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ON THE COMPLETENESS THEOREM OF
MANY-SORTED EQUATIONAL LOGIC AND

THE EQUIVALENCE BETWEEN HALL

ALGEBRAS AND BÉNABOU THEORIES

A b s t r a c t. The completeness theorem of equational logic of

Birkhoff asserts the coincidence of the model-theoretic and proof-

theoretic consequence relations. Goguen and Meseguer, giving

a sound and adequate system of inference rules for many-sorted

deduction, founded ultimately on the congruences on Hall alge-

bras, generalized the completeness theorem of Birkhoff to the

completeness theorem of many-sorted equational logic. In this

paper, after simplifying the specification of Hall algebras as given

by Goguen-Meseguer, we obtain another many-sorted equational

calculus from which we prove that the inference rules of abstrac-

tion and concretion due to Goguen-Meseguer are derived rules.

Finally, after defining the Bénabou algebras for a set of sorts S

we prove that the category of Bénabou algebras for S is equivalent

to the category of Hall algebras for S and isomorphic to the cate-

gory of Bénabou theories for S, i.e., the many-sorted counterpart

of the category of Lawvere theories, hence that Hall algebras and

Bénabou theories are equivalent.
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.1 Introduction

The completeness theorem of many-sorted equational logic of Goguen-

Meseguer (in [4]), under which the classical completeness theorem of equa-

tional logic of Birkhoff (in [2]) falls, asserts, for a set of sorts S and an

S-sorted signature Σ, the coincidence of two consequence relations defined

between subfamilies of the many-sorted set EqH(Σ), of finitary Σ-equations,

and elements of such a many-sorted set, for an S-sorted signature Σ and

an S-sorted set of variables V = (Vs)s∈S where, for every sort s in S,

Vs = { vs
n | n ∈ N } is a standard infinite countable set of variables of

type s.

Concretely, the above completeness theorem affirms that the conse-

quence relations |=Σ and `Σ are identical, where |=Σ= (|=Σ
w,s)(w,s)∈S?×S ,

with S? the underlying set of the free monoid on S, the so-called semantical

consequence relation, is obtained from the contravariant Galois connection

between the ordered set Sub(Alg(Σ)), of subsets of Alg(Σ), the category

of Σ-algebras (identified in this case to its underlying set of objects), and

the ordered set Sub(EqH(Σ)), of subfamilies of EqH(Σ); while `Σ, also

indexed by S? × S, the so-called entailment relation, or syntactical conse-

quence relation, can be obtained, for instance, as has been pointed out in [4],

as the operator CgHTerS(Σ), of generated congruence, on the Hall algebra

HTerS(Σ) that has as underlying S? × S-sorted set (TΣ(↓w)s)(w,s)∈S?×S

where, for a word w ∈ S?, ↓w is the S-sorted set that has, for s ∈ S, as

s-th coordinate the subset of Vs defined as (↓w)s = { vs
i ∈ Vs | wi = s },

while TΣ(↓w) is the underlying S-sorted set of TΣ(↓w), the free Σ-algebra

on the S-sorted set ↓w.

In the second section of this paper, once defined the variety of Hall

algebras for a set of sorts S, through a many-sorted specification slightly

different from that presented in [4], and after reproving the completeness

theorem of many-sorted equational logic, we obtain another many-sorted

equational calculus from which we prove that the inference rules of ab-

straction and concretion in [4] are derived rules, thus providing a system

of sound and adequate inference rules somewhat less redundant than that

presented by Goguen-Meseguer in [4].

In the third and last section, after defining the variety of Bénabou

algebras for a set of sorts S, through a many-sorted specification, we prove,

on the one hand, that the category of Bénabou theories for S, defined
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in [1], has the form of the category of models for a convenient many-sorted

specification because it is isomorphic to the category of Bénabou algebras

for S and, on the other hand, that the category of Hall algebras for S, used

by Goguen-Meseguer in their proof of the completeness theorem of many-

sorted equational logic, is equivalent to that of Bénabou algebras for S,

hence that Hall algebras and Bénabou theories are equivalent. Finally, we

prove that the algebraic lattice Cgr(BTerS(Σ)) associated to the Bénabou

algebra BTerS(Σ) is isomorphic to the algebraic lattice of fixed points of

the operator CnΣ, canonically associated to the semantical consequence

relation |=Σ.

We point out that the category of Bénabou algebras for a set of sorts S

is not only interesting because it is isomorphic to the category of Bénabou

theories for S and equivalent to the category of Hall algebras for S, but

also because in [3] the Bénabou algebras have been used, among other

things, to define what we have called morphisms of Fujiwara from a many-

sorted signature into another, as well as morphisms from a many-sorted

specification into another, from which we have proved, in a convenient 2-

category of many-sorted specifications, the equivalence between the many-

sorted specifications of Hall and Bénabou, and also, as a direct consequence

of the existence of a certain pseudo-functor from such a 2-category into the

2-category of categories, the equivalence between the associated varieties.

In what follows we use standard concepts from many-sorted algebra,

see e.g., [4]. Sometimes, to avoid any confusion, we will denote the family

of structural operations of a given Σ-algebra A by F A and the components

of FA corresponding to the different formal operations σ, τ , . . . , as F A
σ ,

FA
τ , . . . , respectively. Moreover, every set we consider will be an element

or subset of a Grothendieck universe U , fixed once and for all.

.2 Hall algebras, the many-sorted completeness theorem of

Goguen-Meseguer, and some derived inference rules

Hall algebras, as reflected by the defining axioms stated below, are a species

of algebraic construct in which the essential properties of the concepts of

substitution, for the many-sorted terms in the free many-sorted algebras,

and of generalized composition, for the many-sorted operations on sorted

sets, are embodied. And this is precisely one of the reasons why Hall alge-
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bras are a powerful and fundamental instrument to investigate many-sorted

algebras. To this we add that Hall algebras are not only worth of study

because of its source in the above mentioned procedures. Besides that,

Hall algebras are interesting in themselves since they furnish important

examples of equationally defined many-sorted algebras, and also because

they have been used, as we have said in the introduction, by Goguen and

Meseguer in [4] to prove the completeness theorem of finitary many-sorted

equational logic (that generalizes the classical completeness theorem of fini-

tary equational logic of Birkhoff), providing in this way, a full algebraization

of many-sorted equational deduction.

In this section after defining, for a set of sorts S, Alg(HS), the category

of Hall algebras for S, through a many-sorted specification HS slightly dif-

ferent from that presented in [4], we prove the existence, for every S-sorted

signature Σ, of an isomorphism between THS
(Σ), the free Hall algebra

on Σ, and HTerS(Σ), the Hall algebra for (S,Σ) which, we advance, for-

malizes the concept of substitution and has as underlying S? × S-sorted

set precisely (TΣ(↓w)s)(w,s)∈S?×S, i.e., the different sets of finitary many-

sorted Σ-terms. We point out that this isomorphism, which allows us to

replace everywhere HTerS(Σ) for THS
(Σ), together with the adjunction

THS
a GHS

from SetS?×S to Alg(HS), will be specially useful to state

some results in a more concrete and tractable way. Then, once reproved

the completeness theorem of many-sorted equational logic, we obtain from

it a many-sorted equational calculus from which we prove that the rules

of abstraction and concretion in [4] are derived rules, hence providing a

somewhat less redundant set of sound and adequate inference rules than

those in [4].

But before we begin to realize what has been announced we consider,

for a set of sorts S and an S-sorted signature Σ, the concepts of finitary

Σ-term, finitary Σ-equation and the relation of validation between finitary

Σ-equations and Σ-algebras. From these concepts we obtain, as it is well

known, a contravariant Galois connection between the ordered set of fam-

ilies of finitary Σ-equations and the ordered set of families of Σ-algebras

and, in particular, the closure operator of semantical consequence on the

set of finitary Σ-equations.

Definition 2.1. Let Σ be an S-sorted signature, w ∈ S?, and s ∈ S.

1. A finitary Σ-term of type (w, s) is an element P of TΣ(↓w)s.
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2. A finitary Σ-equation of type (w, s) is an element (P,Q) of TΣ(↓w)2s,

i.e., a pair of finitary Σ-terms of type (w, s).

From now on we agree that HTerS(Σ) denotes (TΣ(↓w)s)(w,s)∈S?×S,

the S? × S-sorted set of finitary Σ-terms, and that EqH(Σ) denotes

(TΣ(↓w)2s)(w,s)∈S?×S, the S? × S-sorted set of finitary Σ-equations.

Next we define for an S-sorted signature Σ, on the one hand, the re-

alization of the finitary Σ-terms in the Σ-algebras and, on the other, the

concept of validation of a finitary Σ-equation in a Σ-algebra.

Definition 2.2. Let Σ be an S-sorted signature, w ∈ S?, s ∈ S, A a

Σ-algebra, and P ∈ TΣ(↓w)s a finitary Σ-term of type (w, s). Then

1. The Σ-algebra of the many-sorted w-ary operations on A is AAw ,

i.e., the direct Aw-power of A, where Aw is
∏

i∈|w| Awi
, with |w| the

length of the word w, or, since, for every s ∈ S, the sets (↓w)s =

{ vs
i ∈ Vs | wi = s } and { i ∈ |w| | wi = s } are isomorphic, AA↓w , i.e.,

the direct A↓w-power of A, where A↓w is Hom(↓w,A), the set of all S-

sorted mappings from ↓w to A. From now on, to shorten terminology,

we will speak of w-ary operations on A instead of many-sorted w-ary

operations on A.

