
REPORTS ON MATHEMATICAL LOGIC
40 (2006), 15–43

Rafa l URBANIAK

ON ONTOLOGICAL FUNCTORS OF
LEŚNIEWSKI’S ELEMENTARY ONTOLOGY

A b s t r a c t. We present an algorithm which allows to define

any possible sentence-formative functor of Leśniewski’s Elemen-

tary Ontology (LEO), arguments of which belong to the category

of names. Other results are: a recursive method of listing possible

functors, a method of indicating the number of possible n-place

ontological functors, and a sketch of a proof that LEO is function-

ally complete with respect to {∧,¬, ∀, ε}.

.1 Introduction

By Elementary Ontology (LEO) we mean this part of Leśniewski’s Ontol-

ogy, in which the only variables are name-variables (and hence, quantifiers

quantify only name-variables).

A system is functionally complete if and only if all its possible functors

may be defined with the use of 1-, and 2- place its functors as the only

functors. By ‘System S is functionally complete with respect to the set

Received 4 June 2004



16 RAFA L URBANIAK

of logical constants {f1, . . . , fk}.’ we mean that all its possible functors

may be defined with the use of {f1, . . . , fk} as the only logical constants.

By ‘System S is F-functionally complete with respect to the set of logical

constants {f1, . . . , fk}’ we mean that all the system’s functors from the set

of functors F may be defined with the use of elements of {f1, . . . , fk} as the

only logical constants.

The purpose of this paper is to provide an effective method of defining

any ontological functor (This notion will be explicated later on. Tentatively

- those are the functors specific to LEO.) of LEO with the use of {∧,¬,∀, ε}

only, and thus to sketch a proof for the thesis that LEO is functionally OF-

complete with respect to {∧,¬,∀, ε} (where OF denotes here the set of

ontological functors).

.2 Basic Notions

We omit definitions of ∃, ∨, →, ≡ by means of {∧,¬,∀} as obvious.

Let {a, b, a1, . . . , anb1, . . . , bn} be a set of name variables of Ontology.

Next, we apply the following convention for variables in meta-language:

ϕ,ψ, ϕ1, ψ1, . . . , ϕn, ψn represent sentences; χ, χ1, . . . , χn represent senten-

tial-expressions (including sentences and sentential formulas); τ, τ1, . . . τn

represent sentential formulas; µ, ν, µ1, ν1, . . . , µn, νn represent name-varia-

bles; π, π1, . . . πn represent names; α, α1, . . . , αn represent name-expres-

sions (including names and name-formulas). Let σ1, . . . , σn be variables1

each of which can be substituted only by a name of a Semantic Status (the

notion will be defined later on).2 Let also δ, δ1, . . . , δn represent functors

of category s
n1,...,nk

.3 Let L,L1, . . . , Ln represent languages. The variables

f, f1, . . . , fn represent functions.

We distinguish: Unshared names, each of which names exactly one ob-

ject (e.g. ‘Socrates’). According to the long-lasting tradition, we accept the

view that names signify without time. It means that if a name names an

1In the case of this variables they are differentiated by upper case numbers, since the

lower case number informs us about the number of names the Semantic Status of which

we are talking.
2We also use the symbols of the same shape as logical constants of Ontology in meta-

language for naming these constants.
3This variables are differentiated by upper case numbers, since the lower case number

informs us about the number of arguments of these functors.



ON ONTOLOGICAL FUNCTORS OF LEŚNIEWSKI’S ELEMENTARY ONTOLOGY 17

object which does not actually exist, but either existed or is going to exist,

the name is not empty. However, this assumption is not an essential one.

We could have assumed the opposite, without any loss of accuracy. Shared

names, each of which names more than one object (e.g. ‘egg’). Fictitious

names, i.e. expressions which regards their syntax behave like shared or

unshared names, but which do not name anything (e.g. ‘Gandalf’, ‘Uni-

corn’).4

.2.1. LEO-Languages

We start with syntactical definitions of languages for which LEO-systems

can be built. We shall start from the languages without variables, which

are the simplest cases of LEO-languages. For convenience, we shall not

distinguish between languages and its algebras of expressions. We introduce

the notion of LEO-language without variables (CLEO): 5

.2.1.1. CLEO-Languages

Definition 2.1. L ∈ CLEO ≡ L = 〈SL
C , N

L
C , ε,∧,¬〉

where NL
C is the set of name constants (it does not matter: shared, un-

shared, or fictitious)6, ε is a primitive functor of the category s
n1,n2

, ¬,∧

are classical extensional functors of Sentential Calculus, here treated as

primitive ones. SL
C is the set of well built sentences, being the least set

which fulfills the following conditions:7

1. dπ1e, dπ2e ∈ NL
C → dε〈π1, π2〉e ∈ SL

C

2. dϕe, dψe ∈ SL
C → d¬ϕe, dϕ ∧ ψe ∈ SL

C

We introduce the notion of a model for CLEO-languages.

4The conduct of this distinction is due to [2].
5‘C’ in ‘CLEO’ coming from ‘Constants’.
6As the elements of NC (and later on, of NCV, to be defined) in a language we will

use {c, d, c1, d1, . . . , cn, dn}.
7We use quasi-quotation marks, i.e. the expression: dϕe is the name of the sentence

φ.



18 RAFA L URBANIAK

Definition 2.2. M is a model for L ∈ CLEO ≡ M = OBJ

where OBJ is a set of objects.

We introduce the function of extension of names, from NL
C into 2OBJ .

The set of such a functions is EXTOBJ
L . In our further deliberations we

will often assume that the model and language are settled, and denote the

extension of π simply as ‘Ext(π)’. We will also use variables representing

extension functions of L in M, denoted by fM
L , or fOBJ

L .

Definition 2.3. I is an interpretation of L ∈ CLEO ≡ I = 〈M, fM
L 〉.

The Valuation function – V alIL – of a CLEO language, say L, in an

interpretation I is a function that maps SL
C onto8 {0, 1} in the way defined

below (Let I be 〈OBJ, fM
L 〉):

Definition 2.4. V alIL is the function from SL
C onto {0, 1}, satisfying

the conditions:

1. V alIL(dε〈π1, π2〉e) = 1 ≡ ∃!x ∈ fML (π1) ∧ f
M
L (π1) ⊂ fML (π2)

2. dϕe ∈ SL
C → [V alIL(d¬ϕe) = 1 ≡ V alIL(dϕe) = 0]

3. dϕe,dψe∈SL
C → [V alIL(dϕ∧ψe) = 1 ≡ V alIL(dϕe)=1∧V alIL(dψe) = 1]

Now, obtaining the definition of truth in a given interpretation (TI) is

trivial:

Definition 2.5. TI(dϕe) ≡ V alIL(dϕe) = 1

.2.1.2. CAV ELEO-Languages

Now we extend our languages, allowing it to contain name constants and

variables. We define the set of CAV ELEO-languages.9

Definition 2.6. L ∈ CAV ELEO ≡ L = 〈FSL
CV , NV

L
CV , ε,∧,¬,∀〉

where NV L
CV is the union of NCV (which is the set of name constants

of L) and VCV (which is the set of name variables of L).10 The functor

8We could as well have said: ‘into’. Since we have closed the set SL
C under the

operation of classical negation, it makes no difference, the result is the same.
9‘CAV E’ in ‘CAV ELEO’ coming from ‘Constants And VariablEs’.

10As elements of VCV (and later on, of VV , to be defined) in a language we will use

{a, b, a1, b1, . . . , an, bn}.



