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UPPER PART OF THE LATTICE OF
EXTENSIONS OF THE POSITIVE RELEVANT
LOGIC R*

A bstract In this paper it is proved that the interval
[RT, L(21)] of the lattice of extensions of the positive (i.e. nega-
tionless) relevant logic R has exactly two co-atoms (L(2%) de-
notes here the only Post-complete extension of R*). One of these
two co-atoms is the only maximal extension of R™ which satisfies
the relevance property. if A — B is a theorem then A and B have
a common variable. A result of this kind for the relevant logic R
was presented in Swirydowicz [1999].

1. Preliminaries. R*-algebras

1. Let a set of propositional variables p,q,r,... be given and let F' be the
set of propositional formulae built up from propositional variables by means
of the connectives: — (implication), A (conjunction), V and (disjunction).
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The positive (i.e. negationless) Anderson and Belnap logic R with rele-
vant implication (cf. A.R. Anderson, N.D. Belnap [1975]) is defined as the
subset of propositional formulae of F' which are provable from the set of
axiom schemes indicated below, by application of the rule of Modus Ponens
(MP; A, A — B/B) and the Rule of Adjunction ( A, B/A A B):
Al. A— A
A2. (A-B)—((B—C)—(A—0))
A3. A— ((A— B) — B)
A4. (A—- (A— B))— (A— B)
A5. ANB— A
A6. ANB— B
A7T. (A—-B)AN(A—C)— (A—BANC)
A8. A— AV B
A9. B— AVB
A10. (A—-B)A(C—-B)— (AvC — B)
All. (AN(BVC))— ((AANB)V(O)

Lemma 1.1. The formulae listed below are theorems of R*:

(t1) (p—= @ N(r—s)—=(pAT—qNs),
(t2) (p—= @ N(r—s)—(pVr—qVs),
(t3) (pVgqg—r)—(p—r),
(t4) (p—qAr)—(p—r),
(t5) (p—(q—r)—(@—@—r).
(t6) (pAg)Vr)— (pA(gVr))

(

(t7)

p—=(@—r)—=(p—q9 —@—r))

2. To present an algebraic semantics for the logic R™ we will exercise
some ideas presented in the paper of W. Dziobiak (cf. W. Dziobiak [1983])
and a paper of J. Font and G. Rodriguez (cf. J. Font and G. Rodriguez
[1990]).

Definition 1.2. Let A = (A,A,V,—) be an algebra similar to the
algebra F' of formulae. Then A is an R"-algebra if and only if the reduct
(A, A, V) is a distributive lattice and moreover the following equalities and
inequalities hold:
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D1. (
D2. (
D3. (2= (yA2) = (@ — y) A (e — 2)
DL ((wVy) —2) = (& — 2) Aly — 2)
D5. | )<y — (@ — 2)
D6. z<((z—y)Nz)—y

D7. (z—x)N(y—y) —2<z

where < denotes the partial order in A.

Let us note that by the Definition the class of RT-algebras is a variety,
because is equationally defined. Let us denote this variety by R ™.

Let A be a RT-algebra and let VA = [{a — a:a € A}) ie. let Va bea
filter generated by all elements of the form a — a. Then the pair (A, V)
will be called a R*-matriz. It is easy to prove that the relation < defined
on A as follows: x <y iff (x — y) € V is a partial order on A.

Lemma 1.3 (Font and Rodriguez). 1. Let A be an R -algebra.
Then the relations < and < on A coincide, i.e. © —y € Va iff x <y.
2. Let the relation ~p+ be defined on the set F of formulae as follows:
A ~p+ B iff A — B as well as B — A are theorems of RT. Then
the algebra ¥/ ~p+ is a free RT-algebra (F denotes here the algebra of
formulae).

The logic RT is algebraizable in the sense of W.J. Blok and D. Pigozzi
(cf. Blok and Pigozzi [1989]) and the variety R is the equivalent algebraic
semantics for R™; the proofs presented by P. Font and G. Rodriguez in
[1990] for the logic R work for R as well.

Let (A,Va) be a RT-matrix. A filter V on A is said to be normal iff
Va C V. It is known that each normal filter on A determine a congruence
on A (cf. Dziobiak [1983]). Note that it follows from the results concerning
algebraizability of R™ that in each R*-algebra the lattice of normal filters
and the lattice of congruences are isomorphic.

At last let us note that the following useful Proposition holds.

Proposition 1.4. Each finitely generated R™ -algebra has a least and a
greatest element.

