
$$

different ways.
So the number of subalgebras associated to the partition \mathcal{P} is

$$
\prod_{j=1}^{k}\left(\sum_{h=1}^{m_{j}} S\left(n_{j 1}, h\right) \cdot \ldots \cdot S\left(n_{j l_{j}}, h\right) \cdot(h!)^{l_{j}-1}\right)
$$

Finally, the number of subalgebras of $\left(B_{n}, K\right)$ is

$$
\sum_{\mathcal{P}} \prod_{j=1}^{k}\left(\sum_{h=1}^{m_{j}} S\left(n_{j 1}, h\right) \cdot \ldots \cdot S\left(n_{j l_{j}}, h\right) \cdot(h!)^{l_{j}-1}\right)
$$

where \mathcal{P} ranges over the set of all partitions of $\mathcal{A}(K)$.

By an application of the previous results, we give the following table.

NUMBER OF MONADIC SUBALGEBRAS					
Boolean Algebra	Partition of the atoms of B_{i}	$S \subset K$	$K \subseteq S$	Incomparable	Number
B_{1}	1	0	1	0	1
B_{2}	2	0	2	0	2
	$1+1$	1	1	0	2
B_{3}	3	0	5	0	5
	$1+2$	1	2	0	3
	$1+1+1$	4	1	0	5
B_{4}	4	0	15	0	15
	1+3	1	5	0	6
	$2+2$	1	4	2	7
	$1+1+2$	4	2	1	7
	$1+1+1+1$	14	1	0	15
B_{5}	5	0	52	0	52
	$1+4$	1	15	0	16
	$2+3$	1	10	6	17
	$1+1+3$	4	5	4	13
	$1+2+2$	4	4	4	12
	$1+1+1+2$	14	2	4	20
	$1+1+1+1+1$	51	1	0	52
B_{6}	6	0	203	0	203
	1+5	1	52	0	53
	$2+4$	1	30	14	45
	$3+3$	1	25	24	50
	$1+1+4$	4	15	14	33
	$1+2+3$	4	10	11	25
	$2+2+2$	4	8	19	31
	$1+1+1+3$	14	5	16	35
	$1+1+2+2$	14	4	13	31
	$1+1+1+1+2$	51	2	14	67
	$1+1+1+1+1+1$	202	1	0	203

References

[1] H. Bass, Finite monadic algebras, Proc. Amer. Math. Soc. 9 (1958), pp. 258-268.
[2] P.R. Halmos, Algebraic Logic, Chelsea Pub. Co. New York 1962.
[3] A. Masse, Anneaux monadiques libres sur un ensemble fini, (I) et (II), Seminaire de Logique Algèbrique, Faculté des Sciences, Université de Lyon, (1970).
[4] L. Monteiro, M. Abad, S. Savini, J. Sewald, Notes on free monadic Boolean algebras, Order 16 (1999), pp. 277-289.
[5] O. Ore, Theory of equivalence relations, Duke Math. Journal 9 (1942), pp. 573-627.

INMABB-CONICET and Departamento de Matemática
Universidad Nacional del Sur
Av. Alem 1253 8.000 Bahia Blanca Argentina
\{luizmont, imabad, ssavini, jsewald, mzander\}@criba.edu.ar

[^0]: Received 2 August 2005

