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EXTENSIONS OF INTUITIONISTIC LOGIC
WITHOUT THE DEDUCTION THEOREM:

SOME SIMPLE EXAMPLES

A b s t r a c t. We provide some illustrations of consequence re-

lations extending that associated with intuitionistic propositional

logic but lacking the Deduction Theorem, together with a discus-

sion of issues—of some interest in their own right—raised by these

examples. There are two main examples, with some minor varia-

tions: one in which the language of intuitionistic logic is retained,

and one in which this language is expanded.

.1 Introduction

A consequence relation ` over a language one of whose connectives is the

binary → is said to satisfy the Deduction Theorem when the following

condition is met for all sets of formulas Γ (of that language) and formulas

A,B:
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(DT) If Γ, A ` B then Γ ` A → B.1

The use of the phrase ‘Deduction Theorem’ to describe this behaviour is

based on a special case (or special range of cases), namely when ` has been

defined on the basis of a Hilbert-style axiom system, and understood to

mean that the formula on the right can be obtained by successive applica-

tions of the system’s rules from those on the left together with the axioms.

When Γ ` C for a ` so understood, a sequence of formulas terminating in

C each of whose earlier members is an axiom, an element of Γ or the result

of applying a rule to still earlier members is called a deduction of C from Γ

(on the basis of the given axiom system). The latter parenthesis we omit

from this formulation of the procedure:

(*) Γ ` C iff there is a deduction of C from Γ.

Now, although we use the phrase ‘Deduction Theorem’ in our title, it is

not quite appropriate to what is really the more general condition (DT),

a condition satisfied by consequence relations that have been defined syn-

tactically in quite different ways, or consequence relations specified entirely

semantically – ‘not quite appropriate’ because there is no appeal in these

cases to a deduction as a witness à la (*) for the claim that Γ ` C. (For

convenience we will help ourselves to a number of locutions with the same

origin, generalized to apply in the case of consequence relations other than

as provided by (*), such as talk of the ‘theorems’ of ` for formulas A such

that ` A.)

Among the ‘different ways’ we have in mind here are proof systems

which manipulate sequents using sequent-to-sequent rules (by contrast with

the formula-to-formula rules of the Hilbert approach). For present purposes

we take sequents to be pairs 〈Γ, C〉 in which Γ is a finite set of formulas and

C a formula, though of course many alternative conceptions are possible,2

and for greater suggestiveness we write such a pair in the notation ‘Γ � C’

1We presume familiarity with the general notion of a consequence relation (see for

example [6], p.5, conditions (1), (2) and (3)), and avail ourselves of the liberties usually

taken with the “`” notation, writing “Γ, A ` B” for “Γ∪{A} ` B”, “` C” for “∅ ` C”,

“A a` B” for “A ` B and B ` A”, etc. The object-languages under consideration in

what follows differ only in respect of primitive connectives, all sharing a common basis

in a countable supply of propositional variables (sentence letters) p1, . . . , pn, . . ., three of

which we shall write as p, q, r. (The letter s is reserved for use as a variable ranging over

substitutions.)
2We could, for example, allow Γ to be an infinite set of formulas, or – see the following
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following the example set by Blamey in, e.g., [5], Section 7. If amongst the

rules under which the set of provable sequents is closed are the structural

rules of weakening (also called thinning or monotonicity), cut (or transitiv-

ity), and identity (or reflexivity, the zero-premiss sequent-to-sequent rule:

A � A), then the relation ` defined by (**), in which ‘provable’ means

‘provable in the given proof system’:

(**) Γ ` C iff for some finite Γ0 ⊆ Γ, the sequent Γ0 � C is provable

is a (finitary) consequence relation.3 If the proof system is a sequent calcu-

lus proper (or ‘Gentzen system’), in other words, with all the operational

rules inserting logical vocabulary either on the left or on the right of the

�, then the consequence relation induced by the above definition will typ-

ically satisfy (DT) in view of the usual rule for inserting → on the right.

If it is, instead, a natural deduction system, i.e., has operational rules in-

troducing or eliminating logical vocabulary specifically on the right of the

�, possibly with the concomitant disappearance of formulas from the left

(‘discharge of assumptions’), then (DT) reflects the typical workings of an

→-introduction or ‘Conditional Proof’ rule.4 And so on.

In the non-axiomatic contexts just sampled it is, as already remarked,

somewhat misleading to unpack the abbreviation (DT) to ‘Deduction The-

orem’, but the terminology has stuck, and indeed been extended (e.g. in

[7] and references therein) to cover the two-way form, the ‘Deduction De-

tachment Theorem’ or (DDT), which itself is sometimes called simply the

Deduction Theorem (e.g. in [10] and earlier work by Czelakowski and

many others):

(DDT) Γ, A ` B if and only if Γ ` A → B.

note – not a set of formulas at all; we could also allow in place of a single formula a

right, multiple or empty right-hand sides. (The corresponding variation on the notion

of a consequence relation goes under the name “generalized consequence relation” in our

discussion at the end of this section.)
3We are working with the notion of sequent introduced above, with sets of formulas

on the left of the separator � rather than, sequences or again multisets of formulas, as

is more common especially in sequent calculus proof systems; for those formulations,

“Γ0 ⊆ Γ” in (**) would be replaced by “Γ0, all formulas appearing in which belong to

Γ”.
4As we are envisaging things here, the sequent calculus rule (“→ Right”) for inserting

an impliction on the right is the rule as the natural deduction →-introduction rule; this

rule appears as (††) at the start of Section 3 below.
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It is a familiar fact that the ‘if’ direction of (DDT) is satisfied by a con-

sequence relation ` just in case for all formulas A,B, in the language of

`, we have A,A → B ` B, while the ‘only if’ direction of (DDT), i.e.,

(DT) itself, does not admit of any such unconditional reformulation. By

an extension of a consequence relation ` we mean any `′, not necessarily

over the same language as `, for which `⊆`′.5 No less familar than the

fact just cited is the following corollary: if a consequence relation satisfies

the ‘if’ direction of (DDT) then so does any extension in the same lan-

guage of that consequence relation, while the corresponding claim for (DT)

itself fails. In more detail: let us call a consequence relation ` substitution-

invariant when Γ ` A implies s(Γ) ` s(A) for all formulas Γ ∪ {A} of the

language of ` and all substitutions s over that language.6 We can drop the

italicized “in the same language” proviso from the previous formulation by

restricting attention to substitution-invariant consequence relations, which

have in any case always been regarded as the main candidates to deserve

the title of ‘logics’ when logics are thought of as consequence relations:

(1) if the right-to-left (i.e., “detachment”, or Modus Ponens) direction of

(DDT) is satisfied by a consequence relation ` then it is also satisfied by any

5In the usage of some authors, e.g., Blok and Pigozzi (see [6], p.6), the term ‘extension’

is reserved for the case in which `′ has the same language as `. The present understanding

of ‘extension’, however, has considerable currency: consider, for example, the distinction

between conservative and non-conservative extensions, a distinction arising only when the

‘extending’ logic is cast in a language which (considered as an algebra) is an expansion of

the language of the original logic. Of course, when the two languages differ, it can only

be because the language of the extending logic has some vocabulary additional to that

in the language of the extended logic.
6s(Γ) is {s(C) |C ∈ Γ}. Substitution-invariant consequence relations are often called

structural consequence relations. However, we wish to use the same terminology here

as in the case of rules—see Section 2—where the terminology of substitution-invariance

is greatly preferable to that of structurality because of a conflict in the latter case with

Gentzen’s notion of a structural (as opposed to operational) rule, already deployed in

Section 1 à propos of weakening, etc. (A substitution-invariant rule is a rule with the

feature that any substitution instance of an application of the rule is itself an application

of the rule. The terminology of invariance under substitutions is taken from Mints [33].

A susbtitution-invariant consequence relation is not at all the same as what several Polish

writers – see, e.g., [14] – call an invariant consequence relation, which is one for which s(A)

is a consequence of A, for all formulas A of the relevant language and all substitutions

s.) We retain, however, the phrase ‘structural completeness’ and the like, below, which

echoes this connection with substitutions, since it is so well established and is unlikely

to give rise to any confusions.
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substitution-invariant extension of `, while (2) the same cannot be said of

the left-to-right direction, (DT), of (DDT). In particular, Rautenberg [40]

stressed that intermediate consequence relations, by which is meant those

substitution-invariant ` such that `IL ⊆`⊆`CL, need not satisfy (DT).7

(Here `IL and `CL are the consequence relations of intuitionistic and clas-

sical propositional logic respectively.) In what follows we will illustrate this

possibility with two reasonably simply described examples. The first, which

will occupy us in Section 2 (where it appears in Corollary 2.3), concerns

the usual (shared) language of `IL and `CL.8 The second example, pre-

sented in Section 3 (where it appears as Example 3.3, with a variation on

the theme at Example 3.8), involves an expansion of the implicational frag-

ment of this language by one additional connective and so does not strictly

count as an intermediate consequence relation by the above definition. It

does, however, indicate in a rather concrete way how (DT) can fail even

when → behaves as `IL demands. Further, the substitution-invariant con-

sequence relation we use to illustrate this possibility has a straightforward

description in terms of Kripke models. Each of Sections 2 and 3 ends with

7Our usage follows that of [40] and contrasts, e.g., with that of [11], which does

not require intermediate consequence relations to be substitution-invariant, but does

require them to satisfy (DT). Taking a superintuitionistic consequence relation to be

any substitution-invariant extension of `IL in the same language or a fragment thereof,

and calling ` consistent when for some A, 6` A (equivalently, when ` 6= ℘(L) × L, L

being the language of `) the classes of consistent superintuitionistic consequence relations

and intermediate consequence relations coincide for any fragment containing →, which

will be the case for all fragments under consideration here—with the exception of those

mentioned in the Digression following Corollary 2.3 below or alluded to in note 7—in

view of our interest in (DT). Such observations go back to work by Tarski in the 1930s

in which he showed that the implicational prerequisites for having classical logic as the

only Post-complete extension can be reduced from those for intuitionistic implication to

those for BCK logic. See [12] for a pleasant exposition in the pure implicational case and

[4] for discussion and references to some other fragments. (The notion of a fragment will

be formally defined below, after Proposition 2.1.) Because we are considering logics as

consequence relations, the claim that we fall into inconsistency as soon as we fail to be

included in classical logic has to be modified for certain atheorematic fragments – i.e.,

fragments in which the empty set has no (intuitionistic) consequences (these being the

‘purely inferential’ consequence relations of Wójcicki [54]) – where we can instead arrive

at the largest atheorematic consequence relation `, for which Γ ` A for all non-empty

Γ): not quite the inconsistent consequence relation because of the italicized proviso.
8To avoid impoverishing the language of `IL here we presume the language of `CL

to have all of conjunction (∧), disjunction (∨), implication (→) and either negation (¬)

or the Falsum (⊥) as primitive.
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a postscript remarking on the extent to which an example similar to the

main case there given for a `⊇`IL without (DT) can be furnished for some

`⊇`CL.