2. We denote by Tr↓w,A the unique homomorphism from TΣ(↓w) to

AAw such that prA
↓w = Tr↓w,A ◦ η↓w, where prA

↓w is the S-sorted map-

ping (prA
↓w,s)s∈S from ↓w to AAw defined, for s ∈ S, as prA

↓w,s =

(prA
↓w,s,x)x∈(↓w)s

, and η↓w the canonical embedding of ↓w into TΣ(↓w),

the underlying S-sorted set of TΣ(↓w). Furthermore, P A denotes the

image of P under Tr↓w,A
s , and we call the mapping P A from A↓w to

As, the term operation on A determined by P , or the term realization

of P on A.

Definition 2.3. Let A be a Σ-algebra and (P,Q) a finitary Σ-equation

of type (w, s). We say that (P,Q) is valid in A, denoted by A |=Σ
w,s (P,Q),

if PA = QA. If K ⊆ Alg(Σ), then we agree that K |=Σ
w,s (P,Q) means

that, for every A ∈ K, A |=Σ
w,s (P,Q).

From the concept of validation we obtain, as it is well-known, the fol-

lowing contravariant Galois connection.

Definition 2.4. Let Σ be an S-sorted signature.
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1. If K ⊆ Alg(Σ), then ThΣ(K) = (ThΣ(K)w,s)(w,s)∈S?×S, the finitary

Σ-equational theory determined by K, is the sub-(S? × S)-sorted set

of EqH(Σ) whose (w, s)-th coordinate ThΣ(K)w,s, for (w, s) ∈ S? ×S,

has as elements those finitary Σ-equations (P,Q) of type (w, s) such

that K |=Σ
w,s (P,Q), therefore

ThΣ(K) =
({

(P,Q) ∈ EqH(Σ)w,s | ∀A ∈ K (A |=Σ
w,s (P,Q))

})
(w,s)∈S?×S

.

2. If E ⊆ EqH(Σ), then ModΣ(E), the finitary Σ-equational class de-

termined by E , has as elements the Σ-algebras A that validate each

equation of E , i.e.,

ModΣ(E) =

{
A ∈ Alg(Σ)

∣∣∣∣
∀(w, s) ∈ S? × S, ∀(P,Q) ∈ Ew,s,

A |=Σ
w,s (P,Q)

}
.

Proposition 2.5. Let Σ be an S-sorted signature, E, E ′ two families of

finitary Σ-equations and K, K′ two sets of Σ-algebras. Then the following

holds:

1. If E ⊆ E ′, then ModΣ(E ′) ⊆ ModΣ(E).

2. If K ⊆ K′, then ThΣ(K′) ⊆ ThΣ(K).

3. E ⊆ ThΣ(ModΣ(E)) and K ⊆ ModΣ(ThΣ(K)).

Therefore the pair of mappings ThΣ and ModΣ is a contravariant Galois

connection.

The categories associated to the lattices of sets of Σ-algebras and fami-

lies of finitary Σ-equations are related by the adjunction ModΣ a ThΣ, i.e.,

for every set K of Σ-algebras and every family E of finitary Σ-equations,

we have that K ⊆ ModΣ(E) iff E ⊆ ThΣ(K), because of the contravariance.

Definition 2.6. We denote by CnΣ the closure operator ThΣ ◦ ModΣ

on EqH(Σ) and we call the CnΣ-closed sets Σ-equational theories. If E

is a family of finitary Σ-equations and (P,Q) a finitary Σ-equation of

type (w, s), then we say that (P,Q) is a semantical consequence of E if

ModΣ(E) ⊆ ModΣ(P,Q), i.e., if (P,Q) ∈ CnΣ(E)w,s = ThΣ(ModΣ(E))w,s,

which we denote also by E |=Σ
w,s (P,Q).
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Before we define the Hall algebras, through an appropriate many-sorted

specification, we agree that for a set of sorts U , a word x ∈ U ? and a

standard U -sorted set of variables V U = ({ vu
n | n ∈ N })u∈U , ↓x is the U -

sorted subset of V U defined, for every u ∈ U as (↓x)u = { vu
i | i ∈ x−1[u] },

this will apply, in particular, when the set of sorts U is S? × S or S? × S?.

Definition 2.7. Let S be a set of sorts and V HS the S? × S-sorted

set of variables (Vw,s)(w,s)∈S?×S where Vw,s = { vw,s
n | n ∈ N }, for every

(w, s) ∈ S? ×S. A Hall algebra for S is a HS = (S? ×S,ΣHS , EHS )-algebra,

where ΣHS is the S?×S-sorted signature, i.e., the (S?×S)?×(S?×S)-sorted

set, defined as follows:

HS1. For every w ∈ S? and i ∈ |w|,

πw
i : λ // (w,wi),

where |w| is the length of the word w and and λ the empty word in

the underlying set of the free monoid on S? × S

HS2. For every u, w ∈ S? and s ∈ S,

ξu,w,s : ((w, s), (u,w0), . . . , (u,w|w|−1)) // (u, s);

while EHS is the sub-(S? × S)? × (S? × S)-sorted set of Eq(ΣHS ), where

Eq(ΣHS ) = (TΣHS (↓w)2(u,s))(w,(u,s))∈(S?×S)?×(S?×S),

defined as follows:

H1. Projection. For every u, w ∈ S? and i ∈ |w|, the equation

ξu,w,wi
(πw

i , vu,w0

0 , . . . , v
u,w|w|−1

|w|−1 ) = vu,wi

i

of type (((u,w0), . . . , (u,w|w|−1)), (u,wi)).

H2. Identity. For every u ∈ S? and j ∈ |u|, the equation

ξu,u,uj
(v

u,uj

j , πu
0 , . . . , πu

|u|−1) = v
u,uj

j

of type (((u, uj)), (u, uj)).
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H3. Associativity. For every u, v, w ∈ S? and s ∈ S, the equation

ξu,v,s(ξv,w,s(v
w,s
0 , vv,w0

1 , . . . , v
v,w|w|−1

|w| ), vu,v0

|w|+1, . . . , v
u,v|v|−1

|w|+|v| ) =

ξu,w,s(v
w,s
0 ,ξu,v,w0

(vv,w0

1 , vu,v0

|w|+1, . . . , v
u,v|v|−1

|w|+|v| ), . . . ,

ξu,v,w|w|−1
(v

v,w|w|−1

|w| , vu,v0

|w|+1, . . . , v
u,v|v|−1

|w|+|v| ))

of type (((w, s), (v, w0), . . . , (v, w|w|−1), (u, v0), . . . , (u, v|v|−1)), (u, s)).

Remark. From H3, for w = λ, the empty word on S, we get the

invariance of constant functions axiom in [4]: For every u, v ∈ S? and

s ∈ S, we have the equation

ξu,v,s(ξv,λ,s(v
λ,s
0 ), vu,v0

1 , . . . , v
u,v|v|−1

|v| ) = ξu,λ,s(v
λ,s
0 )

of type (((λ, s), (u, v0), . . . , (u, v|v|−1)), (u, s)).

We call the formal constants πw
i projections, and the formal operations

ξu,w,s substitution operators. Furthermore, we denote by Alg(HS) the cat-

egory of Hall algebras for S and homomorphisms between Hall algebras.

Since Alg(HS) is a variety, the forgetful functor GHS
from Alg(HS) to

SetS?×S has a left adjoint THS
, situation denoted by THS

a GHS
, or dia-

grammatically by

Alg(HS)

GHS //
> SetS?×S

THS

oo

which assigns to an S?×S-sorted set Σ the corresponding free Hall algebra

THS
(Σ).

For every S-sorted set A, HOpS(A) = (Hom(Aw, As))(w,s)∈S?×S, the

S? ×S-sorted set of operation for A, is naturally endowed with a structure

of Hall algebra, as stated in the following proposition, if we realize the

projections as the true projections and the substitution operators as the

generalized composition of mappings.

Proposition 2.8. Let A be an S-sorted set and HOpS(A) the ΣHS -

algebra with underlying many-sorted set HOpS(A) and algebraic structure

defined as follows
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1. For every w ∈ S? and i ∈ |w|, (πw
i )HOpS(A) = prAw,i : Aw

// Awi
.

2. For every u,w ∈ S? and s ∈ S, ξ
HOpS(A)
u,w,s is defined, for every f ∈

AAw
s and g ∈ AAu

w , as ξ
HOpS(A)
u,w,s (f, g0, . . . , g|w|−1) = f ◦〈gi〉i∈|w|, where

〈gi〉i∈|w| is the unique mapping from Au to Aw such that, for every

i ∈ |w|, we have that

prAw,i ◦ 〈gi〉i∈|w| = gi.

Then HOpS(A) is a Hall algebra, the Hall algebra for (S,A).

Remark. The closed sets of the Hall algebra HOpS(A) for (S,A) are

precisely the clones of (many-sorted) operations on the S-sorted set A.

We agree that, for every Σ-algebra A, HOpS(A) is HOpS(A), where

A is the underlying S-sorted set of A. Thus, under this convention, every

Σ-algebra A has associated a Hall algebra.

