REPORTS ON MATHEMATICAL LOGIC 40 (2006), 3–13

Kazimierz SWIRYDOWICZ

UPPER PART OF THE LATTICE OF EXTENSIONS OF THE POSITIVE RELEVANT LOGIC \mathbf{R}^+

A b s t r a c t. In this paper it is proved that the interval $[\mathbf{R}^+, L(\mathbf{2}^+)]$ of the lattice of extensions of the positive (i.e. negationless) relevant logic \mathbf{R}^+ has exactly two co-atoms $(L(\mathbf{2}^+))$ denotes here the only Post-complete extension of \mathbf{R}^+). One of these two co-atoms is the only maximal extension of \mathbf{R}^+ which satisfies the *relevance property*: if $A \to B$ is a theorem then A and B have a common variable. A result of this kind for the relevant logic \mathbf{R} was presented in Swirydowicz [1999].

1. Preliminaries. R^+ -algebras

1. Let a set of propositional variables p, q, r, ... be given and let F be the set of propositional formulae built up from propositional variables by means of the connectives: \rightarrow (implication), \wedge (conjunction), \vee and (disjunction).

Received 31 May 2004

The positive (i.e. negationless) Anderson and Belnap logic \mathbf{R}^+ with relevant implication (cf. A.R. Anderson, N.D. Belnap [1975]) is defined as the subset of propositional formulae of F which are provable from the set of axiom schemes indicated below, by application of the rule of Modus Ponens (MP; $A, A \rightarrow B/B$) and the Rule of Adjunction ($A, B/A \wedge B$):

$$\begin{array}{ll} A1. \quad A \to A \\ A2. \quad (A \to B) \to ((B \to C) \to (A \to C)) \\ A3. \quad A \to ((A \to B) \to B) \\ A4. \quad (A \to (A \to B)) \to (A \to B) \\ A5. \quad A \wedge B \to A \\ A6. \quad A \wedge B \to B \\ A7. \quad (A \to B) \wedge (A \to C) \to (A \to B \wedge C) \\ A8. \quad A \to A \lor B \\ A9. \quad B \to A \lor B \\ A10. \quad (A \to B) \wedge (C \to B) \to (A \lor C \to B) \\ A11. \quad (A \wedge (B \lor C)) \to ((A \wedge B) \lor C) \end{array}$$

Lemma 1.1. The formulae listed below are theorems of \mathbf{R}^+ :

$$\begin{array}{ll} (t1) & (p \to q) \land (r \to s) \to (p \land r \to q \land s), \\ (t2) & (p \to q) \land (r \to s) \to (p \lor r \to q \lor s), \\ (t3) & (p \lor q \to r) \to (p \to r), \\ (t4) & (p \to q \land r) \to (p \to r), \\ (t5) & (p \to (q \to r)) \to (q \to (p \to r)). \\ (t6) & ((p \land q) \lor r) \to (p \land (q \lor r)) \\ (t7) & (p \to (q \to r)) \to ((p \to q) \to (p \to r)) \end{array}$$

2. To present an algebraic semantics for the logic \mathbf{R}^+ we will exercise some ideas presented in the paper of W. Dziobiak (cf. W. Dziobiak [1983]) and a paper of J. Font and G. Rodriguez (cf. J. Font and G. Rodriguez [1990]).

Definition 1.2. Let $\mathbf{A} = \langle A, \wedge, \vee, \rightarrow \rangle$ be an algebra similar to the algebra F of formulae. Then \mathbf{A} is an R^+ -algebra if and only if the reduct $\langle A, \wedge, \vee \rangle$ is a distributive lattice and moreover the following equalities and inequalities hold:

D1. $(x \to y) \leq ((y \to z) \to (x \to z))$ D2. $(x \to (x \to y)) \leq (x \to y)$ D3. $(x \to (y \land z)) = (x \to y) \land (x \to z)$ D4. $((x \lor y) \to z) = ((x \to z) \land (y \to z))$ D5. $(x \to (y \to z)) \leq (y \to (x \to z))$ D6. $x \leq ((x \to y) \land z) \to y$ D7. $(x \to x) \land (y \to y) \to z \leq z$ where \leq denotes the partial order in **A**.