ON ONTOLOGICAL FUNCTORS OF LEŚNIEWSKI’S ELEMENTARY ONTOLOGY 19

ε is a primitive functor of category s
n1,n2

, ¬, ∧ are classical extensional

functors of Sentential Calculus, here treated as primitive ones, ∀ is simply

the universal quantifier (it did not occur in CLEO-languages, since there

were no variables to quantify over).

FSL
CV is the union of SL

CV (which is the set of sentences of L), and F L
CV

(which is the set of propositional formulas of L). It means that FSL
CV is

the least set satisfying the following conditions:

1. dα1e, dα2e ∈ NV L
CV → dε〈α1, α2〉e ∈ FSL

CV

2. dχ1e, dχ2e ∈ FSL
CV → d¬χ1e, dχ1 ∧ χ2e ∈ FSL

CV

3. dµe ∈ V L
CV ∧ dχe ∈ FSL

CV → d∀µχe ∈ FSL
CV

The definition of model for L ∈ CAV ELEO is the same, as before

(definition 2.2 on page 18). Similar situation occurs with respect to the

extension function. It maps NL
CV into 2OBJ . The interpretation of a

CAV ELEO-language consists also in giving the model and extension func-

tion.

Some difficulties arise, when we want to consider the valuation of vari-

ables, and the truth of expressions containing variables. For we can either

emphasize that they are NAME variables, or that they are name VARI-

ABLES. The question is: should we valuate a name variable via names, or

not?

If we choose the first option, consequently, we can allow only these val-

uations which can be ‘obtained’ by means of substitution of name variables

by names as well. Namely, we must agree that (the extension function fM
L

is given), when we understand a valuation of name variables V L
CV as a se-

quence 〈A1, . . . , An〉 = Au of n elements of 2OBJ , we have to exclude from

possible valuations such tuples Au for which ∃Ai
¬∃π∈NL

CV
[Ai = fML (π)].11

On the other hand, if we choose the second option, we put no restriction on

Au, but accordingly concede that there are such valuations of name vari-

ables for which there are no corresponding names. We could avoid this dif-

ficulty by the simple assumption that ∀L∈CAV ELEO∀Ai∈2OBJ∃π∈NL
CV

[Ai =

fML (µ)]. Unfortunately, languages which do not fulfill this condition seem

to be quite legitimate objects of investigation.

11We have loosely said, that a set Ai belongs to Au; we meant that it is an element of

the sequence, obviously.



20 RAFA L URBANIAK

For convenience, we have decided to define the valuation of variables for

CAV ELEO-languages in accordance to the first option, and to leave the

most general concept of valuation for V ALEO-languages (to be defined),

which do not contain name constants. The interesting result is that some

sentences built by preceding a sentential formula by a universal quantifica-

tion can be true in a CAV ELEO-language L just because of the nature of

the set of names of L.12

To any name we can attribute a set that is its extension (i.e. deno-

tation). In this way, every tautology (or valid expression) in the wider

sense of valuation is a tautology (valid formula) in the narrower sense of

valuation.

The question is, as we have said, whether the implication in the other

direction is true. The answer would be simple, if we assumed the mentioned

additional condition. Practically, it seems, however, that we are lacking

names. As Ajdukiewicz argues [1, p. 138]:

Names of each language divide into simple and composed. There

is always a finite number of the simple ones, the composite

names are always finite combinations of simple names, hence

there are ℵ0 names.

If we simply take a universe containing the set of natural numbers (or

any other universe of the power ℵ0), according to Cantor’s theorem, the

number of subsets of the universe will be greater than ℵ0.

Nevertheless, we can claim the following:

Theorem 2.7. If language L fulfills the following requirement:

For any formula of elementary theory of numbers, if this for-

mula contains exactly one free variable, there is in L a general

name, extension of which is identical with the set of numbers

satisfying this formula.13

then it is true, that any formula of L valid in the lexical sense, is valid in

the semantic sense.

12For instance, if we have OBJ = {1, 2, 3}, NL
CV = {c, d}, fM

L (c) = {1, 2}, fM
L (d) =

{3}, it is true in this interpretation that ∀a,b(¬(ε〈a, b〉 ∧ ε〈b, a〉) → ¬ε〈a, b〉).
13Elementary theory of numbers is what we can say about natural numbers in terms

of addition, multiplication, identity, sentence connectors, variables representing natural

numbers, and quantifiers binding them, without introducing the notion of set.



ON ONTOLOGICAL FUNCTORS OF LEŚNIEWSKI’S ELEMENTARY ONTOLOGY 21

The full proof is to be found in [3].

We define the notion of valuation of name variables in CAV ELEO-

languages.

Definition 2.8. The valuation of V L
CV = {µ1, . . . , µk} is a sequence:

〈A1, . . . , Ak〉 = Au of elements of 2OBJ such that ∀Ai
∃π∈NL

CV
[Ai =

fML (π)].

The value of µi in an interpretation Au will be denoted as Au(µi), or

simply Ai.

We define the notion of Satisfaction:

Definition 2.9. We assume, that the sequences: of names and name

variables are fixed.

1. Sentence dε〈π1, π2〉e is satisfied in I = 〈M, fM
L 〉 by a valuation Au

if and only if ∃!xx ∈ fML (π1) ∧ fML (π1) ⊂ fML (π2) . It is obvious,

that, since dε〈π1, π2〉e does not contain variables (or, in other words,

‘Au’ does not occur in definiente), if there is at least one Au satisfying

the given sentence in I, this sentence is satisfied by any valuation in

I.

2. Let us consider such an expression dε〈αi, αj〉e, in which there is at

least one name variable. Obviously, there are three cases :

(a) dε〈πi, µk〉e is satisfied in I = 〈M, fM
L 〉 by a valuation Au

if and only if ∃!xx ∈ fML (πi) ∧ f
M
L (πi) ⊂ Ak.

(b) dε〈µk, πi〉e is satisfied in I = 〈M, fM
L 〉 by a valuation Au

if and only if ∃!xx ∈ Ak ∧Ak ⊂ fML (πi).

(c) dε〈µk, µi〉e is satisfied in I = 〈M, fM
L 〉 by a valuation Au

if and only if ∃!xx ∈ Ak ∧Ak ⊂ Ai.

3. d¬χe is satisfied in I = 〈M, fM
L 〉 by a valuation Au if and only if dχe

is not satisfied in I = 〈M, fM
L 〉 by a valuation Au.

4. dχi∧je is satisfied in I = 〈M, fM
L 〉 by a valuation Au if and only if

dχie is satisfied in I = 〈M, fM
L 〉 by a valuation Au and dχje is satis-

fied in I = 〈M, fML 〉 by a valuation Au.



22 RAFA L URBANIAK

5. d∀µk
χe is satisfied in I = 〈M, fM

L 〉 by a valuation Au if and only if

dχe is satisfied in I = 〈M, fM
L 〉 by any possible valuation Ad which

differs from Au at most on k − th place.

We define the notion of truth in an interpretation (TI):

Definition 2.10. TI(dχe) ≡ ∀u[χ is satisfied by Au in I]

Given sentential expression is true in an interpretation, if it is satisfied

by every possible in this interpretation valuation of (its) name variables.

Obviously, we can define validity as being true in any interpretation.

.2.1.3. V ALEO-Languages

We introduce languages without name constants, but containing name vari-

ables. We define the set of V ALEO-languages.14

Definition 2.11. L ∈ V ALEO ≡ L = 〈FSL
V , V

L
V , ε,∧,¬,∀〉

whereas V L
V is the set of name variables of L, ε is a primitive functor of

category s
n1,n2

; ¬, ∧ are classical extensional functors of Sentential Calculus,

here treated as primitive ones, ∀ is simply the universal quantifier.