For every S-sorted signature Σ, HTerS(Σ) = (TΣ(↓w)s)(w,s)∈S?×S is

also endowed with a structure of Hall algebra that formalizes the concept

of substitution as stated in the following

Proposition 2.9. Let Σ be an S-sorted signature and HTerS(Σ) the

ΣHS -algebra with underlying many-sorted set HTerS(Σ) and algebraic struc-

ture defined as follows

1. For every w ∈ S? and i ∈ |w|, (πw
i )HTerS(Σ) is the image under

η↓w,wi
of the variable vwi

i , where η↓w = (η↓w,s)s∈S is the canonical

embedding of ↓w into TΣ(↓w). Sometimes, to abbreviate, we will

write πw
i instead of (πw

i )HTerS(Σ).

2. For every u,w ∈ S? and s ∈ S, ξ
HTerS(Σ)
u,w,s is the mapping

ξHTerS(Σ)
u,w,s

{
TΣ(↓w)s × TΣ(↓u)w0

× · · · × TΣ(↓u)w|w|−1

// TΣ(↓u)s

(P, (Qi)i∈|w|) 7−→ Q]
s(P )

where, for Q the S-sorted mapping from ↓w to TΣ(↓u) canonically

associated to the family (Qi)i∈|w|, Q] is the unique homomorphism

from TΣ(↓w) into TΣ(↓u) such that Q] ◦ η↓w = Q. Sometimes, to

abbreviate, we will write ξu,w,s instead of ξ
HTerS(Σ)
u,w,s .
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Then HTerS(Σ) is a Hall algebra, the Hall algebra for (S,Σ).

Our next goal is to prove that, for every S? × S-sorted set Σ, THS
(Σ),

the free Hall algebra on Σ, is isomorphic to HTerS(Σ). We remark that

the existence of this isomorphism is interesting because it enables us, on

the one hand, to get a more tractable description of the terms in THS
(Σ),

and, on the other hand, as we will show afterwards, to state, for every

Σ-algebra A, taking into account the adjunction THS
a GHS

, the existence

of a homomorphism of Hall algebras TrA from HTerS(Σ) to HOpS(A) =

HOpS(A) such that ThΣ(A), the finitary Σ-equational theory determined

by A, is precisely Ker(TrA), the kernel of the homomorphism TrA.

To attain the goal just stated we begin by defining, for a Hall algebra

A, an S-sorted signature Σ, an S? × S-mapping f : Σ // A, and a word

u ∈ S?, the concept of derived Σ-algebra of A for (f, u), since it will

be used afterwards in the proof of the isomorphism between THS
(Σ) and

HTerS(Σ).

Definition 2.10. Let A be a Hall algebra and Σ an S-sorted signature.

Then, for every f : Σ // A and u ∈ S?, Af,u, the derived Σ-algebra of A

for (f, u), is the Σ-algebra with underlying S-sorted set Af,u = (Au,s)s∈S

and algebraic structure F f,u, defined, for every (w, s) ∈ S? × S, as

F f,u
w,s





Σw,s
// HOpw(Af,u)s

σ 7−→

{ ∏
i∈|w| Au,wi

// Au,s

(a0, . . . , a|w|−1) 7−→ ξA
u,w,s(f(w,s)(σ), a0, . . . , a|w|−1)

where HOpw(Af,u)s = A

∏
i∈|w| Au,wi

u,s .

Furthermore, we denote by pu the S-sorted mapping from ↓u to Af,u

defined, for every s ∈ S and i ∈ |u|, as pu
s (vs

i ) = (πu
i )A, and by (pu)] the

unique homomorphism from TΣ(↓u) to Af,u such that (pu)] ◦ η↓u = pu.

Remark. For a Σ-algebra B = (B,G), we have that G : Σ // HOpS(B)

and B ∼= HOpS(B)G,λ, where λ is the empty word on S. Besides, for ev-

ery u ∈ S?, we have that BBu , the direct Bu-power of B, is isomorphic to

HOpS(B)G,u.

Lemma 2.11. Let Σ be an S-sorted signature, A a Hall algebra,

f : Σ // A and u ∈ S?. Then, for every (w, s) ∈ S? × S, P ∈ TΣ(↓w)s



COMPLETENESS OF MANY-SORTED EQUATIONAL LOGIC 137

and a ∈
∏

i∈|w| Au,wi
, we have that

PAf,u

(a0, . . . , a|w|−1) = ξA
u,w,s((p

w)]s(P ), a0, . . . , a|w|−1).

Proof. By algebraic induction on the complexity of P . If P is a variable

vs
i , with i ∈ |w|, then

vs,Af,u

i (a0, . . . , a|w|−1) = a]
wi

(vs
i )

= ai

= ξA
u,w,s((π

w
i )A, a0, . . . , a|w|−1) (by H1)

= ξA
u,w,s((p

w)]s(v
s
i ), a0, . . . , a|w|−1).

Let us assume that P = σ(Q0, . . . , Q|x|−1), with σ : x // s and that, for

every j ∈ |x|, Qj ∈ TΣ(↓w)xj
fulfills the induction hypothesis. Then we

have that

(σ(Q0, . . . , Q|x|−1))
Af,u

(a0, . . . , a|w|−1)

= σAf,u

(QAf,u

0 (a0, . . . , a|w|−1), . . . , Q
Af,u

|x|−1(a0, . . . , a|w|−1))

= ξA
u,x,s(f(σ), QAf,u

0 (a0, . . . , a|w|−1), . . . , Q
Af,u

|x|−1(a0, . . . , a|w|−1))

= ξA
u,x,s(f(σ),ξA

u,w,x0
((pw)]x0

(Q0), a0, . . . , a|w|−1), . . . ,

ξA
u,w,x|x|−1

((pw)]x|x|−1
(Q|x|−1), a0, . . . , a|w|−1)) (by Ind. Hypothesis)

= ξA
u,w,s(ξ

A
w,x,s(f(σ), (pw)]x0

(Q0), . . . ,

(pw)]x|x|−1
(Q|x|−1)), a0, . . . , a|w|−1)(by H3)

= ξA
u,w,s(σ

Aw((pw)]x0
(Q0), . . . , (p

w)]x|x|−1
(Q|x|−1)), a0, . . . , a|w|−1)

= ξA
u,w,s((p

w)]s(σ,Q0, . . . , Q|x|−1), a0, . . . , a|w|−1)

= ξA
u,w,s((p

w)]s(P ), a0, . . . , a|w|−1). �

Next we prove that, for every S? × S-sorted set Σ, the Hall algebra for

(S,Σ) is isomorphic to the free Hall algebra on Σ.

Proposition 2.12. Let Σ be an S-sorted signature, i.e., an S? × S-

sorted set. Then the Hall algebra HTerS(Σ) is isomorphic to THS
(Σ).

Proof. It is enough to prove that HTerS(Σ) has the universal property

of the free Hall algebra on Σ. Therefore we have to specify an S?×S-sorted

mapping h from Σ to HTerS(Σ) such that, for every Hall algebra A and
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S? × S-sorted mapping f from Σ to A, there is a unique homomorphism

f̂ from HTerS(Σ) to A such that f̂ ◦ h = f . Let h be the S? × S-sorted

mapping defined, for every (w, s) ∈ S? × S, as

hw,s

{
Σw,s

// TΣ(↓w)s

σ 7−→ σ(vs
0, . . . , v

s
|w|−1)

Let A be a Hall algebra, f : Σ // A an S? × S-sorted mapping and f̂ the

S? × S-sorted mapping from HTerS(Σ) to A defined, for every (w, s) ∈

S? × S, as f̂w,s = (pw)]s, where, we recall, (pw)] is the unique homomor-

phism from TΣ(↓w) to Af,w such that (pw)] ◦ η↓w = pw. Then f̂ is a

homomorphism of Hall algebras, because, on the one hand, for w ∈ S? and

i ∈ |w| we have that

f̂w,wi
((πw

i )HTerS(Σ)) = f̂w,wi
(vs

i )

= pw
wi

(vs
i )

= (πw
i )A,

and, on the other hand, for P ∈ TΣ(↓w)s and (Qi | i ∈ |w|) ∈ TΣ(↓u)w we

have that

f̂u,s(ξ
HTerS(Σ)
u,w,s (P,Q0, . . . , Q|w|−1))

= (pu)]s(Q
]
s(P ))

= ((pu)] ◦ Q)]s(P ) (because (pu)] ◦ Q] = ((pu)] ◦ Q)])

= PAf,u

((pu)]w0
(Q0), . . . , (p

u)]w|w|−1
(Q|w|−1))

= ξA
u,w,s((p

w)]s(P ), (pu)]w0
(Q0), . . . , (p

u)]w|w|−1
(Q|w|−1)) (by Lemma 2.11)

= ξA
u,w,s(f̂w,s(P ), f̂u,w0

(Q0), . . . , f̂u,w|w|−1
(Q|w|−1)).

Therefore the S? × S-sorted mapping f̂ is a homomorphism. Furthermore,

f̂ ◦ h = f , because, for every w ∈ S?, s ∈ S, and σ ∈ Σw,s, we have that

f̂w,s(hw,s(σ)) = (pw)]s(σ(vs
0, . . . , v

s
|w|−1))

= σAw (pw
w0

(vs
0), . . . , p

w
w|w|−1

(vs
|w|−1))

= ξA
w,w,s(f(w,s)(σ), (πw

0 )A, . . . , (πw
|w|−1)

A)

= fw,s(σ) (by H2).
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It is obvious that f̂ is the unique homomorphism such that f̂ ◦ h = f .