Let us note that by the Definition the class of R^+ -algebras is a variety, because is equationally defined. Let us denote this variety by \mathcal{R}^+ .

Let **A** be a R^+ -algebra and let $\nabla_{\mathbf{A}} = [\{a \to a : a \in A\})$ i.e. let $\nabla_{\mathbf{A}}$ be a filter generated by all elements of the form $a \to a$. Then the pair $\langle \mathbf{A}, \nabla_{\mathbf{A}} \rangle$ will be called a R^+ -matrix. It is easy to prove that the relation \preceq defined on A as follows: $x \preceq y$ iff $(x \to y) \in \nabla_{\mathbf{A}}$ is a partial order on A.

Lemma 1.3 (Font and Rodriguez). 1. Let \mathbf{A} be an R^+ -algebra. Then the relations \leq and \leq on A coincide, i.e. $x \to y \in \nabla_{\mathbf{A}}$ iff $x \leq y$. 2. Let the relation \sim_{R^+} be defined on the set F of formulae as follows: $A \sim_{R^+} B$ iff $A \to B$ as well as $B \to A$ are theorems of \mathbf{R}^+ . Then the algebra \mathbf{F}/\sim_{R^+} is a free R^+ -algebra (\mathbf{F} denotes here the algebra of formulae).

The logic \mathbf{R}^+ is algebraizable in the sense of W.J. Blok and D. Pigozzi (cf. Blok and Pigozzi [1989]) and the variety \mathcal{R}^+ is the equivalent algebraic semantics for \mathbf{R}^+ ; the proofs presented by P. Font and G. Rodriguez in [1990] for the logic \mathbf{R} work for \mathbf{R}^+ as well.

Let $\langle \mathbf{A}, \nabla_{\mathbf{A}} \rangle$ be a R^+ -matrix. A filter ∇ on \mathbf{A} is said to be *normal* iff $\nabla_{\mathbf{A}} \subseteq \nabla$. It is known that each normal filter on \mathbf{A} determine a congruence on \mathbf{A} (cf. Dziobiak [1983]). Note that it follows from the results concerning algebraizability of \mathbf{R}^+ that in each R^+ -algebra the lattice of normal filters and the lattice of congruences are isomorphic.

At last let us note that the following useful Proposition holds.

Proposition 1.4. Each finitely generated R^+ -algebra has a least and a greatest element.

A proof of this Proposition can be obtained by a slight modification of the proof of similar Proposition for R-algebras (cf. Swirydowicz [1999], Proposition 5).

2. Co-atoms in the interval $[\mathbf{R}^+, L(\mathbf{2}^+)]$

Let us begin with the Post-complete extensions of the logic \mathbf{R}^+ . It is known that the only Post-complete axiomatic extension of \mathbf{R}^+ is the logic generated by the two-element algebra $\langle \{0, 1\}, \wedge, \vee, \rightarrow \rangle$, where the set $\{0, 1\}$ is the two-element lattice with 0 < 1 and the two-argument operation \rightarrow is defined in the well-known way: $1 \rightarrow 0 = 0$ and $1 \rightarrow 1 = 0 \rightarrow 1 = 0 \rightarrow 0 = 1$. Let us denote here this algebra by $\mathbf{2}^+$. However, I do not know any proof of this fact, so I decided to present a simple algebraic proof of this fact here.

Let $L(2^+)$ be the logic generated by the algebra 2^+ .

Lemma 2.1. The logic $L(2^+)$ is the only Post-complete extension of the logic \mathbf{R}^+ .

Proof. Let $\mathbf{R}^+ \subseteq L$ and let L be a nontrivial logic. Let V_L be a variety which determines the logic L and let $\mathbf{A} \in V_L$ be a nontrivial algebra. At last, let \mathbf{B} be a nontrivial finitely generated subalgebra of \mathbf{A} . Let us denote by $\nabla_{\mathbf{B}}$ the filter of designated elements of the algebra \mathbf{B} . By Proposition 1.4 \mathbf{B} , has the least and the greatest element; let us denote them by 0 and 1, respectively. We prove now that the set $\{0, 1\}$ is closed under the operation \rightarrow .