FSL
V is the union of SL

V (which is the set of sentences of L 15), and FL
V

(which is the set of propositional formulas of L). It means that FSL
V is the

least set satisfying the following conditions:

1. dµ1e, dµ2e ∈ V L
V → dε〈µ1, µ2〉e ∈ FSL

CV

2. dχ1e, dχ2e ∈ FSL
V → d¬χ1e, dχ1 ∧ χ2e ∈ FSL

V

3. dµe ∈ V L
V ∧ dχe ∈ FSL

V → d∀µχe ∈ FS
L
V

The definition of model is the same, as definition 2.2 on page 18:

Definition 2.12. M is a model for L ∈ V ALEO ≡ M = OBJ where

OBJ is a set of objects.

14‘V A’ in ‘V ALEO’ coming from ‘VAriables’.
15Nota bene, though there are no names, it is possible to obtain sentences from formulas

by use of quantifier.



ON ONTOLOGICAL FUNCTORS OF LEŚNIEWSKI’S ELEMENTARY ONTOLOGY 23

Since we use no names, we shall not need the notion of extension of a

name. The interpretation of a V ALEO-language consists only in giving a

model. Therefore, we shall not define interpretation (model will suffice).

We define the notion of valuation of name variables in V ALEO-languages.

Definition 2.13. The valuation of V L
V = {µ1, . . . , µk}is a sequence:

〈A1, . . . , Ak〉 = Au of elements of 2OBJ

The value of µi in an interpretation Au will be denoted as Au(µi), or simply

Ai.

We define the notion of Satisfaction:

Definition 2.14. We assume, that the sequence of variables is fixed.

1. dε〈µk, µi〉e is satisfied in M by a valuation Au if and only if

∃!xx ∈ Ak ∧Ak ⊂ Ai.

2. d¬χe is satisfied in M by a valuation Au if and only if dχe is not

satisfied in M by a valuation Au.

3. dχi ∧ χje is satisfied in M by a valuation Au if and only if dχie is

satisfied in M by a valuation Au and dχje is satisfied in M by a

valuation Au.

4. d∀µk
χe is satisfied in M by a valuation Au if and only if dχe is sat-

isfied in M by any valuation Ad which differs from Au at most on

k − th place.

We define the notion of truth in model (TM):

Definition 2.15. TM(dχe) ≡ ∀u[χ is satisfied in M by Au]

Given sentence expression is true in an interpretation, if it is satisfied

by every possible in this model valuation of name variables. Validity is

defined as truth in any model.



24 RAFA L URBANIAK

.2.2. The so-called Nominalism of LEO-systems

Leśniewski, in fact, was a nominalist. Hence, sometimes, his systems (sys-

tems formulated in LEO-languages, a fortiori) are believed to be nomi-

nalistic. However, the deliberations hitherto led show us only that what

suffices as a model of given LEO-language, is a set of objects.

This statement obliges use neither to accept, nor to refute nominalism.

We have decided neither what kind of objects can belong to the set OBJ ,

nor what object must belong to this set.

Moreover, it is far from being clear, that belonging to a model is to be

interpreted as real existence. Thus, even, if we had decided, that a model

M of an LEO-language L can contain only objects of a particular sort,

still it would not force us to accept any claim either about real existence of

anything, or about the lack of it.

.3 Notion of Semantic Status (SeS)

.3.1. Intuitions

There are some specific functors which we will be considering in this paper.

Those are Ontological Functors (OF). They are those specific functors which

distinguish Elementary Ontology from Prototetics. As it is obvious, these

functors are of syntactical category s
n1,...,nc

.

However, this information does not suffice for distinguishing OF-s from

other functors of the same syntactical categories. For example, we would

consider the expression ‘is’ in: ‘Socrates is mortal.’ an OF. This functor

is of the syntactical category s
n,n

; but we can as well find a functor of the

same syntactical category, which surely is not an OF, e.g. the expression

‘loves’ in ‘John loves Mary.’.

Hence we need some other condition (or a set of conditions), which

would not only be necessary, but also sufficient for a functor to be an OF.

In what follows, we shall fulfill this requirement.

The state of affairs affirmed by propositions built from an OF and

its name arguments is called the (possible) semantic status (SeS) of this

arguments.



ON ONTOLOGICAL FUNCTORS OF LEŚNIEWSKI’S ELEMENTARY ONTOLOGY 25

.3.2. 1-place SeS-es

Definition 3.1. Semantic Status of a given name π is I.i. (1≥ i≥ 3),

whereas i is equal (respectively) to:






1 iff ∃!x[x ∈ Ext(π)]

2 iff ∃x[x ∈ Ext(π)] ∧ ¬∃!x[x ∈ Ext(π)]

3 iff ¬∃x[x ∈ Ext(π)]

Instead of saying: ‘an SeS which is k-place’ we will use lower case

numbers: ‘SeSk’ is a name (shared) with Ext(SeSk) identical with the set

of all k-place SeS-es.16

Example 3.2. The SeS1 of the name Socrates is I.1.. 417

Instead of saying ‘the SeSk of k names (in given order) 〈π1, . . . , πk〉’

we will simply write: ‘SeSk〈π1, . . . , πk〉’. We also, where there will be

no danger of ambiguity, will use the notation of SeSk as a function of k

arguments 〈π1, . . . , πk〉 with the Semantic Status of 〈π1, . . . , πk〉 as value.

.3.3. 2-place SeS

Now we proceed to defining all possible 2-place SeS-es.

From now on, if we are talking about a semantic status of k names, it

is to be assumed, that we consider the order of these names important. We

sometimes write instead of ‘a SeS of k names (in order)’ simply ‘SeS of k

names’, just for convenience.

Definition 3.3. Semantic Status of two names (in order) 〈π1, π2〉 is

II.i (1 ≥ i ≥ 16), where i is equal (respectively) to:

16For clarity of presentation, we will sometimes use the abbreviations introduced for

the terms defined, just as if they were nouns. We will also use their singular and plural

forms. The singular forms are identical with abbreviations themselves; The plural ones

are constructed by adding the endings: -s, or -es. Strictly speaking, our definitions of

SeS-es are definitions of functions. However, when we use our symbols otherwise, it is

made for the sake of presentation, and, we believe, there is no danger od ambiguity.
17We will use the symbol ‘4’ as indicating the end of an example.



26 RAFA L URBANIAK







1 iff SeS1〈π1〉 = SeS1〈π2〉 = I.1. ∧Ext(π1) = Ext(π2)

2 iff SeS1〈π1〉 = SeS1〈π2〉 = I.1. ∧Ext(π1) 6= Ext(π2)

3 iff SeS1〈π1〉 = I.1. ∧ SeS1〈π2〉 = I.2. ∧Ext(π1) ⊂ Ext(π2)

4 iff SeS2〈π2, π1〉 = II.3.

5 iff SeS1〈π1〉 = I.1. ∧ SeS1〈π2〉 = I.2. ∧Ext(π1) 6⊂ Ext(π2)

6 iff SeS2〈π2, π1〉 = II.5.

7 iff SeS1〈π1〉 = I.1. ∧ SeS1〈π2〉 = I.3.

8 iff SeS2〈π2, π1〉 = II.7.

9 iff SeS1〈π1〉 = SeS1〈π2〉 = I.2. ∧Ext(π1) = Ext(π2)

10 iff SeS1〈π1〉 = SeS1〈π2〉 = I.2. ∧Ext(π1) ⊂ Ext(π2)∧

∧Ext(π1) 6= Ext(π2)

11 iff SeS2〈π2, π1〉 = II.10.