Henceforth HTerS(Σ) is isomorphic to THS
(Σ). �

As was announced above, this isomorphism together with the adjunction

THS
a GHS

has as an immediate consequence that, for every S-sorted set A

and every S-sorted signature Σ, the sets Hom(Σ,HOpS(A)), in the category

SetS?×S , and Hom(HTerS(Σ),HOpS(A)), in the category Alg(HS), are

naturally isomorphic.

Actually, the isomorphism assigns, for an S-sorted set A, as we will

prove immediately below for the case in which A is the underlying S-

sorted set of a Σ-algebra A, to a structure of Σ-algebra F on A (i.e., an

S? ×S-sorted mapping F from Σ to HOpS(A)) the homomorphism of Hall

algebras Tr(A,F ) = (Tr
↓w,(A,F )
s )(w,s)∈S?×S from HTerS(Σ) to HOpS(A),

where, for every w ∈ S?, the subfamily Tr↓w,(A,F ) = (Tr
↓w,(A,F )
s )s∈S of

Tr(A,F ) is the unique homomorphism from TΣ(↓w) to (A,F )Aw , the direct

Aw-power of (A,F ), such that Tr↓w,(A,F ) ◦ η↓w = pA
↓w, where pA

↓w is the

S-sorted mapping from ↓w to AAw defined, for every s ∈ S and vs
i ∈ (↓w)s,

as pA
↓w,s(v

s
i ) = prA

w,i; while the inverse isomorphism sends an homomor-

phism h from HTerS(Σ) to HOpS(A) to, essentially, the algebraic struc-

ture GHS
(h) ◦ ηΣ on A, where ηΣ is the canonical embedding of Σ into

THS
(Σ).

After having stated, for an S-sorted set A and a structure of Σ-algebra

F on A, the definition of the S?×S-sorted mapping Tr(A,F ), we prove in the

following proposition, among others, that, for a Σ-algebra A = (A,F ), it is

in fact an homomorphism of Hall algebras from HTerS(Σ) to HOpS(A) =

HOpS(A).

Proposition 2.13. Let A = (A,F ) be a Σ-algebra. Then TrA =

Tr(A,F ) is a homomorphism of Hall algebras from HTerS(Σ) to HOpS(A)

= HOpS(A). Moreover, Ker(TrA) = ThΣ(A), the Σ-equational theory

determined by A.

Proof. Let w ∈ S? be and i ∈ |w|. Then we have that

Tr↓w,A
s ((πw

i )HTerS(Σ)) = prA
w,i = (πw

i )HOpS(A).

Next given u,w ∈ S?, s ∈ S, P ∈ TΣ(↓w)s, and (Qi)i∈|w| ∈ TΣ(↓u)w,
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we have to prove that

Tr↓u,A
s (ξHTerS(Σ)

u,w,s (P, (Qi)i∈|w|)) =

ξ
HOpS(A)
u,w,s (Tr↓w,A

s (P ), (Tr↓u,A
wi

(Qi))i∈|w|).

Let X u,w be the S-sorted set whose s-th coordinate, for s ∈ S, is the

set of all terms P ∈ TΣ(↓w)s which, for every (Qi)i∈|w| ∈ TΣ(↓u)w, satisfy

the above equation. We prove that X u,w = TΣ(↓w) by algebraic induction.

For every vs
i ∈ (↓w)s, we have that vs

i , identified to

η↓w,s(v
s
i ) = (πw

i )HTerS(Σ)

belongs to X u,w
s since

Tr↓u,A
s (ξHTerS(Σ)

u,w,s (vs
i , (Qi)i∈|w|))

= Tr↓u,A
s (ξHTerS(Σ)

u,w,s ((πw
i )HTerS(Σ), (Qi)i∈|w|))

= Tr↓u,A
s (Qi) (by H1)

= ξ
HOpS(A)
u,w,s ((πw

i )HOpS(A), (Tr↓u,A
wi

(Qi))i∈|w|)

= ξ
HOpS(A)
u,w,s (prA

w,i, (Tr↓u,A
wi

(Qi))i∈|w|)

= ξ
HOpS(A)
u,w,s (Tr↓w,A

s (vs
i ), (Tr↓u,A

wi
(Qi))i∈|w|).

For every σ ∈ Σ, with σ : x // s, and every (Rj)j∈|x| ∈ Xx, σ((Rj)j∈|x|) ∈

X u,w
s since

Tr↓u,A
s (ξHTerS(Σ)

u,w,s (σ((Rj)j∈|x|), (Qi)i∈|w|))

= Tr↓u,A
s (ξHTerS(Σ)

u,w,s (ξHTerS(Σ)
w,x,s (σ((vj)j∈|x|), (Rj)j∈|x|), (Qi)i∈|w|))

= Tr↓u,A
s (ξHTerS(Σ)

u,x,s (σ((vj)j∈|x|),ξ
HTerS(Σ)
u,w,x0

(R0, (Qi)i∈|w|), . . . ,

ξHTerS(Σ)
u,w,x|x|−1

(R|x|−1, (Qi)i∈|w|))) (by H3)

= Tr↓u,A
s (σ((ξHTerS(Σ)

u,w,xj
(Rj , (Qi)i∈|w|))j∈|x|))

= FAAu

σ (Tr↓u,A
x0

(ξHTerS(Σ)
u,w,x0

(R0, (Qi)i∈|w|)), . . . ,

Tr↓u,A
x|x|−1

(ξHTerS(Σ)
u,w,x|x|−1

(R|x|−1, (Qi)i∈|w|)))

= FAAu

σ (ξ
HOpS(A)
u,w,x0

(Tr↓w,A
x0

(R0), (Tr↓u,A
wi

(Qi))i∈|w|), . . . ,

ξ
HOpS(A)
u,w,x|x|−1

(Tr↓w,A
x|x|−1

(R|x|−1), (Tr↓u,A
wi

(Qi))i∈|w|)) (by Ind. Hypothesis)

= ξ
HOpS(A)
u,x,s (FA

σ ,ξ
HOpS(A)
u,w,x0

(Tr↓w,A
x0

(R0), (Tr↓u,A
wi

(Qi)i∈|w|)), . . . ,

ξ
HOpS(A)
u,w,x|x|−1

(Tr↓w,A
x|x|−1

(R|x|−1), (Tr↓u,A
wi

(Qi)i∈|w|)))
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= ξ
HOpS(A)
u,w,s (ξ

HOpS(A)
w,x,s (FA

σ , (Tr↓w,A
xj

(Rj))j∈|x|),

(Tr↓u,A
wi

(Qi))i∈|w|) (by H3)

= ξ
HOpS(A)
u,w,s (ξ

HOpS(A)
w,x,s (Tr↓x,A

s (σ((vj)j∈|x|)), (Tr↓w,A
xj

(Rj))j∈|x|,

(Tr↓u,A
wi

(Qi))i∈|w|))

= ξ
HOpS(A)
u,w,s (Tr↓w,A

s (ξHTerS(Σ)
u,w,s (σ((vj)j∈|x|), (Rj)j∈|x|)),

(Tr↓u,A
wi

(Qi))i∈|w|)

= ξ
HOpS(A)
u,w,s (Tr↓w,A

s (σ((Rj)j∈|x|)), (Tr↓u,A
wi

(Qi))i∈|w|).

Finally, ThΣ(A), the Σ-equational theory determined by A, is, by def-

inition (Ker(Tr↓w,A)s)(w,s)∈S?×S , which is precisely the kernel of TrA and,

therefore, it is a congruence on HTerS(Σ). �

The last part of the proposition just stated can be extended to sets of

Σ-algebras and, in particular, to the models of a family E of finitary Σ-

equations. From this it will follow that the operator CgHTerS(Σ) is sound

relative to the operator of semantical consequence CnΣ.

Proposition 2.14. Let K a set of Σ-algebras. Then ThΣ(K) is a con-

gruence on HTerS(Σ).

Proof. Because ThΣ(K) is
⋂

A∈K Ker(TrA) ∈ Cgr(HTerS(Σ)). �

Corollary 2.15 (Soundness Theorem). Let Σ be an S-sorted signa-

ture. Then we have that CgHTerS(Σ) ≤ CnΣ.

Proof. Let E be a sub-sorted set of EqH(Σ). By definition CnΣ(E) =

ThΣ(ModΣ(E)). But ThΣ(ModΣ(E)) is a congruence on HTerS(Σ) and

contains E . Therefore CnΣ(E) contains CgHTerS(Σ)(E). �

The congruence generated in HTerS(Σ) by a family of finitary Σ-

equations E can be characterized as follows.

Proposition 2.16. Let E be a sub-sorted set of EqH(Σ). Then

CgHTerS(Σ)(E) is the smallest sub-sorted set E of EqH(Σ) that contains

E and is such that, for every u,w ∈ S? and s ∈ S, satisfies the following

conditions:

1. Reflexivity. For every P ∈ HTerS(Σ)w,s, (P, P ) ∈ Ew,s.
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2. Symmetry. For every P , Q ∈ HTerS(Σ)w,s, if (P,Q) ∈ Ew,s, then

(Q,P ) ∈ Ew,s.

3. Transitivity. For every P , Q, R ∈ HTerS(Σ)w,s, if (P,Q), (Q,R) ∈

Ew,s, then (P,R) ∈ Ew,s.