Since $1 \in \nabla_{\mathbf{B}}$, $1 \to 0 \le 0$ (because if $x \in \nabla_{\mathbf{B}}$ then $x \to y \le y$ for any $y \in B$). Thus we have $1 \to 0 = 0$.

To show that $0 \to 0 = 1$ we argue as follows. It is clear that $(0 \to 0) \in \nabla_{\mathbf{B}}$ and that $0 \to 0 \leq 1$. We will show that it is impossible that $0 \to 0 < 1$. So, let us assume that $0 \to 0 < 1$. Since $1 \in \nabla_{\mathbf{B}}$, $1 \to (0 \to 0) \leq (0 \to 0)$. Moreover, since $x \leq y$ if and only if $(x \to y) \in \nabla_{\mathbf{B}}$, $1 \to (0 \to 0) \notin \nabla_{\mathbf{B}}$, because we have assumed that $(0 \to 0) < 1$. In consequence $1 \to (0 \to 0) \notin (0 \to 0)$, because if $(0 \to 0) \leq 1 \to (0 \to 0)$ then (since $(0 \to 0) \in \nabla_{\mathbf{B}}$) $1 \to (0 \to 0) \in \nabla_{\mathbf{B}}$, and it is a contradiction. Thus $1 \to (0 \to 0) < (0 \to 0)$. On the other hand we have (by commutation and the equality $1 \to 0 = 0$): $1 \to (0 \to 0) = 0 \to (1 \to 0) = 0 \to 0$, and it is a contradiction which follows from the assumption that $0 \to 0 < 1$. Thus $0 \to 0 = 1$.

The equality $1 \to 1 = 1$ we prove as follows. It is clear that $1 \to 1 \leq 1$. For the converse, let us note that by $(x \to y) \leq (y \to z) \to (x \to z)$ we have $(0 \to 0) \leq (0 \to 0) \to (0 \to 0)$, i.e. (by $(0 \to 0) = 1$) $1 \leq (1 \to 1)$.

And the last equality: $0 \to 1 = 1$. It is clear that $0 \to 1 \leq 1$. For the converse, let us observe that $0 \leq 1$, thus $(0 \to 1) \in \nabla_{\mathbf{B}}$. But we have $(0 \to 1) = (0 \to (1 \to 1)) = 1 \to (0 \to 1)$, thus $(1 \to (0 \to 1)) \in \nabla_{\mathbf{B}}$, thus $1 \le (0 \to 1)$ and it finishes the proof.

We describe now two algebras which will play a crucial role in further considerations.

Let $\mathbf{3}_1 = \langle \{0, a, 1\}, \wedge, \vee, \rightarrow \rangle$ be an algebra such that $\langle \{0, a, 1\}, \wedge, \vee, \rangle$ is the three-element lattice (0 < a < 1) and let the two-argument operation \rightarrow will be defined by the following table:

$$\begin{array}{c|cccc} \to & 0 & a & 1 \\ \hline 0 & 1 & 1 & 1 \\ a & 0 & a & 1 \\ 1 & 0 & 0 & 1 \end{array}$$

 $\mathbf{3}_1$ is the positive reduct of the 3-element Sugihara algebra.

Let $\mathbf{3}_2 = \langle \{0, b, 1\}, \wedge, \vee, \rightarrow \rangle$ be an algebra such that $\langle \{0, b, 1\}, \wedge, \vee, \rangle$ is the three-element lattice (0 < b < 1) and let the two-argument operation \rightarrow will be defined by the following table:

 $\mathbf{3}_2$ is a \perp -free reduct of 3-element Heyting algebra.

Lemma 2.2. The algebra $\mathbf{3}_1$ as well as the algebra $\mathbf{3}_2$ are R^+ -algebras.