Let us recall another example of the phenomenon with which we are

concerned here. Like (DDT), the biconditional constraint governing dis-

junction in intuitionistic (as well as classical) logic, namely that for all

Γ, A,B, we have Γ, A ∨ B ` C if and only if Γ, A ` C and Γ, B ` C.

Again one direction is guaranteed to be inherited by extensions (of `, in

the same language), here the “only if” direction, since this is equivalent (as

a condition on consequence relations) to the unconditional requirement(s)

that A ` A ∨B and B ` A ∨B, while the “if” direction is irreducibly con-

ditional and has no such guaranteee of inheritance under extensions.9 As

is well known, if one uses generalized (“multiple-conclusion”) consequence

relations,10 with the corresponding biconditional condition Γ, A ∨ B ` ∆

if and only if Γ, A ` ∆ and Γ, B ` ∆, then there is a reduction to an

equivalent unconditional form for the “if” direction (namely A∨B ` A,B)

and inheritance to extensions – now generalized consequence relations ex-

tending the given `, that is – is secured. Indeed it is also well known and

easy to see that the (DT) half of (DDT), reformulated so as to support

an arbitrary set (corresponding to the above “∆”) of side-formulas on the

right, can be similarly reduced to a combination of the unconditional forms

(namely B ` A → B and ` A, A → B) just as the detachment half reduces

to A,A → B ` B and so is inherited by extensions. We are concerned

with consequence relations, however, and not with generalized consequence

relations – especially since this generalized version of (DT) fails for intu-

itionistic logic when the “commas on the right” are, as for the above foray

into multiple succedents for the treatment of disjunction, interpreted in

such a way as to make them equivalent to (iterated) disjunctions.

9Rautenberg [40] considers the satisfaction amongst intermediate logics of this con-

ditional form, or a closely related requirement he calls monotonicity (B ` C implies

A∨ B ` A∨ C: no relation to monotonicity in the weakening/thinning sense) Note that

for superintuitionistic `, (DT) implies the satisfaction of the above condition, since if

Γ, A ` C and Γ, B ` C (DT) delivers Γ ` A → C and Γ ` B → C, which we can (thin

and) “cut” with A → C, B → C ` (A ∨ B) → C to conclude that Γ ` (A ∨ B) → C, and

then by appeal to Detachment, Γ, A ∨ B ` C.
10See, e.g., Segerberg [46] for details.
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.2 The Structural Completion Example

The idea of structural completeness, i.e., of the derivability of all admissible

substitution-invariant rules, has two incarnations: as a property of conse-

quence relations and as a property of proof systems – the latter being that

most directly suggested by the ‘rules’ formulation just given. This con-

trast cross-cuts another distinction which we shall be expressing with the

terminology of “weak” vs. “strong”. Taking the former (i.e., consequence

relations) case first, we use the following terminology.11 A consequence

relation ` is strongly structurally complete (or “structurally complete in

the infinitary sense”) just in case for every set Γ ∪ {B} of formulas of the

language of `, (1), below, implies (2), and weakly structurally complete (or

“structurally complete in the finitary sense”) when the same implication

holds for all finite Γ:

(1) For every substitution s for which we have ` s(A), for each A ∈ Γ, we

have ` s(B);

(2) Γ ` B.

We say “weakly structurally incomplete” (“strongly structurally incom-

plete”) to mean “not weakly structurally complete” (“not strongly struc-

turally complete”). Thus while strong structural completeness implies weak

structural completeness (and not in general conversely), it is weak struc-

tural incompleteness that implies strong structural incompleteness.

Although the notion of strong structural completeness as applied to

consequence relations is what we need for our example, which appears as

Corollary 2.3 below, we pause to distinguish the other notion, structural

completeness as applied to proof systems. Take for example proof sys-

tems in which the objects proved are sequents in the sense of Section 1

11The finitary/infinitary terminology mentioned parenthetically in what follows is

taken from Makinson [29]; Rautenberg [39] uses “strong structural completeness” for

(what amounts to) the infinitary sense, somewhat by analogy with talk of strong seman-

tic completeness, and we have introduced “weak” for the contrasting case. Tsitkin [52]

refers to these as “modus completeness” and “structural completeness”, the former based

on the use of the phrase “modus rule” for what [28] calls a sequential rule. (Warn-

ing : sequential rules in this sense are those whose applications are precisely the transi-

tions from s(A1), . . . , s(An) to s(B) for arbitrary substitutions s, and some fixed sequent

A1, . . . , An � B – the latter explaining the terminology, which should accordingly not be

confused with what we are calling sequent-to-sequent rules.)
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above. Certain primitive sequent-to-sequent rules are laid down12 and we

assume familiarity with what it takes for another such rule to be deriv-

able from any given set of such rules, as well as with the fact that not

every rule under which the set of provable sequents is closed – every ad-

missible rule for the proof system, that is – need be derivable. When a

substitution-invariant rule has this “admissible but not derivable” status

for a particular proof system, the proof system is structurally incomplete.

As in the consequence relations case, there is a distinction between strong

and weak structural completeness to be made, the strong version meaning

that every admissible substitution-invariant rule, even including infinitary

rules (rules with infinitely many premisses, that is), is derivable, and the

weak version requiring this only of the finitary admissible rules. The cut

rule for the cut-free version of the Gentzen system LJ was an example

cited in the early literature on rules (namely in [53]) of a rule that was

admissible though not derivable; since this is a substitution-invariant fini-

tary rule (extending the idea of a substitution instance from formulas to

sequents in the obvious way), the cut-free version of LJ is a weakly struc-

turally incomplete proof system.13 In this case, the consequence relation

obtained by the definition (**) from Section 1 is `IL and this is (likewise)

weakly structurally incomplete. Such a coincidence in respect of structural

completeness between a proof system and structural completeness of the

associated consequence relation is not to be expected in general, however,

as we see if we restrict attention to the implicational subsystem of cut-free

LJ . In this case, the proof system remains weakly structurally incomplete

(since the cut rule is still a substitution-invariant admissible rule which is

not derivable), while the induced consequence relation in this case is weakly

structurally complete. (The weak structural incompleteness of the full `IL

and weak structural completeness of its → fragment14 are well known; see

Proposition 2.2 and Theorem 2.6(ii) below. On the other hand, the ap-

plication of the structural (in)completeness terminology to proof systems

12Here we subsume any ‘initial sequents’ under this rubric, as 0-premiss sequent-to-

sequent rules, as in the case of the schema A � A in Section 1.
13Strictly speaking, Wang [53] is concerned (in Theorem 2 and the paragraph preceding

it on p.194 of [53]) with formula-to-formula rules which resemble the sequent-calculus

rules in the respects under consideration here. Wang, like many of the Polish writers we

cite, uses the word “permissible” in place of “admissible”.
14An explanation of this talk of fragments, in case one is needed, follows Proposition

2.1 below.
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with substitution-invariant admissible non-derivable sequent-to-sequent –

as opposed to formula-to-formula – rules is not widespread.)

The connection between structural completeness as applied to proof

systems and structural completeness as applied to consequence relations

arises from the special case in which the proof system under consideration

is an axiom system and so its rules are formula-to-formula rules, in which

case saying that the proof system is (e.g., weakly) structurally complete is

equivalent to saying that a certain consequence relation is (weakly) struc-

turally complete, namely the consequence relation defined on the basis of

the given axiomatization by the procedure summarized in (*) in Section 1

above.15

We return to the concept of structural completeness as it applies to con-

sequence relations. The structural completion `
sc

of a consequence relation

` is defined thus:

(†) Γ `
sc

B iff for every substitution s with ` s(A), for each A ∈ Γ, we

have ` s(B).

