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UPPER PART OF THE LATTICE OF
EXTENSIONS OF THE POSITIVE RELEVANT

LOGIC R+

A b s t r a c t. In this paper it is proved that the interval

[R+, L(2+)] of the lattice of extensions of the positive (i.e. nega-

tionless) relevant logic R+ has exactly two co-atoms (L(2+) de-

notes here the only Post-complete extension of R+). One of these

two co-atoms is the only maximal extension of R+ which satisfies

the relevance property: if A → B is a theorem then A and B have

a common variable. A result of this kind for the relevant logic R

was presented in Swirydowicz [1999].

.1 Preliminaries. R+-algebras

1. Let a set of propositional variables p, q, r, . . . be given and let F be the

set of propositional formulae built up from propositional variables by means

of the connectives: → (implication), ∧ (conjunction), ∨ and (disjunction).
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The positive (i.e. negationless) Anderson and Belnap logic R+ with rele-

vant implication (cf. A.R. Anderson, N.D. Belnap [1975]) is defined as the

subset of propositional formulae of F which are provable from the set of

axiom schemes indicated below, by application of the rule of Modus Ponens

(MP; A,A → B/B) and the Rule of Adjunction ( A,B/A ∧ B):

A1. A → A

A2. (A → B) → ((B → C) → (A → C))

A3. A → ((A → B) → B)

A4. (A → (A → B)) → (A → B)

A5. A ∧ B → A

A6. A ∧ B → B

A7. (A → B) ∧ (A → C) → (A → B ∧ C)

A8. A → A ∨ B

A9. B → A ∨ B

A10. (A → B) ∧ (C → B) → (A ∨ C → B)

A11. (A ∧ (B ∨ C)) → ((A ∧ B) ∨ C)

Lemma 1.1. The formulae listed below are theorems of R+:
(t1) (p → q) ∧ (r → s) → (p ∧ r → q ∧ s),

(t2) (p → q) ∧ (r → s) → (p ∨ r → q ∨ s),

(t3) (p ∨ q → r) → (p → r),

(t4) (p → q ∧ r) → (p → r),

(t5) (p → (q → r)) → (q → (p → r)).

(t6) ((p ∧ q) ∨ r) → (p ∧ (q ∨ r))

(t7) (p → (q → r)) → ((p → q) → (p → r))

2. To present an algebraic semantics for the logic R+ we will exercise

some ideas presented in the paper of W. Dziobiak (cf. W. Dziobiak [1983])

and a paper of J. Font and G. Rodriguez (cf. J. Font and G. Rodriguez

[1990]).

Definition 1.2. Let A = 〈A,∧,∨,→〉 be an algebra similar to the

algebra F of formulae. Then A is an R+-algebra if and only if the reduct

〈A,∧,∨〉 is a distributive lattice and moreover the following equalities and

inequalities hold:
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D1. (x → y) ≤ ((y → z) → (x → z))

D2. (x → (x → y)) ≤ (x → y)

D3. (x → (y ∧ z)) = (x → y) ∧ (x → z)

D4. ((x ∨ y) → z) = ((x → z) ∧ (y → z))

D5. (x → (y → z)) ≤ (y → (x → z))

D6. x ≤ ((x → y) ∧ z) → y

D7. (x → x) ∧ (y → y) → z ≤ z
where ≤ denotes the partial order in A.

Let us note that by the Definition the class of R+-algebras is a variety,

because is equationally defined. Let us denote this variety by R+.

Let A be a R+-algebra and let ∇A = [{a → a : a ∈ A}) i.e. let ∇A be a

filter generated by all elements of the form a → a. Then the pair 〈A,∇A〉

will be called a R+-matrix. It is easy to prove that the relation � defined

on A as follows: x � y iff (x → y) ∈ ∇A is a partial order on A.

Lemma 1.3 (Font and Rodriguez). 1. Let A be an R+-algebra.

