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SUBALGEBRAS OF A FINITE MONADIC

BOOLEAN ALGEBRA

A b s t r a c t. It is well known that the number of subalgebras of

a Boolean algebra with n atoms is the number of partitions of an

n-element set. In this note we characterize the subalgebras of a

finite monadic Boolean algebra and we determine the cardinality

of the set of such subalgebras.

For a finite n-element set X, n ≥ 1, let N [X] denote the number of

elements of X and let p(n) denote the number of all partitions of X. If Bn

is a Boolean algebra with n atoms, let A(Bn) be the set of all atoms of Bn.

It is known that there exists a bijective correspondence between the set

S(Bn) of all subalgebras of Bn and the set of all partitions of A(Bn), i.e.,

N [S(Bn)] = p(n). The following recursive formula for p(n) can be found

in [5]: if we define p(0) = 1, then

p(n + 1) =

n∑

i=0

(
n

i

)

p(i), n ≥ 0.
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Let (Bn,∃) be a monadic Boolean algebra [2], and K(Bn) = {x ∈ Bn :

∃ x = x}. Then K(Bn) is a Boolean subalgebra of Bn. Furthermore if

∀x = −∃ − x where −x denotes the Boolean complement of x, we have

that K(Bn) = {x ∈ Bn : ∀ x = x}. Conversely, any Boolean subalgebra

K of Bn induces a unary operator ∃ on Bn such that (Bn,∃) is a monadic

Boolean algebra and K = K(Bn). This correspondence is bijective. If

A(K) = {c1, c2, . . . , ck} is the set of atoms of K and Ci is the set of atoms

of Bn preceding ci, with N [Ci] = ni, for 1 ≤ i ≤ k we will denote (Bn,∃),

(Bn,K) or (Bn, n1 + n2 + · · · + nk), the corresponding monadic Boolean

algebra.

The aim of this paper is to give a construction of every element of the

set S(Bn,K) of all subalgebras of (Bn,K), and to determine N [S(Bn,K)].

Let

S1(Bn,K) = {S ∈ S(Bn,K) : S ⊂ K},

S2(Bn,K) = {S ∈ S(Bn,K) : K ⊆ S},

S3(Bn,K) = {S ∈ S(Bn,K) : S is incomparable to K}.

It is clear that

N [S(Bn,K)] = N [S1(Bn,K)] + N [S2(Bn,K)] + N [S3(Bn,K)].

On the other hand,

S1(Bn,K) = {S ∈ S(Bn) : S ⊂ K}

and S2(Bn,K) = {S ∈ S(Bn) : K ⊆ S},

so, if K have t atoms, 1 ≤ t ≤ n,

N [S1(Bn,K)] = p(t) − 1 and N [S2(Bn,K)] =
t∏

i=1

p(N [Ci]).

H. Bass proved the following result in 1958 [1] (see also [3], [4]).

Lemma 1. If (B,∃) is a monadic Boolean algebra such that K = ∃B

is finite, then for every x ∈ B, x 6= 0,

∃x =
∨

{k ∈ A(K) : k ∧ x 6= 0}.
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Let (Bn,K) be a monadic Boolean algebra, A(K) = {c1, c2, . . . , ct}, 1 ≤

t ≤ n, and S a Boolean subalgebra of (Bn,K), where A(S)={s1, s2, . . ., sh}.

For every si, 1 ≤ i ≤ h, let

Ti = {cj : cj ∧ si 6= 0}.

Theorem 1. Let S be a Boolean subalgebra of Bn. Then S is a monadic

subalgebra of (Bn,K) if and only if the family of different sets Ti, 1 ≤ i ≤ h,

is a partition of A(K).

Proof. Suppose that the different sets Ti form a partition of A(K).

Observe that if sk ∧ cr 6= 0 for some cr ∈ Ti, then sk ∧ cj 6= 0 for every

cj ∈ Ti. Indeed, if for some cj ∈ Ti, sk ∧ cj = 0, then cj /∈ Tk, that

is, Tk 6= Ti. On the other hand, cr ∈ Ti ∩ Tk, with Ti 6= Tk, which is a

contradiction.

Besides,
∨

cj∈Ti

cj =
∨
{sk : sk ∧ cj 6= 0 for every cj ∈ Ti}. Indeed, if

x ∈ A(Bn) and x ≤
∨

cj∈Ti

cj , then x ≤ cr for some cr ∈ Ti, that is, cr∧si 6= 0.