(More explicitly, given the quantification over arbitrary Γ we might call

this, as is done in [39], the “strong structural completion” of `.) Note that,

so defined, `
sc

is always substitution-invariant, even if ` is not.16 Focussing

on the case of substitution-invariant `, we have the following (see [29] and

[39] for (ii), parts (i) and (iii) being even more immediate consequences of

(†)):

15Here we ignore for simplicity the distinction amongst formula-to-formula rules

between—to use Smiley’s terminology—rules of proof and rules of inference (provabil-

ity rules and consequence rules, respectively, in the terminology of Gabbay [16], p.9),

certainly necessary to do full justice to issues surrounding the Deduction Theorem: See

[49], note 3 and also p.123.
16Rybakov ([41], p.89) calls the structural completion of a consequence relation its

“admissible closure” and writes “`Ad” where we write “`sc” (More accurately, Rybakov

does this for consequence relations defined on the basis of axiom systems via the definition

(*) of Section 1. Most of [41] conducts the discussion of these issues in terms of formula-

to-formula rules—admissible or derivable—for proof systems, rather than in terms of

consequence relations, the latter only entering the picture briefly in §1.7.) Wojtylak [55],

as with most in the Polish tradition, works with consequence operations rather than

consequence relations, where an analogous notion of structural completion is available,

denoted in [55] by Cσ for any given consequence operation C.
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Proposition 2.1. For any substitution-invariant consequence

relation `:

(i) ` A if and only if `
sc

A, for all formulas A.

(ii) `
sc
is the largest substitution-invariant consequence relation in the

language of ` meeting the condition mentioned in (i) (i.e., agreeing with `

on the consequences of the empty set).

(iii) ` is strongly structurally complete if and only if `=`
sc
, and weakly

structurally complete if and only if for all A1, . . . , An, B we have

A1, . . . , An ` B just in case A1, . . . , An `
sc

B.

To proceed further we need the notion of a fragment. The X0-fragment

of a (propositional) language L having for its set of primitive connectives

X ⊇ X0 comprises those formulas that can be constructed using only the

connectives X0. Call the set of such formulas L0. If, in such a case, ` is

a consequence relation over L, then the X0-fragment of ` is defined to be

` ∩ (℘(L0) × L0).
17

The weak structural incompleteness of `IL was known from examples

supplied by Harrop before the terminology of structural (in)completeness

had even been introduced.18 Our example in the proof below is taken from

Mints [33], as is the proof itself.19

17It is sometimes also convenient to speak of the X0-fragment of a language or con-

sequence relation when X0 contains connectives defined rather than primitive, in which

case they are taken as new primitives in the language L0. Thus one may speak (as for

example below, in the paragraph following the proof of Theorem 2.6) of the {↔,→}

fragment of `IL even when (as here) the language of the latter consequence relation has

not been formulated with ↔ as a primitive connective.
18As far as the author is aware the first occurrence in English of this terminology is in

Pogorzelski [35]. Dummett, whose [13] appeared two years later, though in preparation

over the previous decade, had had to invent his own terminology (“smooth” for struc-

turally complete: see [13], p.436). The present author does not find congenial Dummett’s

way of putting his formal definition in informal English, however, according to which the

smoothness consists in having every rule of proof be a rule of inference, because the deriv-

able/admissible distinction arises for rules of proof themselves, though we are ignoring

these refinements for present purposes, as remarked in note 15.
19Further examples of intuitionistically admissible though not derivable (formula-to-

formula) rules may be found in [41], esp. Examples 3.5.19 (Harrop’s Rule), 3.5.21

(Scott’s Rule), and 3.51 (a strengthening of Scott’s Rule), with Mints’s Rule appearing

as Example 3.5.29. Rybakov also has some neat techniques for establishing admissibility,

and [41] further provides a general discussion of the topic, as well as detailed referencess

not included here.
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Proposition 2.2. Any fragment of `IL containing disjunction and im-

plication (and thus the usual full language with →, ∨, ∧, and ¬ or ⊥) is

weakly structurally incomplete.

Proof. By Proposition 2.1(iii) it suffices to exhibit any divergence

between `IL and `
sc

IL in respect of the consequences of a finite set, which

we do thus:

(1) (p → r) → (p ∨ q) `
sc

IL ((p → r) → p) ∨ ((p → r) → q), but

(2) (p → r) → (p ∨ q) 6`IL ((p → r) → p) ∨ ((p → r) → q).

(1) may be verified by a consideration of any possible cut-free LJ proof of

a sequent of the form � (A → C) → (A ∨ B), checking that such a proof

is available only if there is also a proof of � ((A → C) → A) ∨ ((A →

C) → B). (2) can be checked using the Kripke semantics for intuitionistic

logic, or alternatively by noting the absence of a cut-free LJ proof (for the

corresponding sequent). 2

Let us remark that, by a frequently employed device (cf. note 37,

esp. formulation (2)), we can eliminate the disjunction in the conclusion—

though not that in the premiss—of Mints’s Rule, replacing the latter, i.e.:

(A → C) → (A ∨ B)

((A → C) → A) ∨ ((A → C) → B)

with:

(A → C) → (A ∨ B)

((A → C� → A) → D) → [((A → C� → B) → D) → D]

where we have used dots to cut down on parentheses. Next, the reason for

taking all this interest in `
sc

IL:

Corollary 2.3. `
sc

IL is an intermediate consequence relation not satis-

fying (DT).

Proof. We leave the reader to verify that `
sc

IL is an intermediate conse-

quence relation (i.e., is a substitution-invariant ` such that `IL ⊆`⊆`CL).

For the failure of (DT), recall (from (1) of the proof of Proposition 2.2) that
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(p → r) → (p ∨ q) `
sc

IL ((p → r) → p) ∨ ((p → r) → q).

So if (DT) were satisfied we should have:

`
sc

IL ((p → r) → (p ∨ q)) → [((p → r) → p) ∨ ((p → r) → q)].

But this, via Proposition 2.1(i), would mean we had:

`IL ((p → r) → (p ∨ q)) → [((p → r) → p) ∨ ((p → r) → q)],

and this would contradict (2) of the proof of Proposition 2.2, since `IL

satisfies the ‘detachment’ half of (DDT), as do – we recalled in Section 1 –

all of its substitution-invariant extensions. 2

As a further corollary, we may conclude that `
sc

IL is not an ‘axiomatic

extension’ of `IL, in the sense that there is no set of formulas Θ such that

for all Γ, A we have Γ `
sc

IL A just in case Γ,Θ `IL A. It is not hard to

see that any axiomatic extension of a consequence relation satisfying (DT)

will itself have to satisfy (DT). (For a much stronger result in this vein see

Theorem 3.4 in Wojtylak [55].)

Digression. Mints [33] also has something of a converse to Proposition

2.2, which we can put like this: whenever, for the full consequence relation

`IL of intuitionistic propositional logic, we have A1, . . . , An `
sc

IL B without

having A1, . . . , An `IL B, then both → and ∨ occur in the construction of

the formulas A1, . . . , An, B. This does not imply that the ∨-free and →-free

fragments of `IL are weakly structurally complete, contrary to the following

formulation of Theorem 1, addressing the case of → in Mints [33]: “Every

(finitary) rule admissible in a corresponding fragment of intuitionistic logic

not including → is derivable in intuitionistic logic.”20 Interpreted literally,

this is not correct. Since the intuitionistic and classical {∧,¬}-consequences

of the empty set coincide (by Gödel [17]), we have, where ` is the fragment

of `IL in these connectives, ¬¬p `
sc

p while ¬¬p 6` p. In terms of rules:

the (formula-to-formula) rule of double negation elimination is admissible

but not derivable for the current (→-free) fragment. What Mints evidently

20Here we have adjusted in an inessential way aspects of Mints’s wording to match our

terminology. The author is grateful to Mints for explaining—in the face of such apparent

counterexamples as that from the negation–conjunction fragment, above—what he had

in mind with the talk of structurally (in)complete fragments of intuitionistic logic in [33].
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has in mind is not so much the admissibility of a rule in a fragment of `IL

as the admissibility for full `IL of a rule which can be formulated in the

fragment in question.21 An even more dramatic example is provided by the

pure ¬ fragment of `IL, which, like that of `CL, is atheorematic (in the

sense of note 7); taking ` as this consequence relation, we accordingly have

A `
sc

B for all formulas A,B, though this is not so for ` itself – attesting

to weak structural incompleteness for this fragment of `IL (as well as `CL).

To put the point in terms of (·)sc: one must distinguish, e.g., the structural

completion of the {∧,¬}-fragment of `IL, from the {∧,¬}-fragment of the

structural completion of `IL. According to the former consequence relation

– but not the latter – p is a consequence of ¬¬p. End of Digression .

If we had wanted to illustrate the failure of (DT) in an extension of

minimal logic rather than, as our title promises, intuitionistic logic, using

the structural completion idea, we could have done so more simply than

Corollary 2.3 does. Since minimal logic, conceived as a consequence relation

– and denoted here by `ML – has the same {→,∧,∨} fragment as `IL, the

same example, namely that provided by Mints’s Rule, could be used here to

show that `ML is not structurally complete and its structural completion

fails to satisfy (DT). But there is a simpler example that could be used to

make the same point(s); we presume for definiteness that ¬ is taken as a

primitive connective.

Example 2.4. p,¬p `
sc

ML q since no formula and its negation are prov-

able in minimal logic. Thus since (by contast with `IL) p,¬p 6`ML q, the

consequence relation `ML is not weakly structurally complete (and nor is

its negation–implication fragment). (Cf. Theorem T4 in Tokarz [51], and

the final paragraph of Perzanowski [34].) Also, and more to the point given

our interest in failures of (DT), since we do not have p `
sc

ML ¬p → q (for

instance consider the substitution of p → p for p), (DT) fails for even the

negation–implication fragment of `
sc

ML.

21Results that look similar to Mints’s appear in Latocha [27], though comparison is

complicated by the fact that, unlike Mints, Latocha requires all fragments to contain →,

rendering it impossible even to consider the negation–conjunction case mentioned above.