Theorem 2.3. If V is a non-trivial R^+ -variety and $V \neq V(2^+)$ then either $\mathbf{3}_1 \in V$ or $\mathbf{3}_2 \in V$.

Proof. Let V be a R^+ -variety and $V \neq V(2^+)$. Then there exists a nontrivial algebra **A** in V, which does not belong to $V(2^+)$ (it is e.g. a V-free algebra) and there exists a finitely generated nontrivial subalgebra **B** of the algebra **A** such that $\mathbf{B} \notin V(2^+)$. By Proposition 1.4 **B** contains the least and the greatest element; let us denote them by 0 and 1, respectively. Moreover, by Dziobiak [1983], Lemma 1.2 the filter of designated element of **B** is a principal filter.

We will consider two cases: either the filter of designated elements of \mathbf{B} consists of 1 only, or consists of greater number of elements.

Case 1. $\nabla_{\mathbf{B}} \neq [1)$; let $\nabla_{\mathbf{B}} = [a), a \neq 1$.

We will prove that the algebra $\mathbf{3}_1$ is a subalgebra of **B**.

Note first that $1 \to a \leq a$. It is true because since $a \leq 1, 1 \to a \leq a \to a$ and $a \to a = a$ (cf. point b). below).

However, $1 \to a \neq a$. It is known that $x \leq y$ iff $(x \to y) \in \nabla_{\mathbf{B}}, a \in \nabla_{\mathbf{B}}$. So if $1 \to a = a$, $(1 \to a) \in \nabla_{\mathbf{B}}$ and in consequence $1 \leq a$, but it is impossible, because we assumed that $a \neq 1$.

Thus we have a chain $0 < (1 \rightarrow a) < a < 1$. Let us take the subalgebra generated by the set $\{1 \rightarrow a, a, 1\}$. It is a three-elements chain, so is closed under lattice operations; we prove that this set is closed under \rightarrow as well, and the ,, \rightarrow -table" is just the table for $\mathbf{3}_1$ (modulo symbols for elements):

\rightarrow	$1 \rightarrow a$	a	1
$1 \rightarrow a$	1	1	1
a	$1 \rightarrow a$	a	1
1	$1 \rightarrow a$	$1 \rightarrow a$	1

a) $1 \to 1 = 1$ (cf. Lemma 2.1).

b) $a \rightarrow a = a$.

Proof: Since $a \in \nabla_{\mathbf{B}}$, $a \to a \leq a$. Conversely, since a generates the filter of designated elements, $a \leq a \to a$.

c) $a \rightarrow 1 = 1$.

Proof: Since a generates $\nabla_{\mathbf{B}}$, $a \leq 1 \rightarrow 1$ and by commutation $1 \leq a \rightarrow 1$. d) $(1 \rightarrow a) \rightarrow a = 1$.

Proof:

It is clear that $(1 \to a) \to a \leq 1$. For the converse, since $1 \to a \leq 1 \to a$, so by commutation $1 \leq (1 \to a) \to a$).

e) $(1 \rightarrow a) \rightarrow (1 \rightarrow a) = 1.$

Proof:

By a) and d) we have: $1 = 1 \rightarrow 1 = 1 \rightarrow ((1 \rightarrow a) \rightarrow a) = (1 \rightarrow a) \rightarrow (1 \rightarrow a)$.

f) $1 \rightarrow (1 \rightarrow a) = 1 \rightarrow a$.

Proof:

 $(p \to (p \to q) \to (p \to q) \in \mathbf{R}^+$, thus $1 \to (1 \to a) \le (1 \to a)$. For the converse, by e) it is known that $1 \le (1 \to a) \to (1 \to a)$, thus $(1 \to a) \le 1 \to (1 \to a)$.

g) $(1 \to a) \to 1 = 1.$

Proof: Since $1 \to a \le 1$, by a) $1 \to a \le 1 \to 1$, thus $1 \le (1 \to a) \to 1$. h) $a \to (1 \to a) = 1 \to a$. Proof: By b), $a \to a = a$, thus by commutation $a \to (1 \to a) = 1 \to (a \to a) = 1 \to a$.

and it finishes the proof for the first case.