On the other hand, x ≤ sk, for some k, 1 ≤ k ≤ h. Thus x ≤ sk ∧ cr and

consequently, sk ∧ cr 6= 0, with cr ∈ Ti. Then, by the previous remark,

sk ∧ cj 6= 0 for every cj ∈ Ti. So x ≤
∨
{sk : sk ∧ cj 6= 0 for every cj ∈ Ti}.

Suppose now that x ≤
∨
{sk : sk ∧ cj 6= 0 for every cj ∈ Ti}. Then

x ≤ sk for some sk such that sk ∧ cj 6= 0 for every cj ∈ Ti. Hence cj ∈ Tk,

and consequently, cj ∈ Tk ∩ Ti. So Tk ∩ Ti 6= ∅ and then Tk = Ti. In

addition, x ≤ cr for some cr, and then x ≤ cr ∧ sk, that is, cr ∧ sk 6= 0. So

cr ∈ Tk = Ti, that is, cr ∈ Ti. Therefore, x ≤
∨

cj∈Ti

cj .

Let us see that ∃si ∈ S for every atom si of S. Indeed, from Lemma 1,

∃si =
∨

cj∈Ti

cj =
∨

{sk : sk ∧ cj 6= 0 for every cj ∈ Ti} ∈ S.

Conversely, suppose that S is a monadic subalgebra of (Bn,K) and let

us prove that the different sets Ti form a partition of A(K). Observe that

Ti 6= ∅, being that for every i there exists j such that si ∧ cj 6= 0. Suppose

that Ti 6= Tj. From Lemma 1, ∃si =
∨

ck∈Ti

ck and ∃sj =
∨

ck∈Tj

ck. As S is

a monadic subalgebra and si, sj are distinct atoms of S, then ∃si and ∃sj

are atoms of the subalgebra of constants of S, and in addition, they are

distinct since Ti 6= Tj. So ∃si ∧ ∃sj = 0, and consequently, Ti ∩ Tj = ∅. 2
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Examples

1. Using Theorem 1 we are going to determine the number of subalgebras

of the monadic Boolean algebra (Bn, 1 + 1 + · · · + 1
︸ ︷︷ ︸

k

+(n−k)), where

0 ≤ k < n.

Let S be a subalgebra of (Bn,K), with A(S) = {s1, s2, . . . , st}. We

know that there exists i, 1 ≤ i ≤ t, such that si ∧ ck+1 6= 0. Let

I = {i : 1 ≤ i ≤ t, si ∧ ck+1 6= 0}.

If N [I] = 1, say I = {i}, then ck+1 ≤ si. The number of Boolean

subalgebras of Bn verifying this condition equals to the number of

partitions of the set {c1, c2, . . . , ck+1}, i.e., p(k + 1), and clearly all

these subalgebras are monadic.

If N [I] > 1, it follows from Theorem 1 that S is monadic if and only

if
∨

i∈I

si = ck+1, where si 6= ck+1 for all i ∈ I. So, in this case, there

are p(k) · (p(n − k) − 1) monadic subalgebras.

Then, if 1 ≤ k < n,

N [S(Bn, 1 + 1 + · · · + 1
︸ ︷︷ ︸

k

+(n − k))] = p(k + 1) + p(k).(p(n − k) − 1).

If k = 0 then it is clear that N [S(Bn, n)] = p(n).

We know that

N [S1(Bn, 1 + 1 + · · · + 1
︸ ︷︷ ︸

k

+(n − k))] = p(k + 1) − 1,

and

N [S2(Bn, 1 + 1 + · · · + 1
︸ ︷︷ ︸

k

+(n − k))] = p(n − k),

so

N [S3(Bn, 1 + 1 + · · · + 1
︸ ︷︷ ︸

k

+(n − k))]

= p(k + 1) + p(k).(p(n − k) − 1) − (p(k + 1) − 1 + p(n − k))

= (p(k) − 1) · (p(n − k) − 1).
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2. Let K be a Boolean subalgebra of Bn, n ≥ 4, such that K is iso-

morphic to B2 and A(K) = {c1, c2}. From Theorem 1, if N [C1] = 1

and N [C2] = n − 1 there are no monadic subalgebras incomparable

to K. Suppose now N [C1] = j > 1 and N [C2] = n − j > 1. Then

there exist
(2j − 2) · (2n−j − 2)

2
monadic subalgebras isomorphic to

B2 and incomparable to K.