4. Substitutivity. For every (Mi)i∈|w|, (Ni)i∈|w| ∈
∏

i∈|w| HTerS(Σ)u,wi

and every (P,Q) ∈ Ew,s, if, for every i ∈ |w|, it happens that

(Mi, Ni) ∈ Eu,wi
, then

(ξu,w,s(P,M0, . . . ,M|w|−1), ξu,w,s(Q,N0, . . . , N|w|−1)) ∈ Eu,s.

Let us remark that in the proposition just stated, the substitutivity

condition for w = λ, the empty word on S, demands that if (P,Q) ∈ E λ,s

then, for every u ∈ S?, (P,Q) ∈ Eu,s.

Proposition 2.17. Let E be a sub-sorted set of EqH(Σ) and σ ∈ Σw,s.

If, for every i ∈ |w|, we have that (Pi, Qi) ∈ Ew,wi
, then

(σ(P0, . . . , P|w|−1), σ(Q0, . . . , Q|w|−1)) ∈ Ew,s.

Proof. By reflexivity (σ(v0, . . . , v|w|−1), σ(v0, . . . , v|w|−1)) ∈ Ew,s hence,

by substitutivity, (σ(P0, . . . , P|w|−1), σ(Q0, . . . , Q|w|−1)) ∈ Ew,s. �

Proposition 2.18. Let E be a sub-sorted set of EqH(Σ) and (w, s) ∈

S? × S. If (P,Q) ∈ Ew,s and f is an endomorphism of TΣ(↓w), then

(fs(P ), fs(Q)) ∈ Ew,s.

Proof. For every i ∈ |w|, the equation (fwi
(vi), fwi

(vi)) is in Ew,wi
. By

substitutivity, we have that

(ξw,w,s(P, fw0
(v0), . . ., fw|w|−1

(v|w|−1)), ξw,w,s(Q, fw0
(v0), . . ., fw|w|−1

(v|w|−1)))

is in Ew,s, hence (fs(P ), fs(Q)) ∈ Ew,s. �

Corollary 2.19. Let E be a sub-sorted set of EqH(Σ) and w ∈ S?.

Then Ew = (Ew,s)s∈S is a fully invariant congruence on TΣ(↓w).
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Proof. By definition, Ew is an equivalence on TΣ(↓w), by Proposi-

tion 2.17 is compatible with the operations in Σ and by Proposition 2.18 is

closed under endomorphisms. �

We remark that the congruence Ew contains Cgfi
TΣ(↓w)(Ew), the fully

invariant congruence generated by Ew = (Ew,s)s∈S and, in general, the con-

tainment is strict, because Cgfi
TΣ(↓w)(Ew) contains only the consequences

of the subfamily of E which has the equations in E with variables in ↓w,

whereas Ew contains the equations with variables in ↓w that are conse-

quence of all equations in E .

Proposition 2.20. Let E be a sub-sorted set of EqH(Σ) and w ∈ S?.

Then TΣ(↓w)/Ew is a model of E.

Proof. Let (P,Q) ∈ Eu,s be and R : ↓ u // TΣ(↓w)/Ew a valuation.

Then

R](P ) = [P (R0, . . . , R|u|−1)] = [Q(R0, . . . , R|u|−1)] = R](Q).

�

Proposition 2.21 (Adequacy Theorem). Let Σ be an S-sorted sig-

nature. Then we have that CnΣ ≤ CgHTerS(Σ).

Proof. Let E be a sub-sorted set of EqH(Σ). If (P,Q) ∈ CnΣ(E)w,s,

then, because TΣ(↓w)/Ew is a model of E , PTΣ(↓w)/Ew = QTΣ(↓w)/Ew .

Hence

[P ] = [ξw,w,s(P, πw
0 , . . . , πw

|w|−1)]

= [PTΣ(↓w)(v0, . . . , v|w|−1)]

= PTΣ(↓w)/Ew([v0], . . . , [v|w|−1])

= QTΣ(↓w)/Ew([v0], . . . , [v|w|−1])

= [QTΣ(↓w)(v0, . . . , v|w|−1)]

= [ξw,w,s(Q,πw
0 , . . . , πw

|w|−1)]

= [Q],

and (P,Q) ∈ CgHTerS(Σ)(E)w,s. �
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Corollary 2.22 (Completeness theorem of Goguen-Meseguer).

Let Σ be an S-sorted signature. Then we have that CgHTerS(Σ) = CnΣ,

or, what is equivalent, the algebraic lattice of all Σ-equational theories is

isomorphic to the algebraic lattice of all congruences on the Hall algebra

HTerS(Σ).

The completeness theorem of Goguen-Meseguer allows us to obtain

a calculus of finitary Σ-equations, i.e., a calculus on sets of variables of

the form ↓w, for w ∈ S?, or, what amounts to the same, on finite sub-

S-sorted sets X of the S-sorted set V = (Vs)s∈S . Before we state the

finitary Σ-equational inference rules we agree that (P,Q) : (X, s) means

that the finitary Σ-equation (P,Q) is of type (X, s), i.e., that P,Q ∈

TΣ(X)s, in addition if P ∈ TΣ(X)s and P = (Ps)s∈S : X // TΣ(Y ), then

P (x/Ps,x)s∈S, x∈Xs is P]
s(P ).

Proposition 2.23 (Inference Rules). The following finitary Σ-equa-

tional inference rules determine a closure operator on EqH(Σ) that is iden-

tical to the closure operator CnΣ.

(R1) Reflexivity. For all P ∈ TΣ(X)s, (P, P ) ∈ EX,s, or diagrammatically

(P, P ) : (X, s)
P ∈ TΣ(X)s·

(R2) Symmetry. For all P,Q ∈ TΣ(X)s, if (P,Q) ∈ EX,s, then (Q,P ) ∈

EX,s, or diagrammatically

(P,Q) : (X, s)

(Q,P ) : (X, s)
·

(R3) Transitivity. For all P,Q,R ∈ TΣ(X)s, if (P,Q) ∈ EX,s and (Q,R) ∈

EX,s, then (P,R) ∈ EX,s or diagrammatically

(P,Q) : (X, s) (Q,R) : (X, s)

(P,R) : (X, s)
·

(R4) Generalized substitutivity. For all (P,Q) ∈ EX,s and S-sorted map-

pings P, Q from X to TΣ(Y ) such that, for every s ∈ S, x ∈ Xs,

(Ps,x, Qs,x) ∈ EY,s,

(ξY,X,s(P, (Ps,x)s∈S, x∈Xs), ξY,X,s(Q, (Qs,x)s∈S, x∈Xs)) ∈ EY,s,
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or diagrammatically

(P,Q) : (X, s) ((Ps,x, Qs,x) : (Y, s))s∈S, x∈Xs

(P (x/Ps,x)s∈S, x∈Xs , Q(x/Qs,x)s∈S, x∈Xs) : (Y, s)
·

Proof. Because the finitary Σ-equational inference rules are the trans-

lation of the conditions in Proposition 2.16. �

Proposition 2.24. The inference rule R4 is equivalent, assuming R1,

to the following inference rule

(R4′) Substitutivity.

(P,Q) : (X, s) (P ′, Q′) : (Y, t)

(P (x/P ′), Q(x/Q′)) : ((X − δt,x) ∪ Y, s)

x ∈ Xt [δt,x
t = {x}, δt,x

s = ∅, if s 6= t].

Proof. We begin by proving that R4 implies R4′. If (P,Q) : (X, s)

and (P ′, Q′) : (Y, t) are deducible and x ∈ Xt, then also, by reflexivity, the

finitary Σ-equations in the family ((P ′′
s,x, Q′′

s,x) : ((X −δt,x)∪Y, s))s∈S,x∈Xs ,

where P ′′
t,x = P ′, Q′′

t,x = Q′, and otherwise P ′′
s,y = Q′′

s,y = y, are deducible.

Then, by generalized substitutivity, (P (x/P ′), Q(x/Q′)) : ((X − δt,x) ∪

Y, s) is deducible, because P (x/P ′) = (P (x/P ′′
s,x)s∈S, x∈Xs and Q(x/Q′) =

Q(x/P ′′
s,x)s∈S, x∈Xs .

Reciprocally, R4′ implies R4, by reiterating the application of R4′

card(
∐

X)-times, where
∐

X is the coproduct of the S-sorted set X. �

In some presentations of many-sorted equational logic, e.g., in [4], two

additional inference rules that allow the adjunction and suppression of vari-

ables, under some conditions, are introduced. But as we will prove below

both rules are derived rules, relative to the system of rules R1 to R4.

Definition 2.25 (Abstraction and concretion).

(R5) Abstraction.

(P,Q) : (X, s)

(P,Q) : (X ∪ δt,x, s)
x ∈ Vt − Xt.
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(R6) Concretion.

(P,Q) : (X, s)

(P,Q) : (X − δt,x, s)
x ∈ Xt, x /∈ var(P,Q), TΣ((∅)s∈S)t 6= ∅.

Proposition 2.26. The abstraction and concretion rules are derived

rules.

Proof. Abstraction is a derived rule. Let y ∈ Vs be such that y /∈

Xs. Then, by reflexivity, the finitary Σ-equation (y, y) : (δs,y ∪ δt,x, s) is

deducible. Hence, by substitutivity, the finitary Σ-equation

(y(y/P ), y(y/Q)) : (((δs,y ∪ δt,x) − δs,y) ∪ X, s)

that is identical to (P,Q) : (X ∪ δt,x, s), is also deducible. As a particular

case we have that if (P,Q) : ((∅)s∈S , s) is deducible, then (P,Q) : (δt,x, s)

is also deducible.