A proof of this Proposition can be obtained by a slight modification
of the proof of similar Proposition for R-algebras (cf. Swirydowicz [1999],
Proposition 5).
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2. Co-atoms in the interval [R*, L(2")]

Let us begin with the Post-complete extensions of the logic RT. Tt is
known that the only Post-complete axiomatic extension of R is the logic
generated by the two-element algebra ({0, 1}, A, V, —), where the set {0,1}
is the two-element lattice with 0 < 1 and the two-argument operation — is
defined in the well-known way: 1 = 0=0and1 -1=0—-1=0—0=1.
Let us denote here this algebra by 2. However, I do not know any proof of
this fact, so I decided to present a simple algebraic proof of this fact here.
Let L(2T) be the logic generated by the algebra 27.

Lemma 2.1. The logic L(2%) is the only Post-complete extension of
the logic R™.

Proof. Let R™ C L and let L be a nontrivial logic. Let V}, be a variety
which determines the logic L and let A € Vi be a nontrivial algebra. At
last, let B be a nontrivial finitely generated subalgebra of A. Let us denote
by Vg the filter of designated elements of the algebra B. By Proposition
1.4 B, has the least and the greatest element; let us denote them by 0
and 1, respectively. We prove now that the set {0,1} is closed under the
operation —.

Since 1 € Vg, 1 — 0 < 0 (because if z € Vg then © — y < y for any
y € B). Thus we have 1 — 0 = 0.

To show that 0 — 0 = 1 we argue as follows. It is clear that (0 — 0) €
VB and that 0 — 0 < 1. We will show that it is impossible that 0 — 0 < 1.
So, let us assume that 0 — 0 < 1. Since 1 € Vg, 1 — (0 — 0) < (0 — 0).
Moreover, since z < y if and only if (x — y) € VB, 1 — (0 — 0) € Vg,
because we have assumed that (0 — 0) < 1. In consequence 1 — (0 — 0) #
(0 — 0), because if (0 — 0) <1 — (0 — 0) then (since (0 — 0) € Vp)
1 — (0 —0) € Vg, and it is a contradiction. Thus 1 — (0 — 0) < (0 — 0).
On the other hand we have (by commutation and the equality 1 — 0 = 0):
1-0—-0)=0—(1—0)=0— 0, and it is a contradiction which
follows from the assumption that 0 — 0 < 1. Thus 0 — 0 = 1.

The equality 1 — 1 = 1 we prove as follows. It is clear that 1 — 1 < 1.
For the converse, let us note that by (z — y) < (y — 2) — (z — 2) we
have (0 - 0) < (0—0) — (0 —0),ie. (by (0—0)=1)1<(1—1).

And the last equality: 0 — 1 = 1. It is clear that 0 — 1 < 1. For
the converse, let us observe that 0 < 1, thus (0 — 1) € V. But we have
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0—1)=0—-(1—1)=1—(0—1), thus (1 - (0 — 1)) € Vg, thus
1 < (0 — 1) and it finishes the proof. O

We describe now two algebras which will play a crucial role in further
considerations.

Let 3; = {({0,a,1},A,V,—) be an algebra such that ({0,a,1},A,V,) is
the three-element lattice (0 < a < 1) and let the two-argument operation
— will be defined by the following table:

3, is the positive reduct of the 3-element Sugihara algebra.

Let 35 = ({0,b,1},A,V,—) be an algebra such that ({0,b,1},A,V,) is
the three-element lattice (0 < b < 1) and let the two-argument operation
— will be defined by the following table:

35 is a L-free reduct of 3-element Heyting algebra.
Lemma 2.2. The algebra 31 as well as the algebra 39 are R -algebras.

Theorem 2.3. If V is a non-trivial R" -variety and V # V(27) then
either 31 €V or 3, € V.

Proof. Let V be a RT-variety and V' # V(2T). Then there exists a
nontrivial algebra A in V', which does not belong to V(2%) (it is e.g. a V-
free algebra) and there exists a finitely generated nontrivial subalgebra B
of the algebra A such that B ¢ V(2"). By Proposition 1.4 B contains the
least and the greatest element; let us denote them by 0 and 1, respectively.
Moreover, by Dziobiak [1983], Lemma 1.2 the filter of designated element
of B is a principal filter.

We will consider two cases: either the filter of designated elements of B
consists of 1 only, or consists of greater number of elements.
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Case 1. Vg # [1); let Vg = [a), a # 1.

We will prove that the algebra 3; is a subalgebra of B.

Note first that 1 — a < a. It is true because sincea < 1,1 - a<a —a
and a — a = a (cf. point b). below).