Then the relations ≤ and � on A coincide, i.e. x → y ∈ ∇A iff x ≤ y.

2. Let the relation ∼R+ be defined on the set F of formulae as follows:

A ∼R+ B iff A → B as well as B → A are theorems of R+. Then

the algebra F/ ∼R+ is a free R+-algebra (F denotes here the algebra of

formulae).

The logic R+ is algebraizable in the sense of W.J. Blok and D. Pigozzi

(cf. Blok and Pigozzi [1989]) and the variety R+ is the equivalent algebraic

semantics for R+; the proofs presented by P. Font and G. Rodriguez in

[1990] for the logic R work for R+ as well.

Let 〈A,∇A〉 be a R+-matrix. A filter ∇ on A is said to be normal iff

∇A ⊆ ∇. It is known that each normal filter on A determine a congruence

on A (cf. Dziobiak [1983]). Note that it follows from the results concerning

algebraizability of R+ that in each R+-algebra the lattice of normal filters

and the lattice of congruences are isomorphic.

At last let us note that the following useful Proposition holds.

Proposition 1.4. Each finitely generated R+-algebra has a least and a

greatest element.

A proof of this Proposition can be obtained by a slight modification

of the proof of similar Proposition for R-algebras (cf. Swirydowicz [1999],

Proposition 5).
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.2 Co-atoms in the interval [R+, L(2+)]

Let us begin with the Post-complete extensions of the logic R+. It is

known that the only Post-complete axiomatic extension of R+ is the logic

generated by the two-element algebra 〈{0, 1},∧,∨,→〉, where the set {0, 1}

is the two-element lattice with 0 < 1 and the two-argument operation → is

defined in the well-known way: 1 → 0 = 0 and 1 → 1 = 0 → 1 = 0 → 0 = 1.

Let us denote here this algebra by 2+. However, I do not know any proof of

this fact, so I decided to present a simple algebraic proof of this fact here.

Let L(2+) be the logic generated by the algebra 2+.

Lemma 2.1. The logic L(2+) is the only Post-complete extension of

the logic R+.

Proof. Let R+ ⊆ L and let L be a nontrivial logic. Let VL be a variety

which determines the logic L and let A ∈ VL be a nontrivial algebra. At

last, let B be a nontrivial finitely generated subalgebra of A. Let us denote

by ∇B the filter of designated elements of the algebra B. By Proposition

1.4 B, has the least and the greatest element; let us denote them by 0

and 1, respectively. We prove now that the set {0, 1} is closed under the

operation →.

Since 1 ∈ ∇B, 1 → 0 ≤ 0 (because if x ∈ ∇B then x → y ≤ y for any

y ∈ B). Thus we have 1 → 0 = 0.

To show that 0 → 0 = 1 we argue as follows. It is clear that (0 → 0) ∈

∇B and that 0 → 0 ≤ 1. We will show that it is impossible that 0 → 0 < 1.

So, let us assume that 0 → 0 < 1. Since 1 ∈ ∇B, 1 → (0 → 0) ≤ (0 → 0).

Moreover, since x ≤ y if and only if (x → y) ∈ ∇B, 1 → (0 → 0) 6∈ ∇B,

because we have assumed that (0 → 0) < 1. In consequence 1 → (0 → 0) 6=

(0 → 0), because if (0 → 0) ≤ 1 → (0 → 0) then (since (0 → 0) ∈ ∇B)

1 → (0 → 0) ∈ ∇B, and it is a contradiction. Thus 1 → (0 → 0) < (0 → 0).

On the other hand we have (by commutation and the equality 1 → 0 = 0):

1 → (0 → 0) = 0 → (1 → 0) = 0 → 0, and it is a contradiction which

follows from the assumption that 0 → 0 < 1. Thus 0 → 0 = 1.

The equality 1 → 1 = 1 we prove as follows. It is clear that 1 → 1 ≤ 1.