For the fragments he does consider, however, when Latocha claims (weak) structural

completeness, he means them in the present sense, rather than in Mints’s sense – despite

his crediting some results involving this notion – e.g., Theorem 2 on p.20 of [27]) – to

Mints.
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Putting the structural incompleteness aspect of Example 2.4 in terms of

rules, the substitution-invariant rule licensing the transition from formulas

A and ¬A as premisses to an arbitrary B as conclusion is not just admissi-

ble for minimal logic, though not derivable (in, say, any axiomatization of

minimal logic with Modus Ponens as the sole primitive rule), attesting to

structural incompleteness – the rule is vacuously admissible, in the sense

that there is no substitution s which takes both premisses of the rule to

theorems of the logic. This phenomenon cannot arise for intuitionistic logic.

That is, and now reverting to the consequence relation formulation, when-

ever for A1 . . . An there is no s with `IL s(Ai) for all i (1 ≤ i ≤ n), we have

A1, . . . , An `IL B for every formula B.22 The n = 1 version of this claim

(equivalent to the general form in the presence of ∧) is, in the terminology

of Porte [36] the claim that every s-antithesis is a d-antithesis (for `IL) –

i.e., every formula with no provable substitution instance has every formula

as a consequence; in Perzanowski [34] this is put in terms of linguistic gaps

and omitted formulas, while Tokarz [51] uses the term “counter-thesis”.

(The present A1, . . . , An version, essential for application in the absence of

conjunction, might be thought of as a linguistic gap distributed across the

several formulas involved.)

Having supplied, with Corollary 2.3, the promised example of an in-

termediate consequence relation not satisfying (DT) we close this section

by tidying up one loose end (in Theorem 2.6(ii)) and motivating one as-

pect of the example to be pursued in the next section (in Theorem 2.6(i)).

Both issues concern the implicational fragment of `IL, and we cover them

together in Theorem 2.6, part (i) of which is adapted from Prucnal [37]

(though stated more generally) and part (ii) of which is, as proved here,

22To check this, we show the contrapositive: if A1, . . . , An `IL B for all B, then

a substitution can be found that maps all of the Ai to intuitionistic theorems (`IL-

consequences of ∅, that is). For this purpose, it is most convenient to imagine the

language of `IL to come with constants > and ⊥, though what follows could be reworked

with these replaced by p → p and its negation, respectively. We should then have to

reformulate the appeal to the fact that when Γ ∪ {C} contains only 0-variable formulas,

Γ `IL C iff Γ `CL C. For the proof, then, suppose that for the given A1, . . . , An, we

have A1, . . . , An 6`IL B for some B, so in particular A1, . . . , An 6`IL ⊥. By (a version of)

Glivenko’s Theorem, A1, . . . , An 6`CL ⊥. Thus, for some Boolean valuation v, v(Ai) = T

for each i. Defining sv(pi) = > for pi with v(pi) = T and sv(pi) = ⊥ when v(pi) = F ,

we have `CL sv(Ai), for i = 1, . . . , n. Since sv converts all formulas into variable-free

formulas, we invoke the fact mentioned above, that restricted to such formulas classical

and intuitionistic logic agree, to conclude that `IL sv(Ai) for each i.
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from Wojtylak [55] (following a suggestion by A. Wroński). Although these

results are not new, then, it is convenient for our purposes to see them to-

gether “under one roof” here. Their common prerequisite is what we might

call Prucnal’s Lemma ( = Lemma 4 in [37]):

Lemma 2.5. For any formula A, let sA be the unique substitution sat-

isfying sA(pi) = A → pi for each variable pi. Then we have, where ` is the

implicational fragment of `IL, for all formulas A, B: sA(B) a` A → B.

Proof. For an arbitrary but fixed A, show by induction on the con-

struction of B that sA(B) a` A → B. 2

This lemma of Prucnal’s, used in [37] to show the weak structural com-

pleteness of the implicational fragment of `IL, can be put to the same use

for any implicational intermediate logic, just as Wojtylak [55] uses it to

show (DT) for all such implicational intermediate logics (a result already

established in Wroński [57]):

Theorem 2.6. Let ` be any substitution-invariant extension of the

implicational fragment of `IL, in the same language. Then (i) ` satisfies

(DT), and (ii) ` is weakly structurally complete.

Proof. (i) Suppose that for ` as described, we have Γ, A ` B. By

substitution-invariance, we have sA(Γ), sA(A) ` sA(B). By Lemma 2.5

and the fact that ` extends the implicational fragment of `IL, we have

that C ` sA(C) for each C ∈ Γ, so Γ, sA(A) ` sA(B). By the same

considerations we have that ` sA(A) (since ` A → A) and sA(B) ` A → B,

allowing us to conclude, as desired, that Γ ` A → B.

(ii) Again with ` as described, suppose that A1, ..., An 6` B, with a view

to showing that A1, ..., An 6`
sc

B. Let s = sA1
◦ . . . ◦ sAn

, where the sub-

stitutions sAi
are as in Lemma 2.4 (and ◦ is for composition). Note that

by that Lemma, s(Ak) (k = 1, . . . , n) is intuitionistically equivalent to

A1 → (A2 → . . . (An → Ak) . . .). But for each k, this formula is intuitionis-

tically provable outright (i.e., is an `IL-consequence of ∅), so since these are

formulas in the implicational fragment and ` extends that fragment of `IL,

we have ` s(Ak) in each case. To complete the proof that A1, ..., An 6`
sc

B,

it remains only to show that 6` s(B). Now, by Lemma 2.5 again, the formula

s(B) is `IL- and therefore `-equivalent to A1 → (A2 → . . . (An → B) . . .);

thus ` s(B) would imply A1, ..., An ` B, since ` satisfies the ‘detachment’
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half of (DDT), as remarked in Section 1. That would contradict our initial

supposition that A1, ..., An 6` B; so 6` s(B), and hence A1, ..., An 6`
sc

B. 2

The “weakly” in Theorem 2.6(ii) cannot be replaced by “strongly”. See

[55] for a proof that the implicational fragment of `IL itself is not strongly

structurally complete. On the positive side, we observe (as Prucnal [37]

does) that Lemma 2.5 can be extended beyond the → fragment to include

any connectives which are consequent-distributive according to `IL, where

an n-ary connective # is consequent-distributive according to a consequence

relation ` just in case for all formulas A,B1, . . . , Bn in the language of `,

we have

A → #(B1, . . . , Bn) a` #((A → B1), . . . , (A → Bn)).

Thus, Lemma 2.5 applies to the {→,∧} and {→,↔} fragments of `IL, as

well as to the {→,∧,∨} fragment of the Dummett intermediate logic `LC .

Versions of Theorem 2.6 can accordingly be provided, suitably tailored to

these variant fragments – and with the last case, variant choice of a ‘base’

logic. (Slaney and Meyer [47] offer a further variation of some interest,

for showing weak structural completeness of the implication–conjunction

fragment of the relevant logic R – given a particular understanding of what

rule derivability consists in for this application.)

The example provided by `
sc

IL of an extension of intuitionistic logic not

enjoying the Deduction Theorem is in some ways simple and other ways less

so. It has a simple enough description as the structural completion of the

usual intuitionistic consequence relation, and a simple matrix semantics:

it is the consequence relation determined by the Lindenbaum matrix for

intuitionistic logic (thought of as a set of formulas).23 On the other hand,

the present author at any rate has no idea about what a characterization

of `
sc

IL in terms of Kripke semantics might look like, especially in view

of the failure of (DT); for information on the prospects of providing a

manageable proof system for this consequence relation, see Wojtylak [55]

23See Theorem T3 in Tokarz [51]. This is a countable matrix, so since `IL has no

countable characteristic matrix (Wroński [56]), one could conclude independently of fa-

miliarity with particular counterexamples to structural completeness for intuitionistic

logic that such counterexamples must exist, since these cardinality considerations show

`
sc
IL 6=`IL.
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and Iemhoff [23]. In the next section we shall seek an example without such

complexities.

Postscript on Superclassical Options. Can the example provided in

2.3 of a logic extending `IL though in the same language and not satisfying

(DT) be varied to yield a similar example where the logic to be extended

is not `IL but `CL? Naturally we assume that → is a connective of the

language of `CL in raising this question, and the Post-completeness of

classical propositional logic returns a negative answer, assuming that the

only consequence relations deserving to be considered as logics are those

which are substitution-invariant. There is nevertheless a simple variation

on the (·)sc theme which yields a (non-substitution-invariant) superclassical

consequence relation – an example of some interest in its own right because

of its connection with the notion of structural completeness.

Or perhaps that should read: its claimed connection with the notion of

structural completeness. Bergman [2], begins a discussion of analogues of

the property of structural completeness for quasivarieties (including vari-

eties) of algebras by recapitulating what he takes to be the situation with

this property as it applies to consequence relations which (as above) he does

not require to be substitution-invariant, though he does require them to be

finitary (so the strong/weak distinction does not arise). But he gives a def-

inition of structural completeness (for consequence relations) which itself

makes no reference to substitutions, thus ending up with a very different

property, and whose name no longer merits the ‘structural’ part (see note

6). It does (as noted in [2]) have a Makinson-style ‘maximality’ character-

ization, like that in Proposition 2.1(ii) above. What we shall accordingly

call the Bergman completion of a consequence relation `, and denote by

`
bc

, is the largest consequence relation over the same language as ` which

agrees with ` on the consequences of the empty set. It follows that

Γ `
bc

A if and only if either, for some C ∈ Γ 6` C, or else ` A.

The Bergman complete consequence relations would then be those coincid-

ing with their Bergman completions. Thus, the preceding complaint about

the ‘structural’ terminology in this context notwithstanding, a certain gen-

eralization of structural completeness would subsume the standard notion

as well as admitting this notion as a somewhat degenerate case. Namely:

let ` be a consequence relation and S be a class of substitutions (defined on

the language of `). Then call ` S-structurally complete just in case when-
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ever Γ 6` A there is some s ∈ S with ` s(C) for all C ∈ Γ while 6` s(A).