Concretion is a derived rule. Since TΣ((∅)s∈S)t 6= ∅ let us choose an

R ∈ TΣ((∅)s∈S)t. Then, by reflexivity, the finitary Σ-equation (R,R) :

((∅)s∈S , t) is deducible. Hence, by substitutivity, (P (x/R), Q(x/R)) :

((X − δt,x) ∪ (∅)s∈S , s) is also deducible and, because x /∈ var(P,Q),

(P,Q) : (X − δt,x, s) is deducible. �

Definition 2.27 (Replacement rule).

(R7) Replacement.

(P i, Qi) : (X,wi)

(σ(P0, . . . , P|w|−1), σ(Q0, . . . , Q|w|−1)) : (X, s)
σ ∈ Σw,s.

Proposition 2.28. The replacement rule is a derived rule.

Proof. By reflexivity, (σ(v0, . . . , v|w|−1), σ(v0, . . . , v|w|−1)) : (↓w, s) is

deducible. Now, by reiterating substitutivity |w|-times, we obtain the de-

sired finitary Σ-equation. �

Everything we have done until now can be extended to the case of S-

finitary Σ-equations, where, for X an S-finite sub-S-sorted set of V , i.e., a

sub-S-sorted set of V such that, for every s ∈ S, card(Xs) < ℵ0, and s ∈ S,

an S-finitary Σ-equation of type (X, s) is a pair of coterminal parallel S-

sorted mappings from the S-sorted set δs = (δs
t )t∈S , the delta of Kronecker
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in s, such that δs
t = ∅ if s 6= t and δs

s = 1, to TΣ(X). In this respect we

only have to change the (finitary) structural operations of the Hall algebras

to S-finitary operations. Moreover, the equational calculus has the same

inference rules R1–R4, but generalized to S-sorted sets of variables which

are S-finite. However, the rule of substitution is no longer equivalent to

the generalized rule of substitution. Finally, the rules of abstraction and

concretion for this case are the following.

Definition 2.29.

(R5′) Generalized abstraction.

(P,Q) : (X, s)

(P,Q) : (X ∪ Y, s)
·

(R6′) Generalized concretion.

(P,Q) : (X, s)

(P,Q) : (X − Y, s)
Y ∩ var(P,Q) = ∅, supp(Y ) ⊆ supp(TΣ((∅)s∈S)),

where, for an S-sorted set Z, we agree that supp(Z), the support of

Z, is precisely supp(Z) = { s ∈ S | Zs 6= ∅ }.

.3 The equivalence between Hall algebras and Bénabou

theories

Another approximation to the study of many-sorted algebras has been

proposed by Bénabou in [1], by making use of the finitary many-sorted

algebraic theories (categories with objects the words on a set of sorts S

such that, for every word w = (wi)i∈n, there exists a family of morphisms

(pw
i )i∈n, where, for i ∈ n, pw

i is a morphism from w to (wi), the word of

length one associated to the letter wi, such that (w, (pw
i )i∈n) is a product of

the family ((wi))i∈n), that are the generalization to the many-sorted case

of the finitary single-sorted algebraic theories of Lawvere, see [5].

The equational presentation of the finitary many-sorted algebraic the-

ories of Bénabou gives rise to what we call Bénabou algebras. And the

Bénabou algebras, even having a many-sorted specification different from

that of the Hall algebras, are also models of the essential properties of the
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clones for the many-sorted operations. This is so since, as we will prove

below, for an arbitrary but fixed set of sorts S, the Bénabou algebras for

S are equivalent to the Hall algebras for S, i.e., there exists an equivalence

between the category Alg(HS), of Hall algebras for S, and the category

Alg(BS), of Bénabou algebras for S.

Moreover, the Bénabou algebras for S, as we will show below, are more

strongly linked to the finitary many-sorted theories algebraic theories than

are the Hall algebras, because, as we will prove afterwards, there exists an

isomorphism between the category Alg(BS) and the category BThf(S), of

finitary many-sorted algebraic theories for S.

In order to accomplish what has been announced we begin by defining

the Bénabou algebras as those that satisfy the laws of a convenient many-

sorted specification.

Definition 3.1. Let S be a set of sorts and V BS the (S?)2-sorted set of

variables (Vu,w)(u,w)∈(S?)2 where Vu,w = { vu,w
n | n ∈ N }, for every (u,w) ∈

(S?)2. A Bénabou algebra for S is a BS = ((S?)2,ΣBS , EBS )-algebra, where

ΣBS is the (S?)2-sorted signature defined as follows:

BS1. For the empty word λ ∈ S?, every w ∈ S? and i ∈ |w|, where |w| is

the domain of the word w, the formal operation of projection:

πw
i : λ // (w, (wi)).

BS2. For every u, w ∈ S?, the formal operation of finite tupling :

〈 〉u,w : ((u, (w0)), . . . , (u, (w|w|−1))) // (u,w).

BS3. For every u, x, w ∈ S?, the formal operation of substitution:

◦u,x,w : ((u, x), (x,w)) // (u,w);

while EBS is the sub-((S?)2)? × (S?)2-sorted set of Eq(ΣBS ), where

Eq(ΣBS) = (TΣBS (↓w)2(u,x))(w,(u,x))∈((S?)2)?×(S?)2 ,

defined as follows:

B1. For every u, w ∈ S? and i ∈ |w|, the equation:

πw
i ◦u,w,(wi) 〈v

u,(w0)
0 , . . . , v

u,(w|w|−1)

|w|−1 〉u,w = v
u,(wi)
i ,

of type (((u, (w0)), . . . , (u, (w|w|−1))), (u, (wi))).
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B2. For every u, w ∈ S?, the equation:

vu,w
0 ◦u,u,w 〈πu

0 , . . . , πu
|u|−1〉u,u = vu,w

0 ,

of type (((u,w)), (u,w)).

B3. For every u, w ∈ S?, the equation:

〈πw
0 ◦u,w,w0

vu,w
0 , . . . , πw

|w|−1 ◦u,w,w|w|−1
vu,w
0 〉u,w = vu,w

0 ,

of type (((u,w)), (u,w)).

B4. For every w ∈ S?, the equation:

〈πw
0 〉w,(w0) = πw

0 ,

of type (((w, (w0))), (w, (w0))).

B5. For every u, x, w, y ∈ S?, the equation:

vw,y
0 ◦u,w,y (vx,w

1 ◦u,x,w vu,x
2 ) = (vw,y

0 ◦x,w,y vx,w
1 ) ◦u,x,y vu,x

2 ,

of type (((w, y), (x,w), (u, x)), (u, y)),

where vu,w
n is the n-th variable of type (u,w), Q ◦u,x,w P is ◦u,x,w(P,Q),

and 〈P0, . . . , P|w|−1〉u,w is 〈 〉u,w(P0, . . . , P|w|−1).

Since Alg(BS) is a variety, the forgetful functor GBS
from Alg(BS) to

SetS?×S?

has a left adjoint TBS

Alg(BS)

GBS //
> SetS?×S?

TBS

oo

which assigns to an S? × S?-sorted set the corresponding free Bénabou

algebra.

For every S-sorted set A, BOpS(A) = (Hom(Aw, Au))(w,u)∈S?×S? is

endowed with a structure of Bénabou algebra as stated in the following

Proposition 3.2. Let A be an S-sorted set and BOpS(A) the ΣBS -

algebra with underlying many-sorted set BOpS(A) and algebraic structure

defined as follows
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1. For every w ∈ S? and i ∈ |w|, (πw
i )BOpS(A) = prAw,i : Aw

// A(wi).

2. For every u,w ∈ S?, 〈 〉
BOpS(A)
u,w is defined, for every (f0, . . . , f|w|−1)

in
∏

i∈|w| Hom(Aw, A(wi)), as 〈 〉
BOpS(A)
u,w (f0, . . . , f|w|−1) = 〈fi〉i∈|w|,

where 〈fi〉i∈|w| is the unique mapping from Au to Aw such that, for

every i ∈ |w|, prA
w,i ◦ 〈fi〉i∈|w| = fi.

3. For every u, x, w ∈ S?, ◦
BOpS(A)
u,x,w is defined as the composition of

mappings.

Then BOpS(A) is a Bénabou algebra, the Bénabou algebra for (S,A).

For every S-sorted signature Σ, BTerS(Σ) = (TΣ(↓w)u)(w,u)∈S?×S? ,

that is naturally isomorphic to (Hom(↓u,TΣ(↓w)))(w,u)∈S?×S? , is endowed

with a structure of Bénabou algebra as stated in the following

Proposition 3.3. Let Σ be an S-sorted signature and BTerS(Σ) the

ΣBS -algebra with underlying many-sorted set BTerS(Σ) and algebraic struc-

ture that obtained, by transport of structure, from the algebraic structure

defined on the S? ×S?-sorted set (Hom(↓u,TΣ(↓w)))(w,u)∈S?×S? as follows

1. For every w ∈ S? and i ∈ |w|, (πw
i )BTerS(Σ) is the composition of the

canonical embedding from ↓(wi) to ↓w and the canonical embedding

from ↓w to TΣ(↓w).