For the converse, let us note that by (x → y) ≤ (y → z) → (x → z) we

have (0 → 0) ≤ (0 → 0) → (0 → 0), i.e. (by (0 → 0) = 1) 1 ≤ (1 → 1).

And the last equality: 0 → 1 = 1. It is clear that 0 → 1 ≤ 1. For

the converse, let us observe that 0 ≤ 1, thus (0 → 1) ∈ ∇B. But we have
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(0 → 1) = (0 → (1 → 1)) = 1 → (0 → 1), thus (1 → (0 → 1)) ∈ ∇B, thus

1 ≤ (0 → 1) and it finishes the proof. �

We describe now two algebras which will play a crucial role in further

considerations.

Let 31 = 〈{0, a, 1},∧,∨,→〉 be an algebra such that 〈{0, a, 1},∧,∨, 〉 is

the three-element lattice (0 < a < 1) and let the two-argument operation

→ will be defined by the following table:

→ 0 a 1

0 1 1 1

a 0 a 1

1 0 0 1

31 is the positive reduct of the 3-element Sugihara algebra.

Let 32 = 〈{0, b, 1},∧,∨,→〉 be an algebra such that 〈{0, b, 1},∧,∨, 〉 is

the three-element lattice (0 < b < 1) and let the two-argument operation

→ will be defined by the following table:

→ 0 b 1

0 1 1 1

b 0 1 1

1 0 b 1

32 is a ⊥-free reduct of 3-element Heyting algebra.

Lemma 2.2. The algebra 31 as well as the algebra 32 are R+-algebras.

Theorem 2.3. If V is a non-trivial R+-variety and V 6= V (2+) then

either 31 ∈ V or 32 ∈ V .

Proof. Let V be a R+-variety and V 6= V (2+). Then there exists a

nontrivial algebra A in V , which does not belong to V (2+) (it is e.g. a V -

free algebra) and there exists a finitely generated nontrivial subalgebra B

of the algebra A such that B 6∈ V (2+). By Proposition 1.4 B contains the

least and the greatest element; let us denote them by 0 and 1, respectively.

Moreover, by Dziobiak [1983], Lemma 1.2 the filter of designated element

of B is a principal filter.

We will consider two cases: either the filter of designated elements of B

consists of 1 only, or consists of greater number of elements.
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Case 1. ∇B 6= [1); let ∇B = [a), a 6= 1.

We will prove that the algebra 31 is a subalgebra of B.

Note first that 1 → a ≤ a. It is true because since a ≤ 1, 1 → a ≤ a → a

and a → a = a (cf. point b). below).

However, 1 → a 6= a. It is known that x ≤ y iff (x → y) ∈ ∇B, a ∈ ∇B.

So if 1 → a = a, (1 → a) ∈ ∇B and in consequence 1 ≤ a, but it is

impossible, because we assumed that a 6= 1.

Thus we have a chain 0 < (1 → a) < a < 1. Let us take the subalgebra

generated by the set {1 → a, a, 1}. It is a three-elements chain, so is closed

under lattice operations; we prove that this set is closed under → as well,

and the ,,→-table” is just the table for 31 (modulo symbols for elements):

→ 1 → a a 1

1 → a 1 1 1

a 1 → a a 1

1 1 → a 1 → a 1

a) 1 → 1 = 1 (cf. Lemma 2.1).

b) a → a = a.

Proof: Since a ∈ ∇B, a → a ≤ a. Conversely, since a generates the filter of

designated elements, a ≤ a → a.

c) a → 1 = 1.

Proof: Since a generates ∇B, a ≤ 1 → 1 and by commutation 1 ≤ a → 1.

d) (1 → a) → a = 1.

Proof:

It is clear that (1 → a) → a ≤ 1. For the converse, since 1 → a ≤ 1 → a,

so by commutation 1 ≤ (1 → a) → a).

e) (1 → a) → (1 → a) = 1.