The usual notion of (strong) structural completeness arises as the case of

S-structural completeness in which S is the set of all subtitutions, while

Bergman completeness is the case in which S contains just the identity sub-

stitution. As to whether some intermediate cases might be of independent

interest, we shall not speculate.

By contrast with the case of structural completions, the Bergman com-

pletion of a substitution-invariant consequence relation will not in general

itself be substitution-invariant. For ` as either `IL or `CL, for example,

we have p `
bc

q since p is neither intuitionistically nor classically provable.

Substitution-invariance would then give p → p `
bc

q, which is not the case

since now the left-hand side is provable but not the right. The Bergman

completion does not lead to what one would normally regard as a logic,

then. But for what it’s worth, we note here that taking ` as `CL gives

us, in the shape of `
bc

, a superclassical consequence relation not satisfying

(DT). For while we have p `
bc

q, we do not have `
bc

p → q. (Recall that

`
bc

always agrees with ` on the consequences of ∅.) That concludes the

main business of this postscript, what follows being a matter of incidental

interest.

To present the above example we did not actually give Bergman’s own

definition of (what he called) structural completeness for a consequence

relation `, which definition ([2], p.61, also [3], p.146), requires ` to satisfy

(a differently notated version of) the following condition, in which we have

used “	” for the relation % between consequence relations over the same

language:

For every `′ 	`, there is some A such that `′ A and 6` A.

While [2] shows that the consequence relations satisfying this condition are

exactly those which are Bergman complete, it is not immediately obvious

that this would coincide with the usual notion of structural completeness,

even if a reference to arbitrary substitutions were reinstated (i.e., if we

passed from S-structural completeness with only the identity map in S,

to the case of S containing all substitutions). Bergman’s and Makinson’s

versions of these concepts would then appear as follows (labelled (B) and

(M)), in which “≡0” (following [2]) stands for the relation of agreeing on

consequences of the empty set; these are to be read as candidate definitions

of structural completeness for a consequence relation `:
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(B) For all substitution-invariant `′: `′≡0 `⇒ not `�`′.

(M) For all substitution-invariant `′: `′≡0 `⇒`′≤`.

While it is obvious that (M), as a condition on `, implies (B), the converse

is not so evident. In response to a query on this matter, Makinson (in

early 1997) kindly showed the present author a proof that (M) and (B) are

indeed equivalent.

.3 Positive Implication with an Additional Constant

Since the formulation of (DT) involves →, we shall need at least this connec-

tive to be present. Could we perhaps manage with no further connectives,

to find an extension of `IL – or rather its implicational fragment – not sat-

isfying (DT)? No: Theorem 2.6(i) rules this out, since we certainly don’t

want to sacrifice substitution-invariance. So we shall have to have at least

one further connective alongside →. We shall be working with the sequent-

to-sequent rule (††) below, corresponding to (DT), which would be called

→-Introduction (or Conditional Proof) in a natural deduction system, and

→-Right in a sequent calculus:

(††)
Γ, A � B

Γ � A → B

Let us say that a sequent holds in a model (U,≤, V )24 when any point in

the model verifying all the formulas on the left of the “�”, verifies that

on the right. What makes the rule (††) preserve, for any given model, the

property of holding in that model, in view of the usual clause for → in the

definition of truth (at a point), is the fact that all formulas are persistent

(or “hereditary”), in the sense of being guaranteed to be true at a point v

in a model whenever true at u in that model, where u ≤ v. In particular,

for an application of the above rule to preserve the property of holding in a

model, what we need is that all the formulas in Γ are in this sense persistent.

Accordingly one might think that the way to deal model-theoretically with

an extension of intuitionistic logic without (DT) is to allow non-persistent

24In calling (U,≤, V ) a model we mean that (U,≤) – the frame of the model – is a

poset, and that V assigns to each propositional variable an upward closed subset of U .

We give more details presently, when considering a slightly different conception of model.
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formulas: then (††) will not be guaranteed to preserve holding in a model

when such formulas are amongst the side-formulas Γ. Thus we might obtain

a simple extension of intuitionistic logic for which (DT) fails by adding a

connective that forms non-persistent compounds.

The idea just sketched does not work out, however. If a formula A is

not persistent then the sequent A � p → A will fail to hold in every model.

But this means that the consequence relation ` defined by (**) in Section 1,

except with the reference to provability replaced by one to holding in each

model in some specified class, will not be a substitution-invariant extension

of `IL, since we will have q ` p → q but not A ` p → A. Thus we must try

another approach.25

Instead of working with models of the above form, we will expand each

model to accommodate a distinguished element, truth of any formula at

which is sufficient for that formula to be true throughout the model. We

arrange this at the level of frames by saying that the new frames will have

the form (U,≤, u0) where (U,≤) is a partially ordered set with least element

u0 (i.e., u0 ∈ U and for all x ∈ U , u0 ≤ x). Models on such frames then

take the form (U,≤, u0, V ), where V assigns to each propositional variable

an upward closed subset of U (securing persistence for the pi). Truth of

a formula A at an element x ∈ U in a model M = (U,≤, u0, V ), written

as “M |=x A”, is defined in the usual way for propositional variables and

implicational formulas, and we shall add to the language a new nullary

connective (sentential constant) Ω to exploit this additional structure:

• M |=x pi iff x ∈ V (pi).

• M |=x A → B iff for all y ∈ U with x ≤ y and M |=y A,

we have M |=y B.

• M |=x Ω iff x 6= u0.

Note that the condition given here for Ω makes this formula (like the

propositional variables and implicational formulas) persistent in the sense

defined above – i.e., its truth at x in a model guarantees its truth at any

y ≥ x.26 (If not, we have x, y, with x ≤ y, Ω true at x but not at y, so

25A concrete example of the kind of substitution failure involved here may be found

in [19], where a logic for combined classical and intuitionistic negation is considered, the

former forming non-persistent compounds, forcing restrictions on rules governing (inter

alia) the latter, giving rise to provable sequents with unprovable susbtitution-instances.
26On the other hand, if we had put “=” for “6=” in this clause, the formula Ω would

only have been persistent in one-element models.
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x 6= u0 while y = u0. Since u0 is a least element, this gives u0 ≤ x ≤ u0,

so by antisymmetry u0 = x: a contradiction.) Recall that we wanted this

persistence property, and will be tracing the failure of (DT), mentioned

below, to a different source (failure of a certain ‘generation theorem’, in

fact).

Now that we have a distinguished point in our models, we take a sequent

to hold in a model (as currently conceived) just in case we do not have all

the formulas on the left true and the formula on the right false at that

point. For the usual language of intuitionistic logic, a sequent’s holding

in every model of the earlier type (i.e., holding throughout each model)

and a sequent’s holding in every model of the current type (i.e. holding

at the distinguished point) are equivalent, and in fact the semantics as

presented in Kripke [25] were closer to the the latter than the former.27

The rule (††) no longer preserves the property of holding in a model, for

models as currently conceived, but it manages to preserve the property of

holding in all models, by an argument that appeals to a well known result28

on generated submodels, for present purposes defined as follows. Given a

model M = (U,≤, u0, V ) with x ∈ U , the submodel of M generated by x,

is the model Mx = (Ux,≤x, x, Vx) where Ux = {y ∈ U |x ≤ y}, and ≤x

and Vx are the restrictions of ≤ and V to Ux. (Note that the generating

point has been promoted to the status of distinguished element here.) Then

for the usual language of `IL, we have, as one shows by induction on the

construction of A:

Theorem 3.1. Let Mx = (Ux,≤x, x, Vx) be the submodel of M =

(U,≤,u0, V ) generated by x ∈ U . Then for any formula A of the language

of `IL, and any y ∈ Ux, we have Mx |=y A if and only if M |=y A.

Corollary 3.2. When restricted to sequents over the language of `IL,

the rule (††) preserves the property of holding in every model (with distin-

guished element).

27In fact, in the initial presentation of the models in [25] there is a distinguished point

but no requirement that every point be accessible to it, and a later observation that

without change to the logic, attention can be restricted to models in which accessibility

is the ancestral of the ‘immediately dominates’ relation in a (rooted) tree, whose root is

taken as the distinguished element.
28See, e.g., Lemma 2.7 in [44], where the formulation is in terms of models without

distinguished elements.
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Proof. Suppose the conclusion sequent Γ � A → B of an application

of (††) does not hold in some model, M, say, where M = (U,≤, u0, V ), so

M |=u0
C for each C ∈ Γ, while M 6|=u0

A → B. Thus for some x ∈ U with

u0 ≤ x, M |=x A but M 6|=x B. By persistence, for all C ∈ Γ, M |= C.

(That is where the argument would stop if we weren’t working with models

with distinguished elements.) That does not entitle us to conclude that the

premiss sequent for this application of (††) doesn’t hold in all models on the

grounds that it doesn’t hold in M, because to show that it doesn’t hold in

this model we need all of Γ∪ {A} true at the distinguished point u0 of the

model, with the formula B false there. But we simply trade M in for the

submodel thereof generated by x, and appeal to Theorem 3.1 to conclude

that Γ ∪ {A} are true at the distinguished point of this new model, while

B is not, so the premiss sequent does not hold in every model. 2

The above is all perfectly familiar and we review it here to note the

failure of Theorem 3.1 to extend to the case of the language with (→ and)

Ω, which deprives us of Corollary 3.2 for the language of `Ω, where this is

the consequence relation defined in (†††):

(†††) Γ `Ω C iff for some Γ0 ⊆ Γ, the sequent Γ0 � C holds in every

model.