12 iff SeS1〈π1〉 = SeS1〈π2〉 = I.2. ∧ ∃x[x ∈ Ext(π1)∧

∧x 6∈ Ext(π2)] ∧ ∃x[x ∈ Ext(π2) ∧ x 6∈ Ext(π1)]∧

∧∃x[x ∈ Ext(π1) ∧ x ∈ Ext(π2)]

13 iff SeS1〈π1〉 = SeS1〈π2〉 = I.2. ∧ ¬∃x[x ∈ Ext(π1)∧

∧x ∈ Ext(π2)]

14 iff SeS1〈π1〉 = I.2.∧

∧SeS1〈π2〉 = I.3.

15 iff SeS2〈π2, π1〉 = II.14.

16 iff SeS1〈π1〉 = SeS1〈π2〉 = I.3.

.3.4. Ontological Table

The SeS1−es and SeS2-es hitherto defined can, perhaps, be better grasped,

if we apply the graphical method of representing them. The method itself

was used in [2, p. 128]. Lejewski however, has not defined the notion of

Semantic Status and has finished his semantic considerations on presenting

the Ontological Table, which, for us, is just a point of departure for further

investigations. Nevertheless, we present the Table, just as it occurs in [2],

for convenience of the reader. By a shaded circle we represent the only

object named by an unshared name. By an unshaded circle we represent

the many objects each of which is named by a shared name. No circle will

be used in case of fictitious name.



ON ONTOLOGICAL FUNCTORS OF LEŚNIEWSKI’S ELEMENTARY ONTOLOGY 27

~���
�
�

π1

I.1.

&%
'$

π1

I.2.

π1

I.3.

~���
�
�

π2 π1

II.1.

~

π1

~

π2

II.2.

~���
�
�

π1

&%
'$

π2

II.3.

~���
�
�

π2

&%
'$

π1

II.4.

~

π1

&%
'$

π2

II.5.

~

π2

&%
'$

π1

II.6.

~

π1 π2

II.7.

~

π2 π1

II.8.

&%
'$
π1, π2

II.9.

&%
'$

π1

II.10.

������
�
��

π2

&%
'$

π2

II.11.

������
�
��

π1

��
��

π1

II.12.

��
��

π2

����
π1

����
π2

II.13.

����
π1 π2

II.14.

����
π2 π1

II.15.

π1 π2

II.15.

Figure 1: The Ontological Table



28 RAFA L URBANIAK

.3.5. Identity, Union and Intersection of SeS-es

We define the relation of identity in the set of SeS-es. Two SeS-es, say

σ1
k, σ

2
m, can remain in this relation only if k = m:

Definition 3.4. σ1
k = σ2

m ≡ m = k∧

∧∀π1
1
,...,π1

k
[SeSk〈π

1
1 , . . . , π

1
k〉 =

= σ1
k〈π

1
1 , . . . , π

1
k〉 ≡

≡ SeSk〈π
1
1 , . . . , π

1
k〉 = σ2

m〈π1
1 , . . . , π

1
k〉]

Now we define the notion of union of SeS-es. Let us consider two

sequences of names: π1
1 , . . . , π

1
k and π2

1 , . . . , π
2
m. Let π1,2

1 , . . . , π
1,2
c be all

different name variables among π1
1 , . . . , π

1
k and π2

1, . . . , π
2
m.

Definition 3.5. SeSc〈π
1,2
1 , . . . , π

1,2
c 〉 = [σ1

k〈π
1
1 , . . . , π

1
k〉]∪

∪[σ2
m〈π2

1 , . . . , π
2
m〉] ≡ SeSk〈π

1
1 , . . . , π

1
k〉 =

= σ1
k〈π

1
1 , . . . , π

1
k〉 ∨ [SeSm〈π2

1 , . . . , π
2
m〉 =

= σ2
m〈π2

1 , . . . , π
2
m〉]

We define the notion of intersection of SeS-es:

Definition 3.6. SeSk+m〈π1,2
1 , . . . , π

1,2
c 〉 = [σ1

k〈π
1
1 , . . . , π

1
k〉]∩

∩[σ2
m〈π2

1 , . . . , π
2
m〉] ≡ SeSk〈π

1
1 , . . . , π

1
k〉 =

= σ1
k〈π

1
1 , . . . , π

1
k〉 ∧ [SeSm〈π2

1 , . . . , π
2
m〉 =

= σ2
m〈π2

1, . . . , π
2
m〉]

.3.6. (n ≥ 3)-place SeS

We are going to introduce the notion of SeS of n ≥ 3 names. We precede the

formal definition by some intuitive deliberations. The SeS1-es and SeS2-es

are states of affairs which concern names and pairs of names. Knowing

the SeS1 of a name, we know, whether there are no objects named by this

name, or there is exactly one such an object, or there are more than one

such objects. Knowing the SeS2 of any given pair of names, we not only

know, what the SeS1 of each of these names is, but also, in what relation

to each other remain the sets of their designates.

It is however quite natural, that the number of names which may be

taken under consideration with respect to their SeS should not come to



ON ONTOLOGICAL FUNCTORS OF LEŚNIEWSKI’S ELEMENTARY ONTOLOGY 29

an end with 2. We can ask, in what 3-place semantic (to say it loosely)

relation given three names remain.

Intuitively, we would allow all n-place (where n ∈ N ) relations between

names to be n-place SeS-es, as far, as they would be representable by means

of diagrams similar to these used in the Ontological Table in the Figure 1.

Quite helpful in defining SeSn≥3, say σ1, seems to be the fact, that if we

have σ1
n≥3〈π1, . . . , πn≥3〉, we know all SeS2 of all pairs from {π1, . . . , πn≥3}×

{π1, . . . , πn≥3} , i.e. from {π1, . . . , πn≥3}
2. Also, it seems to work in the

other direction: if we know all SeS2 of all pairs from {π1, . . . , πn≥3}
2, we

know what the σ1
n≥3〈π1, . . . , πn≥3〉 is. Hence, (according to our intuitive

deliberations and the definition 3.4 of identity) we define:

Definition 3.7. σ1 = SeSk≥3〈π1, . . . , πk≥3〉 ≡

≡ σ1 =
⋂

{

σ2
2〈πi, πj〉 : 〈πi, πj〉 ∈ {π1, . . . , πk≥3}

2
}

In other words, a SeS is a SeS of more than two names if and only if

it is identical with intersection of SeS2-es of all pairs of names which were

taken under consideration.

Definition 3.8. σ is a SeS if and only if it is a SeSk, for some k ∈ N

.3.7. Theorems on SeS-es

Corollary 3.9. ∀π[SeS1(π) = I.1. ∨ SeS1(π) = I.2. ∨ SeS1(π) = I.3.]

Corollary 3.9 claims that for every name π, there is among I.1., I.2., I.3.

at least one Semantic State of π.

Proof. Let B be a set-variable. It is true that:

∀B[∃!x[x ∈ B] ∨ ∃x[x ∈ B] ∧ ¬∃!x[x ∈ B] ∨ ¬∃x[x ∈ B]]

Since the Ext function takes sets as values, it is also the case that for all

π:

∃!x[x ∈ Ext(π)] ∨ ∃x[x ∈ Ext(π)] ∧ ¬∃!x[x ∈ Ext(π)] ∨ ¬∃x[x ∈ Ext(π)]

If ∃!x[x ∈ Ext(π)], then, according to the definition given, SeS1(π) = I.1..