2. For every u,w ∈ S?, 〈 〉
BTerS(Σ)
u,w is the canonical isomorphism from the

cartesian product
∏

i∈|w| Hom(↓(wi),TΣ(↓u)) to Hom(↓w,TΣ(↓u)).

3. For every u, x, w ∈ S?, ◦
BTerS(A)
u,x,w is defined as the mapping which

sends a pair P ∈ Hom(↓x,TΣ(↓u)) and Q ∈ Hom(↓w,TΣ(↓x)) to

P] ◦ Q.

Then BTerS(Σ) is a Bénabou algebra, the Bénabou algebra for (S,Σ).

Next, after defining the category BThf(S), of finitary many-sorted alge-

braic theories of Bénabou (defined for the first time in [1]), that generalize

the finitary single-sorted algebraic theories of Lawvere, we prove that there

exists an isomorphism between the category BThf(S) and the category

Alg(BS).
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Definition 3.4. We denote by BThf(S) the category with objects pairs

B = (B, p), where B is a category that has as objects the words on S and

p a family (pw)w∈S? such that, for every word w ∈ S?, pw is a family

(pw
i : w // (wi))i∈|w| of morphisms in B, the projections for w, where (wi)

is the word of length 1 on S whose only letter is wi, such that (w, pw) is a

product in B of the family of words ((wi))i∈|w|, and as morphisms from B

to B
′ functors F from B to B′ such that the object mapping of F is the

identity and the morphism mapping of F preserves the projections, i.e., for

every w ∈ S? and i ∈ |w|, F (pw,B
i ) = pw,B′

i .

Proposition 3.5. There exists an isomorphism from the category

Alg(BS) to the category BThf(S).

Proof. The isomorphism from Alg(BS) to BThf(S) is the functor Ba,t

which to a Bénabou algebra B assigns the Bénabou theory Ba,t(B) which

has as underlying category that given by the following data

1. The set of objects is S? and, for u,w ∈ S?, Hom(u,w) = Bu,w,

2. For every w ∈ S?, idw = 〈(πw
i )B | i ∈ |w|〉w,w,

3. If P : u // x, Q : x // w, then the composition of P and Q is

◦Bu,x,w(P,Q),

and as underlying family of projections that given, for every w ∈ S?,

as πw = ((πw
i )B)i∈|w|; and which to a morphism of Bénabou algebras

f : B // B′ assigns the morphism of Bénabou theories Ba,t(f) that to

P : w // u associates fw,u(P ) : w // u.

The inverse of Ba,t is the functor Bt,a which to a Bénabou theory B =

(B, p) assigns the Bénabou algebra Bt,a(B) that has

1. As underlying (S?)2-sorted set the family (HomB(w, u))(w,u)∈(S?)2 ,

and

2. As structure of Bénabou algebra on (HomB(w, u))(w,u)∈(S?)2 that

obtained by interpreting, for every w ∈ S? and i ∈ |w|, πw
i as pw

i ,

for every u,w ∈ S?, 〈 〉u,w as the canonical mapping from∏
i∈|w| HomB(u, (wi)) to HomB(u,w) obtained by the universal prop-

erty of the product for w, and, for every u, x, w ∈ S?, ◦u,x,w as the

composition in B;
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and which to a morphism of Bénabou theories F : B // B′ assigns the

morphism of Bénabou algebras Bt,a(F ), that for every u,w ∈ S?, is the bi-

restriction of F to the corresponding hom-sets Hom(u,w) and Hom(u,w).

�

Remark. The isomorphism between BThf(S) and Alg(BS) can be

interpreted as meaning, and this can be algebraically reassuring, that the

category of finitary many-sorted algebraic theories of Bénabou, a purely

formal entity, has the form of a category of models for a finitary many-

sorted equational presentation, a semantical, or substantial, entity, there-

fore confirming, once more, that apparently form is substance. Moreover,

the isomorphism shows that the Bénabou algebras are more closely related

to the finitary many-sorted algebraic theories of Bénabou than are the Hall

algebras.

Next we prove that the categories Alg(HS) and Alg(BS) of Hall and

Bénabou algebras, respectively, are equivalent.

Proposition 3.6. For every set of sorts S, the categories Alg(HS) and

Alg(BS) are equivalent.

Proof. The equivalence from Alg(HS) to Alg(BS) is the functor Fh,b

which to a Hall algebra A assigns the Bénabou algebra Fh,b(A) that has

1. As underlying (S?)2-sorted set ((Aw)u)(w,u)∈(S?)2 where

Aw = (Aw,s)s∈S and (Aw)u =
∏

i∈|u| Aw,ui
, and

2. As structure of Bénabou algebra on ((Aw)u)(w,u)∈(S?)2 that defined

as

(πw
i )Fh,b(A) = ((πw

i )A),

〈(a0), . . . , (a|w|−1)〉
Fh,b(A)
u,w = (ξA

u,w,w0
(πw

0 , a0, . . . , a|w|−1), . . . ,

ξA
u,w,w|w|−1

(πw
|w|−1, a0, . . . , a|w|−1)),

◦
Fh,b(A)
u,x,w (a, b) = (ξA

u,x,w0
(b0, a0, . . . , a|x|−1), . . . ,

ξA
u,x,w|w|−1

(b|w|−1, a0, . . . , a|x|−1));

and which to a morphism f : A // B of Hall algebras assigns the mor-

phism Fh,b(f) = ((fw)u)(w,u)∈(S?)2 from Fh,b(A) to Fh,b(B) defined, for
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(a0, . . . , a|u|−1) in (Aw)u, as

(a0, . . . , a|u|−1) 7−→ (fw,u0
(a0), . . . , fw,u|u|−1

(a|u|−1))).

The quasi-inverse equivalence from Alg(BS) to Alg(HS) is the functor

Fb,h which to a Bénabou algebra A assigns the Hall algebra Fb,h(A) that

has

1. As underlying S? × S-sorted set (Aw,(s))(w,s)∈S?×S , and

2. As structure of Hall algebra on (Aw,(s))(w,s)∈S?×S that defined as

(πw
i )Fb,h(A) = (πw

i )A,

ξ
Fb,h(A)
u,w,s (a, a0, . . . , a|w|−1) = a ◦u,w,s 〈a0, . . . , a|w|−1〉u,w;

and which to a homomorphism f : A // B of Bénabou algebras assigns

the bi-restriction of f to Fb,h(A) and Fb,h(B).

Next, for a Bénabou algebra A, we prove that A and Fh,b(Fb,h(A)) are

isomorphic. Let f : A // Fh,b(Fb,h(A)) be the S? × S?-sorted mapping

defined, for (u,w) ∈ S? × S? and a ∈ Au,w, as

a 7→ ((πw
0 )A ◦ a, . . . , (πw

|w|−1)
A ◦ a).

The definition is sound because, for a ∈ Au,w, we have that (πw
i )A ◦ a ∈

Fb,h(A)u,wi
, hence ((πw

0 )A ◦ a, . . . , (πw
|w|−1)

A ◦ a) ∈ Fh,b(Fb,h(A))u,w. Thus

defined f is a homomorphism, since we have, on the one hand, that

f((πw
i )A) = (π

(wi)
0 ◦ πw

i )

= (〈π
(wi)
0 〉(wi),(wi) ◦ πw

i ) (by B4)

= (〈π
(wi)
0 ◦ (〈π

(wi)
0 〉 ◦ πw

i )〉w,(wi)) (by B3)

= (〈π
(wi)
0 ◦ πw

i 〉w,(wi)) (by B2 and B5)

= (πw
i ) (by B3)

= (πw
i )Fh,b(Fb,h(A)),
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on the other hand, that

f(〈a0, . . . , a|w|−1〉
A
u,w) = ((πw

0 )A ◦ 〈a0, . . . , a|w|−1〉
A
u,w, . . . ,

(πw
|w|−1)

A ◦ 〈a0, . . . , a|w|−1〉
A
u,w)

= (ξFb,h(A)((πw
0 )Fb,h(A), a0, . . . , a|w|−1), . . . ,

ξFb,h(A)((πw
|w|−1)

Fb,h(A), a0, . . . , a|w|−1))

=〈(a0), . . . , (a|w|−1)〉
Fh,b(Fb,h(A))
u,w

=〈f(a0), . . . , f(a|w|−1)〉
Fh,b(Fb,h(A))
u,w ,

and, lastly, that

f(b ◦A a) = ((πw
0 )A ◦ (b ◦ a), . . . , (πw

|w|−1)
A ◦ (b ◦ a))

= ((πw
0 )A ◦ b ◦ 〈a0, . . . , a|w|−1〉, . . . ,

(πw
|w|−1)

A ◦ b ◦ 〈a0, . . . , a|w|−1〉)

= (f(b0) ◦ 〈a0, . . . , a|w|−1〉, . . . ,

b(b|w|−1) ◦ 〈a0, . . . , a|w|−1〉)

= (ξFb,h(A)(f(b0), f(a0), . . . , f(a|w|−1)), . . . ,

ξFb,h(A)(f(b|w|−1), f(a0), . . . , f(a|w|−1)))

= f(b) ◦Fh,b(Fb,h(A)) f(a).

Reciprocally, let g : Fh,b(Fb,h(A)) // A be the S? ×S?-sorted mapping

defined, for (u,w) ∈ S? × S? and b ∈ Fh,b(Fb,h(A)), as

b 7→ 〈b0, . . . , b|w|−1〉
A
u,w.