However, 1 — a # a. It is known that z < y iff (x — y) € VB, a € Vg.
Soif 1 - a =a, (1 - a) € Vp and in consequence 1 < a, but it is
impossible, because we assumed that a # 1.

Thus we have a chain 0 < (1 — a) < a < 1. Let us take the subalgebra
generated by the set {1 — a,a,1}. It is a three-elements chain, so is closed
under lattice operations; we prove that this set is closed under — as well,
and the ,,—-table” is just the table for 3; (modulo symbols for elements):

— 1—a a 1
1—a 1 1 1
a 1—a a 1
1 l—a 1—a 1

a) 1 - 1=1 (cf. Lemma 2.1).
b)a — a=a.
Proof: Since a € Vg, a — a < a. Conversely, since a generates the filter of
designated elements, a < a — a.
c)a—1=1
Proof: Since a generates Vg, a <1 — 1 and by commutation 1 < a — 1.
d)(1—a)—a=1.
Proof:
It is clear that (1 — a) — a < 1. For the converse, since 1 — a <1 — a,
so by commutation 1 < (1 — a) — a).
e)(1—-a)—(1—a)=1
Proof:
By a)andd) wehave: 1=1—-1=1—(1—a)—a)=(1—a)— (1 —
a).
f)l-=(1—a)=1—a.
Proof:
p—pP—9q — (p—q € R, thus1 — (1 - a) < (1 — a). For the
converse, by e) it is known that 1 < (1 — a) — (1 — a), thus (1 — a) <
1—(1—a).
g)(l—-a)—1=1.
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Proof:

Sincel —a<1l,bya)l -a<1—1,thusl1 <(l —a)—1.
h)a— (1 —a)=1-—a.

Proof:

By b), a — a = a, thus by commutation a — (1 - a) =1 — (a — a) =
1—a,

and it finishes the proof for the first case.

Case 2. Let Vp = {1}, but B ¢ V(2*) (such algebras exist; 35 is an
example of such algebra).

Since Vg = {1}, B is a Heyting algebra, and generally, algebras with
{1} as filter of designated elements are Heyting algebras. However, the al-

gebra 39 belongs to every variety of Heyting algebras that properly contains
V(2*1). That finishes the proof. O

3. Maximal strictly relevant extension of the logic R™ and
its syntactical characterization

1. Let us begin with definitions. An extension L of the logic R* is said
to be strictly relevant iff L preserves the relevance property: if A — B is
a theorem of L then A and B have a common variable. It is known that
R preserves the relevance property. We will now look for maximal strictly
relevant extensions of R™, i.e. these extensions which preserve relevance
property.

It is easy to note that the algebra 31, i.e. the Rt algebra ({0,a,1},V, A,
—), where 0 < a < 1 and the operation — is defined as follows

-~ o ofl

1
1
1
1

S O =IO
S 2 e

contains two trivial (i.e. one-element) subalgebras: ({a},V,A,—) and
({1},V,A,—). Moreover, all non-relevant implications (in the language
without negation) are falsified in this algebra.

For, let us take an implication A — B such that A and B not have a
common variable. Let us define a valuation v as follows: v(p;) = 1 for all
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p; of A, and v(g;) = a for all ¢; of B and extend v to a homomorphism.
We have now: v(A — B) = v(A) — v(B) =1 — a = 0. Since 0 is not a
designated element of 31, A — B cannot be an R*-tautology.

Theorem 3.1. Among extensions of Rt satisfying the relevance prin-
ciple the logic L(31) is the only mazimal one.

Proof. Note that by previous theorem all non-trivial varieties of R*-
algebras different from V(2. ) contain either 3; ot 32. Since 32 does not
falsify all non-relevant implications (e.g. does not falsify (p — p) — (¢ —
q)), and 3, falsifies all of them, the logic L(31) must be the only maximal
logic which preserve the relevance principle. It finishes the proof. O

2. Similarly as in the case of maximal strictly relevant extensions of
the relevant logic R (cf. K. Swirydowicz [1999]) we present a syntactical
characterization of the maximal strictly relevant extension of the logic R*.

Lemma 3.2. Let A be an R"-algebra. If A contains a trivial subalgebra
({a},A\,V,—), where a # 1 (if A contains an unit, of course), algebra 3,
s a subalgebra of A.

Proof. Let ({a},A,V,—) be a trivial subalgebra od A and let a # 1,
where a # 1. Of course, a — a = a, thus a belons to the filter of designated
elements of A.

A. Assume that A has an unit. In such a case the set {1 — a,a,1}
is closed under basic operations of A, i.e. this set is a subalgebra of B
isomorphic to 3.