If ∃x[x ∈ Ext(π)] ∧ ¬∃!x[x ∈ Ext(π)], and being so, according to the

definition given, SeS1(π) = I.2.. If ¬∃ x[x ∈ Ext(π)], according to the



30 RAFA L URBANIAK

definition given, then SeS1(π) = I.3.. The formula: (p ∨ q ∨ r) → [(p →

s) ∧ (q → t) ∧ (r → u) → (s ∨ t ∨ u)] is a tautology of Sentential Calculus.

By a proper substitution, modo ponendo ponente we obtain the demanded

corollary. �

In the similar manner, using set theory and the introduced semantics,

we can easily prove the following few claims:

Corollary 3.10. ∀π¬∃i6=j[SeS1〈π〉 = I.i. ∧ SeS1〈π〉 = I.j.]

Lemma 3.11. ∀π∃!i[SeS1〈π〉 = I.i.]

Corollary 3.12. ∀π1, π2∃1≤i≤16[SeS2〈π1, π2〉 = II.i.]

Corollary 3.13.∀π1, π2∀1≤i,j≤16[SeS2〈π1, π2〉 = II.i.∧

∧SeS2〈π1, π2〉 = II.j.→ i = j]

Lemma 3.14. ∀π1, π2∃!1≤i≤16[SeS2〈π1, π2〉 = II.i.]

Corollary 3.10 tells us that for every name π there is among I.1., I.2.,

I.3. at most one Semantic Status of π. Lemma 3.11 informs that each

name has exactly one one-place Semantic Status. Corollary 3.12 says that

for each two names (in order, obviously) their SeS2 is identical with at

least one of the SeS2 − es already defined. Corollary 3.13 claims that for

every pair of names there is at most one SeS2 such that it is the SeS of

these names. Lemma 3.14 says, that for every two names there is exactly

one SeS2 among I.1. - 1.16. which is the SeS2 of these names.

.4 Ontological Functors (OF)

.4.1. 1-Place Ontological Functors (OF1 − s)

Definition 4.1. Functor δ1 is a SOF1 if and only if

∀π∃!1≤i≤3[δ1〈π〉 ≡ SeS1〈π〉 = I.i.]

By writing ‘i 6= j 6= k’ etc. we mean that i, j, k are distinct from each

other.

Definition 4.2. Functor δ1 is a POF1 if and only if



ON ONTOLOGICAL FUNCTORS OF LEŚNIEWSKI’S ELEMENTARY ONTOLOGY 31

∃1≤i6=j 6=...≤3[δ1〈π〉 ≡ SeS1〈π〉 = I.i. ∨ . . . ∨ SeS1〈π〉 = I.j.
︸ ︷︷ ︸

the number of disjuncts is 2 or 3

]

There is also one specific 2-place functor, neither SOF2, nor POF2,

namely Falsum - F2. With its name arguments it gives a false sentence.18

Definition 4.3. A functor δ is an OF1 if and only if

it is either a SOF1, or a POF1, or F1

.4.2. 2-Place Ontological Functors (OF2 − s)

Definition 4.4. Functor δ2 is a SOF2 if and only if

∀π1,π2
∃!1≤i≤16[δ1〈π1, π2〉 ≡ SeS2〈π1, π2〉 = II.i.]

Definition 4.5. Functor δ2 is a POF2 if and only if

∃1≤i6=j 6=...≤16[δ1〈π1, π2〉 ≡ SeS2〈π1, π2〉 = II.i.∨

∨ . . . ∨ SeS2〈π1, π2〉 = II.j.]

There is also one specific 2-place functor, neither SOF2, nor POF2,

namely Falsum - F2. With its name arguments it gives a false sentence.

Definition 4.6. Functor δ2 is an OF2 if and only if δ2 is either

a SOF2, or a POF2, or F2.

.4.3. k ≥ 3-place Ontological Functors

Definition 4.7. Functor δk≥3 is a SOFk≥3 if and only if

∀π1,...,πk
∃!σk≥3

[SeSk≥3〈π1, . . . , πk〉 = σk≥3 ≡ δk≥3〈π1, . . . , πk〉]

Definition 4.8. δk≥3 is a POFk≥3 if and only if

∃σ1

k
6=...6=σu

k
∀π1,...,πk

[δk≥3〈π1, . . . , πk〉 ≡

≡ σ1
k = SeSk〈π1, . . . , πk〉 ∨ . . . ∨ σ

u
k = SeSk〈π1, . . . , πk〉]

Definition 4.9. Functor δk≥3 is Fk≥3 (i.e. falsum functor) if and only

if with its k name arguments, it always gives a false sentence.

18Clearly, it does not fit into definitions of SOF -s or POF -s.



32 RAFA L URBANIAK

Definition 4.10. Functor δk≥3 is an OFk≥3 if and only if it is either

a SOFk≥3, or a POFk≥3, or Fk≥3.

Obviously, a given functor δk is an OF if and only if it is either an OF1,

or an OF2, or an OFk≥3.

Two k-place OF-s, say δ1
k, δ2

k are identical if and only if the truth con-

ditions of sentences obtained by them and their arguments are the same:

Definition 4.11. δ1
k = δ2

k ≡ ∀π1,...,πk
[δ1

k〈π1, . . . , πk〉 ≡ δ2
k〈π1, . . . , πk〉]

.5 Defining Ontological Functors

Lemma 5.1. SeSk = SOFk

Proof. There is a function from the set SOFk onto the set SeSk.

What remains to be shown, is that this function is 1 − 1. While defining,

we are distinguishing subsets of the set of all functors of s
n1,...,nk

. Now, for

any given SeSk, say σk, among all possible k-place functors of category
s

n1,...,nk
, there is at least one functor, say δ1, satisfying the conditions given

in the definition of SOFk, simply because the conditions given are not

contradictory. Now, we show that it is unique. Do notice, that if there

was any functor with the same truth-conditions, according to the definition

4.11 on p. 32, it would be identical with our δ1. Next, if it had different

truth conditions, it either would not be a SoFK , or it would be a SoFK

corresponding to an another SeS1. Hence, for every SeSk there is exactly

one SOFk corresponding to it. �

In our metalanguage we will use variables already introduced. However,

definitions which we will give according to the procedures (these proce-

dures will be described below), will be introduced in an exemplary system

of V ALEO language, in which name variables are a, b, a1, b1, . . . , an, bn.

The definitions of OF -s from now on called: ‘OF-Definitions’ will be equiv-

alences (following the style of Leśniewski19). For the purpose of our paper,

the form of definition makes no difference.

19With the difference, that our definitions will not be preceded by universal quanti-

fier(s). Of course, such an addition, for our purpose would not be essential.



ON ONTOLOGICAL FUNCTORS OF LEŚNIEWSKI’S ELEMENTARY ONTOLOGY 33

.5.1. OF1-s

As it is discernible, there are exactly three SOF1−s. In order to systematize

them, and to give some hints which allow to understand intuitively the

method of defining OF-s further developed, let us construct following table:

SOF1 − s TABLE

I.1. I.2. I.3. Functor

1 0 0 ob

0 1 0 s (from ‘shared’)

0 0 1 fi (from ‘fictitious’)

To each of first three columns of this table there is a corresponding

SeS1. Each line of this table corresponds to an SOF1. We put ‘1’ in a

column of a SeS1, say σ, in the line of a SOF1, say δ, to denote that the

occurrence of σ of given name, say π, is a sufficient condition of the truth

of δ〈π〉. We put ‘0’ in the column of δ in the column of σ to denote that

the non-occurrence of σ of π is a necessary condition of the truth of δ〈π〉.