Taking x 6= u0 in a model M = (U,≤, u0, V ), at which Ω is accordingly

true, we pass to the generated submodel Mx and relative to this model Ω

is now true at x. Such a failure of Theorem 3.1 makes trouble, as promised,

for Corollary 3.2 and thus for `Ω’s satisfying (DT):

Example 3.3. The sequent Ω�p holds in all models, while the sequent

�Ω → p does not. The first sequent has the property of holding in all

models because its left-hand formula is never true at the distinguished ele-

ment, while second lacks the property—which is accordingly not preserved

by the rule (††) because the clause for → in the truth-definition directs us

(inter alia) to other (‘later’) points, at all of which Ω is true. Thus we can

easily invalidate the sequent by making V (p) empty – for example. We can

reformulate the bearing of this on (DT) as follows: the consequence rela-

tion `Ω does not satisfy the condition (DT). (Note that Prucnal’s Lemma

– 2.5 above – does not go through with Ω present: sA(Ω) is just Ω, and not

equivalent to A → Ω.29)

29The same would apply in the case of ⊥ of course. As to whether a version of
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The choice – more extreme than necessary to make the point – of V (p) as

∅, in the exposition of this Example, draws our attention to the fact that if

we extended our language to accommodate the constant ⊥ with the usual

semantics (⊥ to be false everywhere in any model) then we should have

Ω a` ⊥, where ` is defined over this richer language in the same way that

(†††) defined `Ω. The fact that Ω and ⊥ are thus equivalent does not mean

that they are interreplaceable preserving equivalence in longer formulas:

the consequence relation just described is not congruential (in the sense of

Segerberg [46]30). For example, this equivalence notwithstanding, we do

not have A → Ω a` A → ⊥ (specifically, because the “`” direction fails,

e.g. with A and p). The right-hand side of this last failed equivalence is

often used in a definition of ¬A, and despite its failure, we might think

of the left-hand side as similarly definitive of another kind of negation,

symbolized by “¬ΩA”, say (so that the usual negation would more explicitly

be written as “¬⊥”). Like the usual negation, ¬Ω enjoys an Ex Falso

Quodlibet style property – A,¬ΩA ` B for all A,B – and it also enjoys,

an ‘excluded middle’ property, formulable if we add disjunction (with the

usual semantic treatment) to our language (and we continue to write `

for the extended consequence relation): ` A ∨ ¬ΩA. For suppose that we

have a model M = (U,≤, u0, V ) with M 6|=u0
A ∨ ¬ΩA. Then M 6|=u0

A

and M 6|=u0
¬ΩA, i.e., M 6|=u0

A → Ω. Thus for some x ≥ u0, M |=x A

but M 6|=x Ω. This last means that x = u0, since Ω is false at only the

distinguished element in our models – but now we have a contradiction,

since M 6|=u0
A while M |=x A.31 We can give voice to this ‘law of

excluded middle’ behaviour without disjunction actually being present, by

means of a sequent-to-sequent rule saying that whatever follows from other

assumptions (to use the idiom of natural deduction) and A and also follows

from those other assumptions and ¬ΩA, follows from the other assumptions

alone. This rule we accordingly call (LEM)Ω below, where we have stated

it using only the primitive notation of → and Ω. The above Ex Falso

Quodlibet behaviour, can also be encapsulated more succintly as a general

Theorem 2.6(i) can be proved in some other way for the {→,⊥} or {→,¬} fragments of

all intermediate logics, the author has no information.
30Wójcicki [54] uses the term “self(-)extensional” for this property.
31The upshot of defining ¬ΩA as A → Ω is that ¬ΩA is true at a point x (in a model

whose distinguished element is u0) iff either x 6= u0 or else x = u0 and A is not true at

u0.
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form of the sequent mentioned at the start of Example 3.3; we label this

(zero-premiss) rule (EFQ)Ω below. From this discussion, then, we extract

the following two rules, the first justified—to summarise our reasoning—by

the fact that (in any model) if x = u0, Ω is false at x, and the second by

the fact that if x 6= u0, Ω is true at x:

(EFQ)Ω Ω � A (LEM)Ω
Γ, A � C Γ, A → Ω � C

Γ � C

What we wanted from our second example of the failure of (DT) in

an extension of (here, the implicational fragment of) intuitionistic logic,

as opposed to that reviewed in Section 2, was a simple Kripke semantics

and an equally simple proof-theoretic description. Since `Ω was defined in

terms of the model theory in the first place, we certainly have that for the

current example of failure of (DT). And the above rules give us the desired

syntactic description, as we shall record in Theorem 3.5. There will be a

few preliminary definitions and observations for that, but before those let

us pause to observe that our two rules uniquely characterize the constant

they govern in the Hiż–Belnap sense of [1]. Refining that discussion a little

(as in [22], §§3, 4) to take into account the possibility of non-congruential

logics, let us say that rules governing a connective # uniquely characterize

that connective to within equivalence when adding reduplicated rules for

a new connective #′ (of the same arity as #), and assuming available the

usual structural rules (mentioned before the formulation of (**) in Section

1), gives a proof system according to whose associated consequence relation

(à la (**)) #-compounds and #′ compounds with the same components

(in the same order) are equivalent (in the “a`” sense). And we say that

the rules uniquely characterize # to within synonymy when according to

this same consequence relation any similarly related #-compounds and #′

compounds are synonymous in the sense of Smiley [48]: meaning that either

can be replaced by the other (not necessarily uniformly) inside arbitrary

formulas without affecting the correctness of `-claims.32

32We will sometimes just call formulas synonymous in the proof system in question

when this holds for the associated consequence relation – in other words, when they are

freely interreplaceable within arbitrary formulas in all sequents, salva provabilitate – or

salva validitate in the case of a consquence relation semantically characterized. Note that

when represented in schematic form the rules of the combined or reduplicated system are

understood as having the schematic letters involved range over formulas of the combined
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Now, clearly the rule (EFQ)Ω already characterizes Ω uniquely to within

equivalence, since this rule and its reduplicated version give Ω� Ω′ and the

converse sequent respectively. But we have already seen, with the discus-

sion of Ω and ⊥ following Example 2.2, that this does not suffice for free

interreplaceability within arbitrary embedded positions. We observe now,

however, that taken together, the rules (EFQ)Ω and (LEM)Ω do uniquely

characterize Ω to within synonymy, when taken in conjunction with the

treatment of → in the proof system based on these rules which forms the

subject of Theorem 3.5 below. It is not hard to verify that formulas A and

B are synonymous in that proof system just when �A ↔ B is provable (or

�A → B and �B → A are provable). By symmetry, it suffices, then, to

show that in the reduplicated system with supplementary rules for Ω′, the

sequent �Ω → Ω′ is provable.

Ω � Ω → Ω′ Ω → Ω′
� Ω → Ω′

�Ω → Ω′

The left premiss here is a case of (EFQ)Ω, with A taken as Ω → Ω′ and the

right premiss is a case of (the structural rule) identity. The whole figure

depicts an application of (LEM)Ω′ , with A as Ω and C as Ω → Ω′. So the

conclusion is provable.

We now return to the preliminaries needed for showing the completeness

of a proof system for `Ω. A set of formulas Γ will be said to be deductively

closed (relative to `) just in case for all A, Γ ` A implies A ∈ Γ, and to

be ponentially closed just in case for all A,B, if A ∈ Γ and A → B ∈ Γ

then B ∈ Γ; the deductive closure (ponential closure) of a set is its smallest

deductively closed (ponentially closed) superset. By “`mp” we mean the

least consequence relation (over a language with →, and for our current

application, also Ω) satisfying the condition that B is a consequence of

{A,A → B} for all formulas A,B. Thus Γ is ponentially closed when

Γ `mp A implies A ∈ Γ. And by IL→ we mean the set of all consequences

of ∅ according to the implicational fragment of `IL. For the proof of part

(ii) of the following, the standard proof (as found for example in [16], pp.

23–24 or [41] pp. 50–51) of (DT) for a Modus Ponens based axiomatization

of intuitionistic logic will do – i.e., induction on the length of deductions

of B from Γ ∪ {A}, using the availability of all formulas of the forms C →

(D → C) and (C → (D → E)) → ((C → D) → (C → E)).

language (with # and #′, that is).
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Lemma 3.4. (i) If ` extends the implicational fragment of `IL then

any set of formulas which is deductively closed relative to ` is ponentially

closed.

(ii) If IL→ ⊆ Γ and Γ, A `mp B then Γ `mp A → B.

We are now in a position to prove the completeness of the above proof

system using a version of the Scott–Makinson method. This is not exactly

a canonical model completeness proof, since no single characteristic model

is produced; rather we provide a countermodel for any given unprovable

sequent. Except for the need to keep track of the deductive/ponential

closure distinction, the details are much as in Section 2 of Segerberg [44].

In the interests of brevity, from now on we shall call those sequents holding

in all models valid sequents.33

Theorem 3.5. A sequent is valid if and only if it has a proof in the proof

system with, as initial sequents, all substitution instances (in the language

with → and Ω) of sequents in the →-fragment of intuitionistic logic, and,

alongside the structural rules, the rules (EFQ)Ω and (LEM)Ω.

Proof. The “if” direction (soundness) is clear enough, so we confine

our attention to the “only if” direction (completeness). Suppose Γ � C is

unprovable. Let u0 be a deductively closed superset of Γ not containing C

and containing, for any formula A, either A itself or else A → Ω. (Such a

superset exists, by a Lindenbaum argument, appealing to the rule (LEM)Ω.)

The consequence relation in terms of which deductive closure is here to be

understood is that associated with the present proof system in accordance

with the definition (**) in Section 1; for the present proof we will call

this consequence relation 
. (Thus the proof will establish that 
=`Ω.)