B. Let A does not have a unit. Thus there exists a b in A such that
a < b. Let us take a subalgebra B generated by a and b. By Theorem 1
this subalgebra has a unit; denote it by 1g. This case can be reduced to the
previous one: we will consider now the set {a,1g,1s — a}. This finishes
the proof. O

Now, let
DB1)={p@—@—p)A((p—p)—=p)A(— a9 A —Dp),
and let
X(31) = DB1) A (g —q) — (¢ —p)-

Let A = (A,Va) be an RT-matrix and let F(A) be the set of all A-
tautologies, i.e. the set of all formulae whose value belongs to V 4 under
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any valuation. By F(37) denote the set of 3;-tautologies, i.e. all the the
formulae A which satisfy the condition: h(A) = 1 or h(A) = a where a, 1
belong to 3.

Now we prove a Jankow-style lemma.

Lemma 3.3. Let A be an R"-algebra and let A = (A, V o) be a matriz
determined by this algebra. Then the following conditions are equivalent:
(1) x(31) & E(A)
(i) 31 € HS(A),
(ii1) E(A) C E(31).

Proof. (i) = (ii). Let A be an RT-algebra and let A = (A, V) be
the matrix determined by this algebra. Let x(31) € E(A). Then there is a
valuation h such that h(x(31)) & Va.

Note that even if the algebra A has a unit and a zero (denote them
by 1a,0a, respectively), h(D(31) A (¢ — q)) # Oa, because if not, then
h(x(31)) = 1a.

Moreover, h(p) # h(q). To prove it, assume that h(p) = h(q) and let
h(p) = b. Now, since h(x(31)) & Va, the inequality (b — (b — b)) A ((b —
b) — b)A (b — b) < (b — b) cannot hold for this b. However, this inequality
is simply an instance of a well-known lattice inequality x A y < y. Thus
h(p) # h(q).

Finally, note that h(q — p) does not belong to V. For if it does,
then h(q) < h(p), and since = < y entails here z — = < z — y, h(q —
q) < h(q — p). Note that in each lattice the following implication holds: if
x <y, then z Az <y, thus h(x(31)) € Va, but it is impossible.

Consider now a subalgebra of A, generated by h(p),h(q); denote this
subalgebra by B. Note that the filter Vg = [h(p — p) Ah(q — ¢))B is a
filter of designated elements of the matrix B, determined by the algebra B.
Thus the filter V = [A(D(31) A (¢ — ¢))B is a nontrivial normal filter on
B (0A ¢ V, Vg C V). Note now that h(q — p) ¢ V. For if it does, then
h(D(31) A (¢ — q)) < h(q — p), i.e. h(x(31)) € Va, but it is impossible.
It follows from it that in fact the normal filter V is nontrivial. Thus V
determines a (nontrivial) congruence relation ©(V) in the algebra B.

We prove now that the algebra 3 is a subalgebra of the quotient algebra
B/O(V).

Let us denote by V* the filter of designated elements of B/©(V) and let
us introduce the following abbreviations: a = h(p)/©(V), b = h(q)/O(V).
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a) Since h(D(31))/0(V) € V*, the equality a — a = a as well as
the inequality a < b hold. Of course, the set {a} is closed under lattice
operations, thus it is a one-element subalgebra of the algebra B/©(V).

b) b — a does not belong to V*. Assume contrary. Then h(q)/O(V)
h(p)/©(V), and since h(p) — h(q) € V, h(p) = h(q)(O(V)), thus h(q)
h(p) € V, but it is impossible (cf. above).

It follows from it that although in our algebra the inequality a < b
holds, nevertheless the equality a = b does not hold, thus a < b. Note that
a cannot be an unit of the quotient algebra.

<
—

In this way we proved that the assumptions of the previous Lemma are
satisfied. In consequence 3; € SHS(A), thus 3; € HS(A).

(13) = (417): Obvious.

(13i) = (i): Let h be a valuation of the algebra of formulae F in the
algebra 3; which satisfies the following conditions: h(p) = a, h(q) = 1.
Thus h(D(31 A (¢ — q)) = a and h(q — p) = 0; since in 3; the equality
a — 0 =0 holds, x(31) € E(A), and it finishes the proof of this Lemma.]

The last Theorem is a simple consequence of this Lemma.

Theorem 3.4. Let L be an extension of the relevant logic R™. Then
for L the relevance principle holds if and only if the formula x(31), i.e. the
formula (p — (p = p)A((p—p) =)A= ANP—=D)AN(g—q) —
(¢ — p) is not a theorem of L.
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