Case 2. Let $\nabla_{\mathbf{B}} = \{1\}$, but $\mathbf{B} \notin V(\mathbf{2}^+)$ (such algebras exist; $\mathbf{3}_2$ is an example of such algebra).

Since $\nabla_{\mathbf{B}} = \{1\}$, **B** is a Heyting algebra, and generally, algebras with $\{1\}$ as filter of designated elements are Heyting algebras. However, the algebra $\mathbf{3}_2$ belongs to every variety of Heyting algebras that properly contains $V(\mathbf{2}^+)$. That finishes the proof.

3. Maximal strictly relevant extension of the logic R⁺ and its syntactical characterization

1. Let us begin with definitions. An extension L of the logic \mathbf{R}^+ is said to be *strictly relevant* iff L preserves the *relevance property*: if $A \to B$ is a theorem of L then A and B have a common variable. It is known that \mathbf{R}^+ preserves the relevance property. We will now look for maximal strictly relevant extensions of \mathbf{R}^+ , i.e. these extensions which preserve relevance property.

It is easy to note that the algebra $\mathbf{3}_1$, i.e. the R^+ algebra $\langle \{0, a, 1\}, \lor, \land, \rightarrow \rangle$, where 0 < a < 1 and the operation \rightarrow is defined as follows

contains two trivial (i.e. one-element) subalgebras: $\langle \{a\}, \lor, \land, \rightarrow \rangle$ and $\langle \{1\}, \lor, \land, \rightarrow \rangle$. Moreover, all non-relevant implications (in the language without negation) are falsified in this algebra.

For, let us take an implication $A \to B$ such that A and B not have a common variable. Let us define a valuation v as follows: $v(p_i) = 1$ for all

 p_i of A, and $v(q_i) = a$ for all q_i of B and extend v to a homomorphism. We have now: $v(A \to B) = v(A) \to v(B) = 1 \to a = 0$. Since 0 is not a designated element of $\mathbf{3}_1, A \to B$ cannot be an \mathbf{R}^+ -tautology.

Theorem 3.1. Among extensions of \mathbf{R}^+ satisfying the relevance principle the logic $L(\mathbf{3}_1)$ is the only maximal one.

Proof. Note that by previous theorem all non-trivial varieties of \mathbb{R}^+ algebras different from $V(\mathbf{2}_+)$ contain either $\mathbf{3}_1$ ot $\mathbf{3}_2$. Since $\mathbf{3}_2$ does not
falsify all non-relevant implications (e.g. does not falsify $(p \to p) \to (q \to q)$), and $\mathbf{3}_1$ falsifies all of them, the logic $L(\mathbf{3}_1)$ must be the only maximal
logic which preserve the relevance principle. It finishes the proof.

2. Similarly as in the case of maximal strictly relevant extensions of the relevant logic **R** (cf. K. Swirydowicz [1999]) we present a syntactical characterization of the maximal strictly relevant extension of the logic \mathbf{R}^+ .

Lemma 3.2. Let \mathbf{A} be an \mathbb{R}^+ -algebra. If \mathbf{A} contains a trivial subalgebra $\langle \{a\}, \wedge, \vee, \rightarrow \rangle$, where $a \neq 1$ (if \mathbf{A} contains an unit, of course), algebra $\mathbf{3}_1$ is a subalgebra of \mathbf{A} .

Proof. Let $\langle \{a\}, \wedge, \vee, \rightarrow \rangle$ be a trivial subalgebra of **A** and let $a \neq 1$, where $a \neq 1$. Of course, $a \rightarrow a = a$, thus *a* belons to the filter of designated elements of **A**.

A. Assume that **A** has an unit. In such a case the set $\{1 \rightarrow a, a, 1\}$ is closed under basic operations of **A**, i.e. this set is a subalgebra of **B** isomorphic to **3**₁.

B. Let **A** does not have a unit. Thus there exists a *b* in **A** such that a < b. Let us take a subalgebra **B** generated by *a* and *b*. By Theorem 1 this subalgebra has a unit; denote it by $1_{\mathbf{B}}$. This case can be reduced to the previous one: we will consider now the set $\{a, 1_{\mathbf{B}}, 1_{\mathbf{B}} \rightarrow a\}$. This finishes the proof.