The universe, U , of the model M = (U,≤, u0, V ) we shall now construct,

and in which Γ � C will be seen not to hold, comprises u0 together with

all ponentially closed supersets of u0 ∪ {Ω}. For any x, y ∈ U we define:

x ≤ y ⇔ x ⊆ y and V (pi) = {x ∈ U | pi ∈ x}; as usual, the latter

stipulation secures the basis case for an induction on the complexity of ( =

number of connectives used to construct) the formula D establishing that

D ∈ x ⇔ M |=x D, for the inductive parts of which it suffices to show:

33A more refined notion, not needed for present purposes, is validity on a given frame

(U,≤, u0), in the sense of holding in every model based on that frame.
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(a) Ω ∈ x ⇔ x 6= u0; (b) A → B ∈ x ⇔ for all y ≥ x,A ∈ y ⇒ B ∈ y.

As to (a), if for x ∈ U , x 6= u0, then certainly Ω ∈ x, since aside from u0,

we allowed into U only sets of formulas containing Ω; on the other hand

Ω /∈ u0 since C /∈ u0 by construction, Ω 
 C (in view of (EFQ)Ω) and u0 is

deductively closed.

We turn to (b). If A → B ∈ x and A ∈ y for y ≥ x, i.e., y ⊇ x, then

A → B ∈ y and so since all elements of U are ponentially closed (including

u0, by Lemma 33.4(i)), B ∈ y. Suppose on the other hand that A → B /∈ x.

We distinguish two cases (1) x = u0, (2) x 6= u0. For case (1), since

B 
 A → B, we have B /∈ x ( = u0). So if A ∈ u0, then u0 itself is a

suitable (i.e., ≥ u0) point containing A but not B. So suppose instead that

A /∈ u0; in that case, we note for future reference that A → Ω ∈ u0 (from

the way u0 was originally specified). If u0, A `mp B then u0 `mp A → B

so (by Lemma 3.4(ii), since IL→ ⊆ u0) we should have A → B ∈ u0; thus

u0, A 6`mp B, and so the ponential closure of u0 ∪ {A} will do as a y ≥ u0

with A ∈ y, B /∈ y. In fact, in this case y 	 u0, so we must make sure that

y ∈ U , which required not only that y be a ponentially closed superset of

u0, but that Ω ∈ y. But on this issue, recall that A → Ω ∈ u0, so since

A ∈ y, we do have Ω ∈ y after all.

Case (2): x 6= u0. The argument here is as for the second half of case (1),

except that we do not have to worry about checking that Ω belongs to the

desired y ≥ x with A ∈ y, B /∈ y, since Ω ∈ x already.

We have now shown that D ∈ x ⇔ M |=x D for all formulas D, so since

Γ ⊆ u0 and C /∈ u0, M |=u0
A for each A ∈ Γ while M 6|=u0

C, our

unprovable sequent Γ � C does not hold in M, and is therefore not valid.2

In the discussion after Example 3.3 above, we noted that extending `Ω

(which we now see from Theorem 3.5 coincides with the 
 defined in the

course of its proof) with the addition of ⊥ gave a non-congruential conse-

quence relation, and we note here that `Ω is itself already non-congruential,

especially as making this observation will provide us with another coun-

terexample to (DT) for this consequence relation:

Example 3.6. Note that the sequent (p → Ω) → Ω�p (a form of double

negation elimination for negation as ¬Ω) is valid, as is the converse sequent

also (this time with any formula in place of Ω). Thus (p → Ω) → Ω and
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p are equivalent according to `Ω. But these formulas are not synonymous

(in Smiley’s sense, as explained above): in particular, while `Ω p → p,

6`Ω ((p → Ω) → Ω) → p – thereby providing us, incidentally, with another

example (beyond that of Example 3.3) of the failure of (DT) for `Ω (alias


).

The final point we make about the above proof system is that, in tak-

ing on board all of what would otherwise have been the results of applying

the rule (††) “safely” within the confines of the Ω-free fragment of `Ω, by

simply treating all sequents of implicational intuitionistic logic as initial

sequents,34 we have missed out on the elegant systematization of that logic

provided by (††) and the upside down form of the same rule (or equivalently,

Modus Ponens or the sequent calculus (→ Right) rule, depending on one’s

preferred approach). To meet this objection, one could instead modify the

proof system, so that alongside the needed structural rules and one of the

last-mentioned rules, (††) itself is used with a proviso: that the premiss

sequent Γ, A � B has itself been proved without any appeal to either of

the distinctive Ω rules, (EFQ)Ω and (LEM)Ω. This change would mean

that the rule (††) would no longer have the status of a local constraint on

derivations, since whether we can apply the rule to premiss sequents de-

pends on the prior derivational history of those sequents: it would be the

logical analogue of one of the global derivational constraints urged in the

context of linguistic theory in Lakoff [26]. Such a move, this time restricting

the rule of necessitation, was made in Kamp [24] in the axiomatic presen-

tation of a range of modal logics that are quasi-normal (defined below)

though not normal, to use the terminology of Segerberg [45] (adapted from

Scoggs [43]), where such logics are themselves treated with the use of mod-

els with distinguished elements, serving as something of an inspiration for

our definition of `Ω.35 Segerberg’s example could not be followed closely in

the present setting because it relies on a formula A’s having the property of

34Or rather: all substitution instances of such sequents in the language which also has

Ω.
35See Section 2 of Chapter III of [45] for details. Segerberg allows a set of distinguished

elements rather than a single such element, but this difference is not material. Kamp

is interested in modal logics with a temporal interpretation (tense logics, that is), the

distinguished element in a model being thought of as the ‘present’ moment (the moment

of utterance of the expression being semantically evaluated). The global derivational

constraint idea can be seen in the first and last paragraphs on p.244 of [24].
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always being true at the distinguished point without 2A’s also having this

property (thus allowing for failures of the rule of necessitation), because the

distinguished point can have other points accessible to it where A is false.

Because of the requirement of persistence, no such arrangement could be

made here, and we relied instead (for failures of (DT)) on the fact that

the distinguished point could falsify a formula (namely Ω) which points

accessible to it did not. We assume known the concept a normal modal

logic, and remind the reader that a quasi-normal modal logic is a modal

logic which extends the smallest normal modal logic K. (While normality

has an unequivocal interpretation for modal logics as sets of formulas, there

is room for disagreement as to what it should amount to for modal logics

as consequence relations: see note 40 below.) In these terms, recalling the

fact that the implicational fragment of intuitionistic logic is sometimes—as

in the title of the present section–called the logic of positive implication,

we could define a positive consequence to be one satisfying (DDT), and

call ` quasi-positive if ` extends the smallest positive consequence rela-

tion. The latter is of course nothing but the implicational fragment of `IL.

There remains a further disanalogy with the modal case, in that to get our

extension to fail to satisfy (DT), in view of Theorem 2.6(i), we had to un-

derstand “extension” in the liberal way mentioned in Section 1 – allowing

for additional logical vocabulary: otherwise, by that result, we should have

it that every quasi-positive consequence relation was positive. In the modal

case, however, the non-normal extensions of K are cast in the very same

language as K itself. (We are also considering here treatments of modal

logic in the ‘logics as sets of formulas’ framework rather than the ‘logics as

sets of sequents’ – essentially, as consequence relations, that is – which is

the habitat for our logic of “→” and “Ω”.36)

36One might initially think of the usual rule of ∀ introduction in a natural deduction

systematization of predicate logic as involving a global derivational constraint, in sanc-

tioning the transition from A(t) to ∀v(A(v)), where A(t) is A(v) with free occurrences of

v replaced by the parameter t, on the grounds that there is a precondition that A(t) does

not depend, at the point at which this rule is applied, on any assumptions containing

t. As will be evident from our earlier discussion, however, we prefer to think of natural

deduction rules no less than sequent calculus rules as sequent-to-sequent rules, in which

case the constraint is local rather than a global derivational constraint since the set of

assumptions concerned is present on the left of the premiss-sequent for an application of

∀ introduction. Interested readers can make up their own minds on whether the rule,

due to Fitch, that Curry and Feys [9], p.261, describe as “Rule P [ = Modus Ponens] . . .
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A word is in order on the proviso on (††) in the alternative proof sys-

tem just canvassed (whose equivalence, in respect of provable sequents, to

that described in Theorem 3.5 we leave the interested reader to verify).

Our restriction forbade an application to any sequent in whose derivational

history either of the rules (EFQ)Ω, (LEM)Ω, had figured, whereas our il-

lustration of what could go wrong in violating this restriction, Example

3.3, only showed the problem in the case of the former rule. However, the

restriction really does need to encompass both rules, as we now show.

Example 3.7. Being of the form A → B, A � B, both of the following

sequents are initial sequents of the proof system described in Theorem 3.5:

(p → Ω) → q, p → Ω � q p → q, p � q.

From these two, by thinning and the rule (LEM)Ω, we get (p → Ω) →

q, p → q � q. From this last sequent (whose validity could alternatively

just be checked straight away using the semantics) the rule (††) delivers

the invalid sequent (p → Ω) → q � (p → q) → q, even though there is

no earlier appeal to (EFQ)Ω. Thus we do need to block prior application

not only of (EFQ)Ω but also of (LEM)Ω for a safe (i.e., validity-preserving)

application of (††).