Hence, we may introduce a convenient general method of referring to

k-place functors:

Instruction 1. After construction of an m+ 1-column table, where m

is the number of possible different SeSk , and each column i− th from the

left of this table corresponds to the i − th of SeSk − es (their order to be

fixed), and the column m+1 is left for placing functor-symbols, every OFk,

say δ, may be represented by a sequence consisting of m elements , each of

which is 0 or 1. The i − th element of the sequence is 1 if and only if in

the i− th column, in the line of δ there is 1. Otherwise, it is 0. Obviously,

there are exactly 2m such sequences.

Thus, the table just given may be extended to include all possible three

place sequences of elements of {0, 1}:20

20Where the names of functors have been already introduced in the history of Ontology,

we simply use them. Where there are no such names, we introduce them.



34 RAFA L URBANIAK

OF1 − s TABLE

I.1. I.2. I.3. Functor

1 0 0 ob

0 1 0 s (from ‘shared’)

0 0 1 fi (from ‘fictitious’)

0 0 0 F1 (from ‘falsum’)

1 1 0 ex

1 0 1 sol

1 1 1 V1 (from ‘verum’)

0 1 1 nob (from ‘non-object’)

Now we define SOF1 with the use of {∧,¬,∀, ε} only.

OF-Definition 1. ob〈a〉 ≡ ∃b[ε〈a, b〉] 21

OF-Definition 2. s〈a〉 ≡ ∃b[ε〈b, a〉] ∧ ¬∃b[ε〈a, b〉]

OF-Definition 3. f〈a〉 ≡ ∀b, c[ε〈b, a〉 ∧ ε〈c, a〉 →

→ ε〈b, c〉 ∧ ε〈c, b〉] ∧ ¬∃b [ε〈b, a〉]

Thus we obviously have:

Lemma 5.2. All SOF1-s are definable by means of {∧,¬,∀, ε} as the

only logical constants.

Here is the method of constructing a definition of any OF1 which is not

a SOF1 by means of SOF1-s:

Instruction 2. 1. Represent the functor to be defined δ1〈a〉 by a

3-place sequence according to the INSTRUCTION 1 on page 33.

2. For every place of the sequence here is exactly one formula corre-

sponding to it; namely: ‘ob〈a〉’ to the first, ’s〈a〉’ to the second, and

‘fi(a)’ to the third.

3. Construct the conjunction of negations of all these three formulas if

and only if no element of the sequence is 1.

21It is important, that (especially particular) quantifiers in our meta-language are

interpreted differently from quantifiers in LEO. The first are understood existentially,

the second are not.



ON ONTOLOGICAL FUNCTORS OF LEŚNIEWSKI’S ELEMENTARY ONTOLOGY 35

4. If and only if more than one element of the sequence is 1, construct

the disjunction of formulas corresponding to these elements.(The case

when exactly one element of the sequence is excluded, since this pro-

cedure is a procedure of defining OF1-s which are not SOF1 − s.)

5. As a result of those steps, a formula is obtained. Let it be τ . The

formula τ is the right side of the definition. The left side is δ1〈a〉.

Construct the formula δ1〈a〉 ≡ τ . this is the definition of δ1.

To make clear the proper understanding of this procedure, we will lead

it for one functor:

Example 5.3. Let us consider the functor ‘ex’. It is represented by

〈1, 1, 0〉 More than one element of this sequence is 1. Hence, we go to the

step 4 and obtain ob〈a〉 ∨ s〈a〉. We obtain the definition:

OF-Definition 4. ex〈a〉 ≡ ob〈a〉 ∨ s〈a〉 4

According to the procedure just characterized, we can proceed with the

remaining definitions of OF1-s. Therefore:

Lemma 5.4. All OF1-s are definable with the use of ‘ε’ as the only

OF.

Proof. According to lemma 5.2 on p. 34 ‘ε’ suffices as the only OF

for defining all SOF1-s. As we have seen, all OF1 not being SOF1-s are

definable by means of SOF1-s.
22 All SOF1 have been defined by means of

‘ε’. Therefore, we can any given expression (also any definition) containing

any OF1 other than replace by an equivalent formula with ‘ε’ as the only

OF . We can do it also in definitions of OF1-s, in which we have used SOF1

in definientibus, thus obtaining definitiones in quarum definientibus

‘ε’ is the only OF. �

.5.2. OF2-s

We consider SOF2-s. As it may be seen from the Ontological Table, there

are 16 exactly different SeS2. Therefore, we can obtain the number of

possible OF2-s. It is equal to the number of SOF2-s.

22Since the usage of non-ontological functors in definitions is obvious, and we are

mainly concerned with ontological functors, we omit the phrase: ‘as the only OF’ where

it is obvious from the context.



36 RAFA L URBANIAK

For convenience, functors for which symbols have not been hitherto in-

troduced in those part of the history of Leśniewski’s Ontology which is

known to the author of this text, will be symbolized by those sequences

of elements of {0, 1}, which correspond to those functors similarly to the

convention introduced for referring to OF1-s. However, this convention re-

quires an extension. First, we construct a similar table. The understanding

of the last column of the table, will be explained in a moment.

SOF2 − s TABLE

1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14 15 16. OF

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 =

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 {2}

0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 {3}

0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 {4}

0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 {5}

0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 {6}

0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 {7}

0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 {8}

0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 {9}

0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 {10}

0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 {11}

0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 {12}

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 {13}

0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 {14}

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 {15}

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 {16}

Instruction 3. It will be convenient to represent OF2-s, excluding F2

and V2 (which will be simply denoted by symbols ‘F2’ and ‘V2’), in some

other way than by 16-place sequences (as the instruction 1 on page 33 would

suggest). First we construct the table being an extension of the SOF2-s

TABLE to OF2-s TABLE. The extension consists in adding all possible

sequences of 0, 1 as lines of the table. An OF2, say δ2, is represented by a

set {k1, . . . , km}, 16 ≥ k1, km ≥ 1, where m is the number of occurrences

of symbol ‘1’ in the line of the OF2- TABLE, which corresponds to this δ2,

and are numbers of columns in which ‘1’ occurs, counting from left, and

∀i,j[ki 6= kj ].

Clearly, all SOF2-s are definable by means of ε as the only OF.23

23I cannot prove it in general, so I simply show it, giving the required definitions below.

To grasp the sense of those definitions it suffices to consider definitions hitherto given

and The Ontological Table.

OF-Definition 5. = 〈a, b〉 ≡ ε〈a, b〉 ∧ ε〈b, a〉

OF-Definition 6. {2} 〈a, b〉 ≡ ob〈a〉 ∧ ob〈b〉 ∧ ¬ε〈a, b〉



ON ONTOLOGICAL FUNCTORS OF LEŚNIEWSKI’S ELEMENTARY ONTOLOGY 37

Example 5.5. The sentence formed from {2} (corresponding to the

second line of SOF2-s TABLE) and its name arguments π1, π2 has exactly

one sufficient truth-condition among SeS-es. Namely, the occurrence of the

semantic status II.2. of 〈π1, π2〉. Therefore we write ‘{2}’. The number of

elements of this sequence ’tells us’ that there is only one SeS2, occurrence

of which is the sufficient condition of the true of the sentence under consid-

eration. The number ‘2’ inside the brackets tells us which of all SeS2-es it

is. 4

Lemma 5.6. All SOF2-s are definable by means of ‘ε’ as the only OF .