Now, let $D(\mathbf{3_1}) = (p \to (p \to p)) \land ((p \to p) \to p) \land (p \to q) \land (p \to p),$ and let $\chi(\mathbf{3_1}) = D(\mathbf{3_1}) \land (q \to q) \to (q \to p).$

Let $\mathcal{A} = \langle \mathbf{A}, \nabla_{\mathbf{A}} \rangle$ be an R^+ -matrix and let $E(\mathcal{A})$ be the set of all \mathcal{A} tautologies, i.e. the set of all formulae whose value belongs to $\nabla_{\mathcal{A}}$ under any valuation. By $E(\mathbf{3_1})$ denote the set of $\mathbf{3_1}$ -tautologies, i.e. all the the formulae A which satisfy the condition: h(A) = 1 or h(A) = a where a, 1 belong to $\mathbf{3_1}$.

Now we prove a Jankow-style lemma.

Lemma 3.3. Let **A** be an \mathbf{R}^+ -algebra and let $\mathcal{A} = \langle \mathbf{A}, \nabla_{\mathbf{A}} \rangle$ be a matrix determined by this algebra. Then the following conditions are equivalent:

- (i) $\chi(\mathbf{3}_1) \notin E(\mathcal{A})$
- (*ii*) $\mathbf{3_1} \in HS(\mathbf{A}),$
- (*iii*) $E(\mathcal{A}) \subseteq E(\mathbf{3}_1).$

Proof. $(i) \Rightarrow (ii)$. Let **A** be an **R**⁺-algebra and let $\mathcal{A} = \langle \mathbf{A}, \nabla_{\mathbf{A}} \rangle$ be the matrix determined by this algebra. Let $\chi(\mathbf{3_1}) \notin E(\mathcal{A})$. Then there is a valuation h such that $h(\chi(\mathbf{3_1})) \notin \nabla_{\mathbf{A}}$.

Note that even if the algebra **A** has a unit and a zero (denote them by $1_{\mathbf{A}}, 0_{\mathbf{A}}$, respectively), $h(D(\mathbf{3_1}) \land (q \rightarrow q)) \neq 0_{\mathbf{A}}$, because if not, then $h(\chi(\mathbf{3_1})) = 1_{\mathbf{A}}$.

Moreover, $h(p) \neq h(q)$. To prove it, assume that h(p) = h(q) and let h(p) = b. Now, since $h(\chi(\mathbf{3_1})) \notin \nabla_{\mathbf{A}}$, the inequality $(b \to (b \to b)) \land ((b \to b) \to b) \land (b \to b) \leq (b \to b)$ cannot hold for this b. However, this inequality is simply an instance of a well-known lattice inequality $x \land y \leq y$. Thus $h(p) \neq h(q)$.

Finally, note that $h(q \to p)$ does not belong to $\nabla_{\mathbf{A}}$. For if it does, then $h(q) \leq h(p)$, and since $x \leq y$ entails here $z \to x \leq z \to y$, $h(q \to q) \leq h(q \to p)$. Note that in each lattice the following implication holds: if $x \leq y$, then $z \wedge x \leq y$, thus $h(\chi(\mathbf{3}_1)) \in \nabla_{\mathbf{A}}$, but it is impossible.

Consider now a subalgebra of **A**, generated by h(p), h(q); denote this subalgebra by **B**. Note that the filter $\nabla_{\mathbf{B}} = [h(p \to p) \land h(q \to q))_{\mathbf{B}}$ is a filter of designated elements of the matrix \mathcal{B} , determined by the algebra **B**. Thus the filter $\nabla = [h(D(\mathbf{3}_1) \land (q \to q))_{\mathbf{B}}$ is a nontrivial normal filter on $\mathbf{B} \ (\mathbf{0}_{\mathbf{A}} \notin \nabla, \nabla_{\mathbf{B}} \subseteq \nabla)$. Note now that $h(q \to p) \notin \nabla$. For if it does, then $h(D(\mathbf{3}_1) \land (q \to q)) \leq h(q \to p)$, i.e. $h(\chi(\mathbf{3}_1)) \in \nabla_{\mathbf{A}}$, but it is impossible. It follows from it that in fact the normal filter ∇ is nontrivial. Thus ∇ determines a (nontrivial) congruence relation $\Theta(\nabla)$ in the algebra **B**.