The definition is sound because, for b = (b0, . . . , b|w|−1) ∈ Fh,b(Fb,h(A)), we

have that bi ∈ Fb,h(A)u,wi
, hence bi ∈ Au,(wi), therefore 〈b0, . . . , b|w|−1〉

A ∈

Au,w. Thus defined it is easy to prove that g is a homomorphism.

Now we prove that the homomorphisms f and g are such that g◦f = idA

and f ◦ g = idFh,b(Fb,h(A)). On the one hand, if a ∈ Au,w, then, by B3, we

have that

〈(πw
0 )A ◦ a, . . . , (πw

|w|−1)
A ◦ a〉 = a,

hence g ◦ f = idA. On the other hand, if b ∈ Fh,b(Fb,h(A)), then gu,w sends

b to 〈b0, . . . , b|w|−1〉
A
u,w, and fu,w sends 〈b0, . . . , b|w|−1〉

A
u,w to

((πw
0 )Fh,b(Fb,h(A)) ◦ 〈b0, . . . , b|w|−1〉

A
u,w, . . . ,

(πw
|w|−1)

Fh,b(Fb,h(A)) ◦ 〈b0, . . . , b|w|−1〉
A
u,w),
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but this last coincides with

((πw
0 )Fh,b(A) ◦ 〈b0, . . . , b|w|−1〉

A
u,w, . . . , (πw

|w|−1)
Fh,b(A) ◦ 〈b0, . . . , b|w|−1〉

A
u,w),

thus, by the axiom B1, we have that this, in its turn, coincides with

〈b0, . . . , b|w|−1〉
A
u,w,

therefore fu,w ◦ gu,w(b) = b. From which we can assert that f ◦ g =

idFh,b(Fb,h(A)).

Finally, for a Hall algebra A we have that A and Fb,h(Fh,b(A)) are

identical, because a ∈ Aw,s iff a ∈ Fh,b(A)w,(s) iff a ∈ Fb,hFh,b(A)w,s. �

Corollary 3.7. There exists an equivalence between the category

Alg(HS) and the category BThf(S).

In the following proposition, for a set of sorts S, we state some relations

among the equivalence between the categories Alg(HS) and Alg(BS), the

adjunctions THS
a GHS

and TBS
a GBS

, and the adjunction
∐

1×GS
a

∆1×GS
determined by the mapping 1× GS from S? × S to S? × S? which

sends a pair (w, s) in S? × S to the pair (w, (s)) in S? × S?. From these

relations we will get as an easy, but interesting, corollary, that, for every

S? ×S-sorted set Σ, TBS
(
∐

1×GS
Σ), the free Bénabou algebra on

∐
1×GS

Σ,

is isomorphic to BTerS(Σ).

Proposition 3.8. Let S be a set of sorts. Then for the diagram

SetS?×S Alg(HS)

SetS?×S? Alg(BS)

oo
GHS

>

THS

//OO

∆1×GSa
∐

1×GS

��

OO

Fb,h≡Fh,b

��oo
GBS

>

TBS

//

we have that ∆1×GS
◦ GBS

= GHS
◦ Fb,h and TBS

◦
∐

1×GS

∼= Fh,b ◦ THS
.

Proof. The equality ∆1×GS
◦GBS

= GHS
◦ Fb,h follows from the defini-

tions of the functors involved. Then, being TBS
◦
∐

1×GS
and Fh,b ◦THS

left

adjoints to the same functor, we can assert that TBS
◦
∐

1×GS

∼= Fh,b ◦THS
.

�
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Corollary 3.9. Let Σ be an S-sorted signature. Then the free Bénabou

algebra TBS
(
∐

1×GS
Σ) on

∐
1×GS

Σ is isomorphic to the Bénabou algebra

BTerS(Σ) for (S,Σ).

Proof. It follows after BTerS(Σ) = Fh,b(HTerS(Σ)). �

If we agree that EqB(Σ) denotes BTerS(Σ)2, then the congruence gen-

erated in BTerS(Σ) by a subfamily E of EqB(Σ) can be characterized as

follows.

Proposition 3.10. Let E be a sub-sorted set of EqB(Σ). Then

CgBTerS(Σ)(E) is the smallest subfamily E of BTerS(Σ) that contains E and

is such that, for every u,w, x ∈ S? satisfies the following conditions:

1. Reflexivity. For every P ∈ BTerS(Σ)w,u, (P,P) ∈ Ew,u.

2. Symmetry. For every P, Q ∈ BTerS(Σ)w,u, if (P,Q) ∈ Ew,u, then

(Q,P) ∈ Ew,u.

3. Transitivity. For every P, Q, R ∈ BTerS(Σ)w,u, if (P,Q), (Q,R) ∈

Ew,u, then (P,R) ∈ Ew,s.

4. Product compatibility. For every P, Q ∈ BTerS(Σ)u,w, if, for every

i ∈ |w|, (Pi, Qi) ∈ Eu,(wi), then (〈P0, . . . , P|w|−1〉, 〈Q0, . . . , Q|w|−1〉) ∈

Eu,w.

5. Substitutivity. For every P, Q ∈ BTerS(Σ)u,x and

M,N ∈ BTerS(Σ)x,w, if (P,Q) ∈ Eu,x and (M,N ) ∈ Ex,w, then it

happens that (M◦ P,N ◦Q) = (P ] ◦M,Q] ◦ N ) ∈ Eu,w.

Next we define two pairs of order preserving mappings, in opposite

directions, between the ordered sets Sub(EqH(Σ)) and Sub(EqB(Σ)) that

will allow us to determine the exact relation that there exists between the

category Sub(EqH(Σ)) and the category Sub(EqB(Σ)) in the category Adj

of categories and adjunctions.

Proposition 3.11. Let Σ be an S-sorted signature. Then the mappings

H, D from Sub(EqB(Σ)) into Sub(EqH(Σ)) defined, for every sub-sorted set

E of EqB(Σ), respectively, as

H(E) = ({(P,Q) ∈ EqH(Σ)w,s | (P,Q) ∈ Ew,(s)})(w,s)∈S?×S ,

D(E) =

({
(P,Q) ∈ EqH(Σ)w,s

∣∣∣∣
∃(R,S) ∈ Ew,u, ∃i ∈ u−1[s],

(P,Q) = (Ri, Si)

})

(w,s)∈S?×S

,
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and the mappings I, B from Sub(EqH(Σ)) into Sub(EqB(Σ)) defined, for

every sub-sorted set E ′ of EqH(Σ), respectively, as

I(E ′) =

({
(P,Q) ∈ EqB(Σ)w,u

∣∣∣∣
∃s ∈ S such that

u = (s) & (P,Q) ∈ E ′
w,s

})

(w,u)∈S?×S?

,

B(E ′) = ({ (P,Q) ∈ EqB(Σ)w,u | ∀i ∈ |u| ((Pi, Qi) ∈ E ′
w,ui

) })(w,u)∈S?×S?,

are order preserving. Moreover, H ◦ I = D ◦ I = H ◦ B = D ◦ B =

idSub(EqH(Σ)) and, for every E ⊆ EqH(Σ) and E ′ ⊆ EqB(Σ), we have that

D(E) ⊆ E ′ iff E ⊆ B(E ′) and I(E ′) ⊆ E iff E ′ ⊆ H(E), hence D a B

and I a H. Finally, because the composite adjunction D ◦ I a H ◦ B

is the identity adjunction, we conclude that Sub(EqH(Σ)) is a retract of

Sub(EqB(Σ)) in the category Adj of categories and adjunctions.

After this we prove, for an S-sorted signature Σ, that there is an iso-

morphism between the lattices Cgr(HTerS(Σ)) and Cgr(BTerS(Σ)).

Proposition 3.12. Let Σ be an S-sorted signature. Then the congru-

ence lattices Cgr(HTerS(Σ)) and Cgr(BTerS(Σ)) are isomorphic.

Proof. If E is a congruence on HTerS(Σ), then we have that

CgBTerS(Σ)(B(E)) = B(CgHTerS(Σ)(E))

is included in B(E) and B(E) ∈ Cgr(BTerS(Σ)).

Reciprocally, if E is a congruence on BTerS(Σ), then CgHTerS(Σ)(H(E))

is included in H(CgBTerS(Σ)(E)), which in its turn is included in H(E), and

H(E) is a congruence on HTerS(Σ). But, because H◦B = idSub(EqH(Σ)), we

only have to verify that, for every congruence E on BTerS(Σ), B(H(E)) =

E .

If (P,Q) ∈ B(H(E))u,w, then, for every i ∈ |w|, (Pi, Qi) ∈ H(E)u,wi
,

hence (Pi, Qi) ∈ Eu,(wi) and (P,Q) ∈ Eu,w, thus B(H(E)) ⊆ E .

If (P,Q) ∈ Eu,w, then, for every i ∈ |w|, (Pi, Qi) ∈ Eu,(wi), hence

(Pi, Qi) ∈ H(E)u,wi
and (P,Q) ∈ B(H(E))u,w, thus E ⊆ B(H(E)). �

From this it follows immediately the following

Corollary 3.13. Let Σ be an S-sorted signature. Then the algebraic

congruence lattice Cgr(BTerS(Σ)) is isomorphic to the algebraic lattice

of fixed points of CnΣ, i.e., the algebraic lattice of the finitary equational

theories for S is isomorphic to the algebraic lattice of the congruences on

the Bénabou algebra BTerB(Σ).
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