We have chosen to discuss the Ω example at length because adding one

nullary connective seemed the simplest possible setting in which to illus-

trate failures of (DT) for a consequence relation extending `IL in an ex-

panded language. Adding instead a 1-ary connective would be less ‘simple’

in purely quantitative terms, but in fact there is a variation on the Ω exam-

ple which utilises such a connective and has the advantage of considerable

familiarity. It is with setting out this example that we close our discus-

sion. We have already had occasion to mention that Kamp in [24] wanted

to treat the ‘formal properties of “now”’, where (an operator representing)

“now” attaches to a formula A to make a formula true at an arbitrary point

just in case A is true at the distinguished point of the model. The same

subjected to an ad hoc and complex restriction” should count as a global derivational

constraint. As the authors ([9], p.261, note 10 , put it: “It is complex in the sense that

the criterion for applicability of rule P does not depend on the premises alone, but also

on their relation to the whole proceding proof.” After completing the present paper,

the author encountered similar uses of the terminology of global constraints or rules (in

logic) in two further sources, namely Bystrov [8] and Meyer Viol [32], p.146.
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device has been used in alethic modal logic for the treatment of “actually”,

the distinguished element now being thought of as the actual world. As is

mentioned in the survey article [21], where several alternative approaches,

in particular to the definition of validity, are contrasted, this idea goes back

somewhat further historically, namely to [31], in which Meredith and Prior

introduce a sentential constant n stipulated in the definition of truth to be

true at the distinguished element and nowhere else. (See also Section 7 [30].

The idea was first mooted in a note circulated by Meredith in 1956.) But

they noted that – what we are calling – an actuality operator, which for

present purposes we shall write as “R” (think of the Real world), answering

to the above description is definable: define RA as 2(n → A), where 2 is

interpreted by universal quantification over the points in the model and →

is for material implication. We have already had occasion to observe that in

the models we are considering, a formula true at precisely the distinguished

element would be non-persistent except in the trivial case of one-element

models (as remarked in note 25), but if we take something along the lines of

R (now thinking of u0 as the Root, in the representative case in which the

poset (U,≤) is a tree) as primitive rather than defined, with a semantical

clause reading as follows, we obtain persistent R-compounds. Here we take

M to be (U,≤, u0, V ) as before, and x any element of U :

M |=x RA iff M |=u0
A, for all formulas A.

Defining validity as before (holding in all models, with holding in a model

consisting in truth-preservation at the distinguished point), we have another

simple example, in the present language with → and R – though we could

of course add ∧, ∨ and ¬ – of a failure of (DT) in an extension of `IL:

Example 3.8. In view of the way validity has been defined, the se-

quents Rp � p and p � Rp are both valid. The results of applying the rule

(††) to these premiss sequents differ in respect of validity, �Rp → p being

valid since p’s being true at u0 (as it must be for Rp to be true anywhere)

means that p is true everywhere (as u0 is a least element). But the sequent

� p → Rp is not valid: allowing p to ‘become’ true at x 	 u0 will make the

antecedent true and the consequent at x, so the implication is false at u0.

Thus the consequence relation defined in terms of the present semantics as

`Ω was defined above (i.e., using (†††)) fails to satisfy (DT).
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It is not difficult to provide a (sound and) complete proof system for

this ‘intuitionistic actuality logic’ but we shall not do so here, contenting

ourselves with the observation that both this logic and the logic of the Ω

example, when formulated in the full language of intuitionistic logic (and

also the novel connective in each case) lack the Disjunction Property. We

pointed this out for Ω with the disjunction p∨ (p → Ω) (alias p∨¬Ωp), and

could supply for the present case the example of Rp ∨ ¬Rp. This formula

is evidently valid (or rather, strictly speaking, the sequent �Rp ∨ ¬Rp is

valid, and note further that the first R can be omitted here) while neither

of its disjuncts is. According to Definition 4 on p.131 of Gabbay [16], this

makes neither Ω nor R acceptable as a “new intuitionistic connective” (the

title of Gabbay’s section); using the phrase actually defined by Definition

4, this would be put by saying that neither the logic of Ω nor that of R

counts as an “intuitionistic extension”. Many proposed extensions (in the

sense of Section 1 above) of intuitionistic logic similarly fail to count as

“intuitionistic extensions” according to Gabbay’s definition, even though

they may be conservative over intuitionistic logic in its customary language

and defined by proof systems whose rules uniquely characterize (to within

equivalence) the novel connectives – two other conditions featuring in Def-

inition 4. This includes some cases discussed in other parts of [16] itself,

such as Rauszer’s dual intuitionistic negation (Brouwer negation, as she

called it in, e.g., [38]37). Note that we can formulate the Disjunction Prop-

erty without “∨”, using instead the ‘deductive disjuntion’ (let us say) of

formulas A,B, meaning the formula (A → pk) → ((B → pk) → pk) where

pk is the first variable (in the ordering p1, p2, ...) not occurring in either A

or B. The Disjunction Property is then the property that whenever the

deductive disjunction of A,B, is provable (is a consequence of ∅) then so

is either A or B.38

37Gabbay discusses this topic in [16], though he concentrates on dual intuitionistic

implication (see the index entries under “connectives, dual”). For a dedicated discussion

of dual intuitionistic negation, see [18]. Some further discussion of this connective and of

Gabbay’s conditions on new intuitionistic connectives in general may be found in Section

4 of [20].
38The antecedent in this formulation is obviously equivalent for any substitution-

invariant `⊇`IL, for a fixed A, B, to (1): for all formulas C in the language of `,

we have ` (A → C) → ((B → C) → C), and less obviously equivalent – whether or

not ∨ is present and (more surprisingly) whether or not ` satisfies (DT))– in turn to (2)

A → C, B → C ` C for all formulas C. (For the implication (1) ⇒ (2), the Detachment
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Whichever formulation of the Disjunction Property one prefers, the fact

that it fails for dual intuitionistic negation, which we shall notate by ¬d,

is not unconnected with its failure for the logic of R. We recall that for a

model M = (U,≤, u0, V ) and x ∈ U , the semantical clause for ¬d in the

definition of truth at a point reads thus:

M |=x ¬dA iff for some y ≤ x, we have M 6|=y A.

Such formulas are persistent in the usual way (i.e., pass truth at u on to

truth at v ≥ u) but engender a failure of the Disjunction Property – here

given its explicit ∨-based formulation – for the class of valid formulas, in

view of the validity of the excluded middle principle p∨¬dp. The connection

with the R logic above is that for models of the form (U,≤, u0, V ) with u0

a least element, we can define ¬d in terms of R and ¬:

Proposition 3.9. For any x ∈ U , with M = (U,≤, u0, V ) and u0

a least element, we have, for all formulas A, M |=x ¬dA if and only if

M |=x ¬RA.

Proof. Suppose M |=x ¬dA. Then for some y ∈ U with y ≤ x,

M 6|=y A. Since u0 ≤ y, by persistence, M 6|=u0
A, so for no v ∈ U do we

have M |=v RA. But this implies that M |=x ¬RA. Conversely, suppose

that M |=x ¬RA. Then in particular M 6|=x RA, so M 6|=u0
A; thus we

have, in the shape of u0, some y ≤ x with A not true at y, meaning that

M |=x ¬dA. 2

The semantical clause for ¬d above, though deployed in Proposition 3.9

only for models (on frames) with a least element is not given in Rauszer [38]

with any such restriction, and one must bear this in mind to avoid jump-

ing to false conclusions. For example in view of the definability noted in

Proposition 3.9 of “¬d” as “¬R”,39 one might hastily conclude from the in-

tuitionistic law of triple negation that ¬¬¬dp must be equivalent to ¬dp on

half of (DDT) suffices, inherited by ` from `IL as noted in Section 1, while for (2) ⇒,

choose a new schematic letter D and put (A → D) → ((B → D) → D) for C, which

allows us to conclude to a re-lettered form of (1) with D written in place of C.)
39That result showed that these prefixes yielded, when attached to any given formula,

formulas with the same truth value at arbitrary elements of a model and not just at u0,

so synonymy rather than mere equivalence is secured, as befits the relation of definiens

and definiendum.
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the grounds that the former can be rewritten as ¬¬¬Rp (and is therefore

equivalent to ¬Rp, alias ¬dp).

Postscript on Superclassical Options. There is no difficulty in provid-

ing substitution-invariant extensions of `CL not satisfying (DT) analogous

to those considered à propos of `IL in this section, i.e., with additional

logical vocabulary. The fact supervaluational semantics ([15], pp. 94–96)

gave rise to such examples was widely commented on in the 1970s: see

van Fraassen [15], p.170 two-thirds down, or Thomason [50], p.273 (and

the contrast between (6.3) and (6.5) on p.275 thereof). What gives rise

to the failure of (DT) is the use of universal quantification (over bivalent

valuations) in these cases, so the same arises with the ‘model consequence’

or ‘global consequence’ relation in modal logic. (See for example Sections

3 and 5 of [22].) We mean here the relation holding between a set of modal

formulas Γ and a single such formula A when in any Kripke model (for

modal logic) at every point of which all of Γ are true, A too is true at

every point. Since 2A is a global consequence in this sense of the for-

mula A for any A, while A → 2A is not in general (e.g., take A as p)

a global consequence of ∅, we have a failure of (DT). This example may

seem more controversial than the supervaluational cases in view of Smiley’s

comments (see note 15 above), which reflect a general preference against

treating necessitation ‘horizontally’ rather than ‘vertically’, as it is put in

Scott [42], and Scott’s own recommendations on score in [42] (see the com-

ment on Table II, p.149)40. However, all we wanted for our purposes was a

subsitution-invariant consequence relation extending `CL without (DT)—

not one respecting the informal idea of ‘inferential’ consequence (what can

be inferred from a set of suppositions, that is)—so the global consequence

relation just mentioned meets our current needs (as well as revealing, inci-

dentally, an infelicity in Gabbay’s terminology – mentioned in note 15 – of

‘provability rules’ vs. ‘consequence rules’).
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