We prove now that the algebra $\mathbf{3}_1$ is a subalgebra of the quotient algebra $\mathbf{B}/\Theta(\nabla)$.

Let us denote by ∇^* the filter of designated elements of $\mathbf{B}/\Theta(\nabla)$ and let us introduce the following abbreviations: $a = h(p)/\Theta(\nabla), b = h(q)/\Theta(\nabla).$ a) Since $h(D(\mathbf{3}_1))/\Theta(\nabla) \in \nabla^*$, the equality $a \to a = a$ as well as the inequality $a \leq b$ hold. Of course, the set $\{a\}$ is closed under lattice operations, thus it is a one-element subalgebra of the algebra $\mathbf{B}/\Theta(\nabla)$.

b) $b \to a$ does not belong to ∇^* . Assume contrary. Then $h(q)/\Theta(\nabla) \leq h(p)/\Theta(\nabla)$, and since $h(p) \to h(q) \in \nabla$, $h(p) \equiv h(q)(\Theta(\nabla))$, thus $h(q) \to h(p) \in \nabla$, but it is impossible (cf. above).

It follows from it that although in our algebra the inequality $a \leq b$ holds, nevertheless the equality a = b does not hold, thus a < b. Note that a cannot be an unit of the quotient algebra.

In this way we proved that the assumptions of the previous Lemma are satisfied. In consequence $\mathbf{3}_1 \in SHS(\mathbf{A})$, thus $\mathbf{3}_1 \in HS(\mathbf{A})$.

 $(ii) \Rightarrow (iii)$: Obvious.

 $(iii) \Rightarrow (i)$: Let *h* be a valuation of the algebra of formulae **F** in the algebra **3**₁ which satisfies the following conditions: h(p) = a, h(q) = 1. Thus $h(D(\mathbf{3}_1 \land (q \rightarrow q)) = a$ and $h(q \rightarrow p) = 0$; since in **3**₁ the equality $a \rightarrow 0 = 0$ holds, $\chi(\mathbf{3}_1) \notin E(\mathcal{A})$, and it finishes the proof of this Lemma.

The last Theorem is a simple consequence of this Lemma.

Theorem 3.4. Let L be an extension of the relevant logic \mathbf{R}^+ . Then for L the relevance principle holds if and only if the formula $\chi(\mathbf{3}_1)$, i.e. the formula $(p \to (p \to p)) \land ((p \to p) \to p) \land (p \to q) \land (p \to p) \land (q \to q) \to$ $(q \to p)$ is not a theorem of L.

References

- A.R.A. Anderson, N. Belnap, Entailment vol. 1, Princeton 1975.
 W.J. Blok, D. Pigozzi, *Algebraizable Logics*, Mem.Amer.Math.Soc. **396** (1989).
- [2] W. Dziobiak, There are 2^{ℵ0} Logics with the Relevance Principle between R and RM, Studia Logica XLII, 1 (1983), pp. 49–60.
- J. Font, G. Rodriguez, A Note on Algebraic Models for Relevance Logic, ZMLGM, 36 (1990), pp. 535–540.
- [4] L. Maximowa, Struktury s implikacjej, Algebra i Logika 12 (1973), pp. 445-467.
- [5] K. Swirydowicz, There Exist Exactly Two Strictly Relevant Extensions of the Relevant Logic R, JSL, vol. 64 (1999), pp. 1125–1154.

upper part of the lattice of extensions of the relevant logic ${\bf r}^+ \ 13$

Faculty of Mathematics and Computer Science Adam Mickiewicz University Poznan, Poland swirydow@math.amu.edu.pl