All POF2-s can be exhaustively listed out by listing all possible 16-place

OF-Definition 7. {3} 〈a, b〉 ≡ ob〈a〉 ∧ s〈b〉 ∧ ε〈a, b〉

OF-Definition 8. {4} 〈a, b〉 ≡ s〈a〉 ∧ ob〈b〉 ∧ ε〈b, a〉

OF-Definition 9. {5} 〈a, b〉 ≡ ob〈a〉 ∧ s〈b〉 ∧ ¬ε〈a, b〉

OF-Definition 10. {6} 〈a, b〉 ≡ s〈a〉 ∧ ob〈b〉 ∧ ¬ε〈b, a〉

OF-Definition 11. {7} 〈a, b〉 ≡ ob〈a〉 ∧ fi〈b〉

OF-Definition 12. {8} 〈a, b〉 ≡ fi〈a〉 ∧ ob〈b〉

OF-Definition 13. {9} 〈a, b〉 ≡ s〈a〉 ∧ s〈b〉 ∧ ∀c[ε〈c, a〉 ≡ ε〈c, b〉]

OF-Definition 14. {10} 〈a, b〉 ≡ s〈a〉∧s〈b〉∧∀c[ε〈c, a〉 → ε〈c, b〉]∧¬∀c[ε〈c, b〉 ≡ ε〈c, a〉]

OF-Definition 15. {11} 〈a, b〉 ≡ s〈a〉 ∧ s〈b〉 ∧ ¬∀c[ε〈c, a〉 → ε〈c, b〉]∧

∧∀c[ε〈c, b〉 → ε〈c, a〉]

OF-Definition 16. {12} 〈a, b〉 ≡ s〈a〉 ∧ s〈b〉 ∧ ∃c1 [ε〈c1, a〉 ∧ ¬ε〈c1, b〉]∧

∧∃c2 [ε〈c2, a〉 ∧ ε〈c, b〉] ∧ ∃c3 [ε〈c3, b〉 ∧ ¬ε〈c, a〉]

OF-Definition 17. {13} 〈a, b〉 ≡ s〈a〉 ∧ s〈b〉 ∧ ¬∃c[ε〈c, a〉 ∧ ε〈c, b〉]

OF-Definition 18. {14} 〈a, b〉 ≡ s〈a〉 ∧ fi〈b〉

OF-Definition 19. {15} 〈a, b〉 ≡ fi〈a〉 ∧ s〈b〉

OF-Definition 20. {16} 〈a, b〉 ≡ fi〈a〉 ∧ fi〈b〉

We define the falsum 2-place functor F2:

OF-Definition 21. F2〈a, b〉 ≡ ob〈a〉 ∧ ¬ob〈b〉

It is so called, because with its two name arguments it always yields a false proposition.



38 RAFA L URBANIAK

sequences of elements of {0, 1} such that more than one element of sequence

is 1. According to instruction 3 on p. 36, it can be represented by a set

of a specific kind (already described). We can now use our notation for

introducing a general scheme od defining POF2-s:

Instruction 4. Follow the steps:

1. Represent the functor to be defined, say δ2, by a set according to

instruction 3.

2. For every number 16 ≥ i ≥ 1 which may occur in the set such ob-

tained, there is a formula corresponding to it. It is the formula built

from SOF2: ‘{i}’ and its arguments 〈ab〉.

3. Any POF2 is represented by a set {k1, . . . , km}, where 16 ≥ m ≥

2. Construct the disjunction of formulas corresponding to numbers

occurring in this set.

4. As a result of those steps, a formula is obtained. Let it be τ . This τ

is the right side of the definition. The left side is δ2〈a, b〉. Construct

the equivalence : δ2〈a, b〉 ≡ τ . This will be the definition looked

after.

Example 5.7. We proceed to obtain a definition of the functor of strong

inclusion which were listed among 14 OF -s by Lejewski in [2, p. 129-130].

This functor usually it is noted by ‘ <′. However, to avoid ambiguity

of notation, we shall use ‘≺’. This functor occurs in expressions of the

type ≺ 〈α1, α2〉. A sentence built from ‘≺’ and its two name arguments

is true if and only if exactly one of SeS2-es occurs: II.1, II.3., II.9., II.10.

Therefore, we can represent this functor by: ‘{1, 3, 9, 10}’.Consequently, we

define it as follows (according to instruction 3):

OF-Definition 22. ≺ 〈a, b〉 ≡= 〈a, b〉∨{3} 〈a, b〉∨{9} 〈a, b〉∨{10} 〈a, b〉

4

Hence:

Lemma 5.8. All OF2-s are definable by means of ‘ε’ as the only OF.

Proof. The set OF2 is the union of SOF2, POF2, and {F2}. All SOF2-

s are definable by means of ‘ε’ as the only OF (lemma 5.6). Functor ‘F2’



ON ONTOLOGICAL FUNCTORS OF LEŚNIEWSKI’S ELEMENTARY ONTOLOGY 39

is definable by means of ‘ε’ as the only OF. All POF2-s are definable by

means of SOF2 as the only OF-s (instruction 4). By the transitivity of

definability, we obtain the demanded result. �

.5.3. OFk≥3-s

As we have said (definition 3.7 ) any m ≥ 3-place SeSm, say σm, of m

different names, say 〈π1, . . . , πm〉, is identical with the intersection of all

SeS2-es of all pairs being elements of {π1, . . . , πm} × {π1, . . . , πm}. The

deliberations hitherto led, suggest us that it is possible to define each m-

place OF (m ≥ 3) by means of OFk-s (2 ≥ k) as the only OF-s. How to

execute such an operation?

If the number of SeSm-es is settled, let it be k, the number of SOFm

is settled (since it is equal to the number of SeSm-es -lemma 5.1 on p. 32)

- it is k. If the number of SOFm-s is settled, it is easy to determine the

number of OFm-s. It is the number of possible {0, 1} variations of k-place

sequence: 2k. Hence:

Corollary 5.9. OFm≥3 = 2SeSm≥3

We could describe any SeSm≥3 by describing all SeS2-es of all ordered

pairs being elements of {π1, . . . , πm} × {π1, . . . , πm}. However, such a de-

scription would also contain some redundant information.

If we know the SeS2 of π1, π2, we do not have to add any information

regarding π1, π1, or π2, π2.The SeS2 of πi, πi would inform us which of the

states: II.1., II.9., or II.16. takes place between this name and itself. It

is always some kind of identity. II.1., II.9 and II.16 differ only as to the

question, whether I.1., I.2., or I.3. occurs. But such an information we have

already got since we know the SeS2 of π1, π2 , which determines not only

the relation between π1, π2, but also SeS1-es of π1 and π2. (do compare this

statement with e.g. The Ontological Table). Next, if we know the SeS2 of

π1, π2, any additional information about the SeS2 of π2, π1 is redundant.

Generally, for an m-place (m ≥ 3) sequence of names 〈π1, . . . , πm〉to

determine their SeSm is equivalent to determining the SeS2-es of pairs:

〈π1, π2〉, 〈π1, π3〉, . . . , 〈π1, πm〉, 〈π2, π3〉, . . . , 〈π2, πm〉, . . . , 〈πm−1, πm〉.

There are m2−m
2 such pairs. For each pair there are 16 possible SeS2

that may take place for this pair. Therefore:



40 RAFA L URBANIAK

Corollary 5.10. There are 16
m

2
−m

2 possible SeSm≥3-es.

Corollary 5.11. There are 2
16

m
2
−m

2

possible OFm≥3-s.

Instruction 5. Let m ≥ 3. We want to construct an expression uni-

vocally denoting an m-place SOFm, say δm.

1. If δm is a SOFm, than there is only one SeSm of the sequence

〈π1, . . . , πm〉, (let it be σm), such that δm〈π1, . . . , πm〉 is true if and

only if σm of 〈π1, . . . , πm〉 takes place.