3. If n ≥ 4 and K is a Boolean subalgebra of Bn isomorphic to Bn−1

then there exist exactly
(
n−2

2

)
monadic subalgebras isomorphic to K

and incomparable to K.

Our next objective is to obtain a formula to determine the number of

subalgebras of a finite monadic Boolean algebra.

It is known that the number of partitions of an n-element set X into t

classes is the Stirling number of second kind

S(n, t) =

t−1∑

i=0
(−1)i

(
t
i

)
(t − i)n

t!
.

Theorem 2. The number of subalgebras of (Bn,K) is

∑

P

k∏

j=1

(
mj∑

h=1

S(nj1, h) · . . . · S(njlj , h) · (h!)lj−1

)

,

where P = {{c11, c12, . . . , c1l1}, . . . , {ck1, ck2, . . . , cklk}} ranges over the set

of partitions of A(K), nji = N [Cji], mj = min{N [Cji] : i = 1, . . . , lj}.

Proof. Let us count the subalgebras of (Bn,K) associated to a given

partition

P = {{c11, c12, . . . , c1l1}, . . . , {ck1, ck2, . . . , cklk}}.

If S is the subalgebra associated to P, let A(S) = {s1, s2, . . . , st}.

The sets Ti of Theorem 1 verify:

∨

j∈Ti

cj =
∨

{sk : sk ∧ cj 6= 0, for every cj ∈ Ti}.

Consider the class C = {cj1, cj2, . . . , cjlj} of P.
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If {sα : sα ∧ cji 6= 0 for every cji ∈ C} = {sα1, sα2, . . . , sαh}, then

Cji ∩ Sαt 6= ∅ for 1 ≤ i ≤ lj and 1 ≤ t ≤ h, and Cji ∩ Sα = ∅ for any

other Sα. So every Cji is partitioned into h classes, where 1 ≤ h ≤ mj =

min{N [Cji] : i = 1, . . . , lj}. This can be done in

mj∑

h=1

S(nj1, h) · . . . · S(njlj, h) · (h!)lj−1

different ways.

So the number of subalgebras associated to the partition P is

k∏

j=1

(
mj∑

h=1

S(nj1, h) · . . . · S(njlj , h) · (h!)lj−1

)

.

Finally, the number of subalgebras of (Bn,K) is

∑

P

k∏

j=1

(
mj∑

h=1

S(nj1, h) · . . . · S(njlj , h) · (h!)lj−1

)

,

where P ranges over the set of all partitions of A(K). 2
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By an application of the previous results, we give the following table.

NUMBER OF MONADIC SUBALGEBRAS

Boolean Partition of the Incom-

Algebra atoms of Bi S ⊂ K K ⊆ S parable Number

B1 1 0 1 0 1

B2 2 0 2 0 2

1 + 1 1 1 0 2

3 0 5 0 5

B3 1 + 2 1 2 0 3

1 + 1 + 1 4 1 0 5

4 0 15 0 15

1 + 3 1 5 0 6

B4 2 + 2 1 4 2 7

1 + 1 + 2 4 2 1 7

1 + 1 + 1 + 1 14 1 0 15

5 0 52 0 52

1 + 4 1 15 0 16

2 + 3 1 10 6 17

B5 1 + 1 + 3 4 5 4 13

1 + 2 + 2 4 4 4 12

1 + 1 + 1 + 2 14 2 4 20

1 + 1 + 1 + 1 + 1 51 1 0 52

6 0 203 0 203

1 + 5 1 52 0 53

2 + 4 1 30 14 45

3 + 3 1 25 24 50

1 + 1 + 4 4 15 14 33

B6 1 + 2 + 3 4 10 11 25

2 + 2 + 2 4 8 19 31

1 + 1 + 1 + 3 14 5 16 35

1 + 1 + 2 + 2 14 4 13 31

1 + 1 + 1 + 1 + 2 51 2 14 67

1 + 1 + 1 + 1 + 1 + 1 202 1 0 203
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[4] L. Monteiro, M. Abad, S. Savini, J. Sewald, Notes on free monadic Boolean algebras,

Order 16 (1999), pp. 277–289.

[5] O. Ore, Theory of equivalence relations, Duke Math. Journal 9 (1942), pp. 573–627.

INMABB-CONICET and Departamento de Matemática
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