2. We reduce σm of 〈π1, . . . , πm〉 to the intersection of SeS2-es: 〈σ1
2 , . . . ,

σ
m2−m

2

2 〉 of (respectively) 〈π1, π2〉, 〈π1, π3〉, . . ., 〈π1, πm〉, 〈π2, π3〉, . . . ,

〈π2, πm〉, . . . , 〈πm−1, πm〉. Therefore we obtain the following sequence:

〈σ1
2 , . . . , σ

m2−m
2

2 〉

3. Each σi
2 is one of 16 SeS2-es. We construct k-place sequence

〈s1, . . . , sk〉 such that:

(a) 16 ≥ si ≥ 1

(b) si = j ≡ σi
2 = II.j.

4. To every number 16 ≥ si ≥ 1 which may occur in the sequence such

obtained, there is a formula corresponding to it. It is the formula

built from SOF2: ‘{si}’ and its arguments 〈ax, by〉, where x, y are the

same indices which occur under the names in the pair corresponding

to si.

5. Obtain the conjunction of all formulas τ1, . . . , τk corresponding to

elements of 〈s1, . . . , sk〉. tel this conjunction be τ .

6. Construct the formula: δm〈a1, . . . , am〉.

7. Construct the equivalence: δm〈a1, . . . , am〉 ≡ τ . This is the definition

looked after.

Hence, we have:

Lemma 5.12. All SOFm≥3-s are definable by means of ‘ε’ as the only

OF.



ON ONTOLOGICAL FUNCTORS OF LEŚNIEWSKI’S ELEMENTARY ONTOLOGY 41

Proof. We can define them by means of SOF2-s, which are themselves

definable by means of ‘ε’. �

Now, we proceed to the last phase of our deliberations. It remains

to give the procedure of representing and defining all OFm≥3-s not being

SOFm≥3-s. The definitions of falsum functors are trivial, so we omit

them. What remains to be given, is a general instruction for referring to

POFm≥3-s, and an instruction for defining them.

Instruction 6. In order to represent any POFm≥3, say δm≥3, we have

to:

1. Settle associated formulas (i.e. formulas being the result of applying

a functor to its arguments, e.g. for δm it is δm〈am, . . . , am〉 ) of all

SOFm -s in a sequence 〈τ1, τ2, . . . , τk〉 (Let k be the number of possible

SOFm-s ). The order is non-essential (as far as we keep to the order

once fixed).

2. When this order is fixed, for each POFm δm there is exactly one

sequence 〈s1, . . . , sk〉 by which this POFm may be represented, where

each si (k ≥ i ≥ 1) is either 0, or 1, and si = 1 if and only if τi

having value 1 is sufficient condition of δm〈a1, . . . , am〉 having value

1; otherwise it is 0. We can represent therefore any δm by such kind

of a sequence.

3. It is possible to list exhaustively all POFm-s by writing out all possible

variations of k-place sequence of elements belonging to {0, 1}.

4. Such a notation may be farther abbreviated for practical purposes.

Namely, instead of writing 〈s1, . . . , sk〉, we can write 〈s′1, . . . , s
′
c〉m,

where for every i, k ≥ s′i ≥ 1, c is the number of all elements of

〈s1, . . . , sk〉 being equal to 1, and for any su, u occurs in 〈s′1, . . . , s
′
c〉m

if and only if su = 1. The number m is equal to the number of ar-

guments of the functor represented. However such a notation makes

an exhaustive listing of possible functors and the description of defin-

ing procedure more complicated. Therefore, for purely theoretical

purposes we still will use sequences of the kind: 〈s1, . . . , sk〉.

5. This notation still can be abbreviated. The problem is, that if we

stay on the level of what has been said in this instruction, all verum



42 RAFA L URBANIAK

functors will remain unabbreviated, and all functors represented by

sequences in which almost all elements are 1 will not lose much of the

longitude of the sequences representing them. That is why we can,

for practical purposes, complicate our instruction. Namely, instead

of writing 〈s1, . . . , sk〉, we can write:

(a) If the number of elements of 〈s1, . . . , sk〉 being equal to 1 is not

bigger than k
2 :

〈s′1, . . . , s
′
c〉

1
m, where c is the number of all elements of 〈s1, . . . ,

sk〉 being equal to 1, and for any su, u occurs in 〈s′1, . . . , s
′
c〉 if

and only if su = 1. The number m is equal to the number of

arguments of the functor represented.

(b) If the number of elements of 〈s1, . . . , sk〉 being equal to 1 is bigger

than k
2 :

〈s′1, . . . , s
′
c〉

0
m, where c is the number of all elements of 〈s′1, . . . , s

′
c〉

being equal to 0, and for any su , u occurs in 〈s′1, . . . , s
′
c〉 if

and only if su = 0. The number m is equal to the number of

arguments of the functor represented.

We give a schema for defining POFm-s:

Instruction 7. Assuming that we want to define an POFm, let it be

δm.

1. We have settled the sequence of associated formulas (i.e. formulas

being the result of applying a functor to its arguments, e.g. for δm it

is δm〈am, . . . , am〉 ) of all SOFm -s in a sequence 〈τ1, τ2, . . . , τk〉 (Let

k be the number of possible SOFm-s ). We represented our δm by a

sequence 〈s1, . . . , sk〉, whereas each si (k ≥ i ≥ 1) is either 0, or 1,

and si = 1 if and only if τi having value 1 is sufficient condition of

δm〈a1, . . . , am〉 having value 1; otherwise it is 0.

2. To any si there is a corresponding formula, namely τi. Form a disjunc-

tion of all formulas corresponding to those elements of the sequence

〈s1, . . . , sk〉, which are equal to 1. Let the formula obtained be τ .

3. Form an associated formula of δm i.e. δm〈a1, . . . , am〉. Obtain the

equivalence: δm〈a1, . . . , am〉 ≡ τ . This is the definition looked after.



ON ONTOLOGICAL FUNCTORS OF LEŚNIEWSKI’S ELEMENTARY ONTOLOGY 43

Lemma 5.13. All OFm≥3-s are definable by means of ‘ε’ as the only

ontological functor.

Proof. All SOFm≥3-s are definable by means of ‘ε’ as the only OF. All

POFm≥3-s are definable by means of SOFm≥3-s, according to the procedure

given above. Therefore, by extensionality for equivalence, and the fact, that

definitions are equivalences, all POFm≥3-s are definable by means of ‘ε’ as

the only OF. 24
�

Next, we have:

Theorem 5.14. All OF-s are definable by means of ‘ε’ as the only OF.

Proof. All OF1-s, all OF2-s, and all OFm≥3-s are definable by means

of ‘ε’ as the only OF. Therefore, all OF-s are definable by means of ‘ε’ as

the only OF. �

.References

[1] K. Ajdukiewicz, Sprawozdanie z dzia lalności Seminarium Pracowni Logiki Polskiej

Akademii Nauk za IV kwarta l 1955 r., [in:] Studia Logica, V (1957).

[2] C. Lejewski, On Leśniewski’s Ontology [in:] ”Leśniewski’s Systems. Ontology and

Mereology, Editors: Jan T.J. Srzednicki, V.F. Rickey, J. Czelakowski, Polish

Academy of Sciences, Institute of Philosophy and Sociology, Matrinus Nijhoff Pub-

lishers, The Hague/ Boston/ Lancaster/Wroc law, 1984, pp. 123–149

[3] A. Pietruszczak. Bezkwantyfikatorowy Rachunek Nazw. Systemy i ich Metateoria.,

Wydawnictwo Adam Marsza lek, Toruń, 1991

Department of Philosophy

University of Calgary

Calgary, Alberta T2N 1N4

Canada

rafal.urbaniak@ucalgary.ca

24Obviously, we might have as well treated definitions as formulated in meta-language;

the consequence would still hold, by definitional extensionality.