Proof:

By a) and d) we have: 1 = 1 → 1 = 1 → ((1 → a) → a) = (1 → a) → (1 →

a).

f) 1 → (1 → a) = 1 → a.

Proof:

(p → (p → q) → (p → q) ∈ R+, thus 1 → (1 → a) ≤ (1 → a). For the

converse, by e) it is known that 1 ≤ (1 → a) → (1 → a), thus (1 → a) ≤

1 → (1 → a).

g) (1 → a) → 1 = 1.
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Proof:

Since 1 → a ≤ 1, by a) 1 → a ≤ 1 → 1, thus 1 ≤ (1 → a) → 1.

h) a → (1 → a) = 1 → a.

Proof:

By b), a → a = a, thus by commutation a → (1 → a) = 1 → (a → a) =

1 → a,

and it finishes the proof for the first case.

Case 2. Let ∇B = {1}, but B 6∈ V (2+) (such algebras exist; 32 is an

example of such algebra).

Since ∇B = {1}, B is a Heyting algebra, and generally, algebras with

{1} as filter of designated elements are Heyting algebras. However, the al-

gebra 32 belongs to every variety of Heyting algebras that properly contains

V (2+). That finishes the proof. �

.3 Maximal strictly relevant extension of the logic R+ and

its syntactical characterization

1. Let us begin with definitions. An extension L of the logic R+ is said

to be strictly relevant iff L preserves the relevance property: if A → B is

a theorem of L then A and B have a common variable. It is known that

R+ preserves the relevance property. We will now look for maximal strictly

relevant extensions of R+, i.e. these extensions which preserve relevance

property.

It is easy to note that the algebra 31, i.e. the R+ algebra 〈{0, a, 1},∨,∧,

→〉, where 0 < a < 1 and the operation → is defined as follows

→ 0 a 1

0 1 1 1

a 0 a 1

1 0 0 1

contains two trivial (i.e. one-element) subalgebras: 〈{a},∨,∧,→〉 and

〈{1},∨,∧,→〉. Moreover, all non-relevant implications (in the language

without negation) are falsified in this algebra.

For, let us take an implication A → B such that A and B not have a

common variable. Let us define a valuation v as follows: v(pi) = 1 for all
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pi of A, and v(qi) = a for all qi of B and extend v to a homomorphism.

We have now: v(A → B) = v(A) → v(B) = 1 → a = 0. Since 0 is not a

designated element of 31, A → B cannot be an R+-tautology.

Theorem 3.1. Among extensions of R+ satisfying the relevance prin-

ciple the logic L(31) is the only maximal one.

Proof. Note that by previous theorem all non-trivial varieties of R+-

algebras different from V (2+) contain either 31 ot 32. Since 32 does not

falsify all non-relevant implications (e.g. does not falsify (p → p) → (q →

q)), and 31 falsifies all of them, the logic L(31) must be the only maximal

logic which preserve the relevance principle. It finishes the proof. �

2. Similarly as in the case of maximal strictly relevant extensions of

the relevant logic R (cf. K. Swirydowicz [1999]) we present a syntactical

characterization of the maximal strictly relevant extension of the logic R+.

Lemma 3.2. Let A be an R+-algebra. If A contains a trivial subalgebra

〈{a},∧,∨,→〉, where a 6= 1 (if A contains an unit, of course), algebra 31

is a subalgebra of A.

Proof. Let 〈{a},∧,∨,→〉 be a trivial subalgebra od A and let a 6= 1,

where a 6= 1. Of course, a → a = a, thus a belons to the filter of designated

elements of A.

A. Assume that A has an unit. In such a case the set {1 → a, a, 1}

is closed under basic operations of A, i.e. this set is a subalgebra of B

isomorphic to 31.

B. Let A does not have a unit. Thus there exists a b in A such that

a < b. Let us take a subalgebra B generated by a and b. By Theorem 1

this subalgebra has a unit; denote it by 1B. This case can be reduced to the

previous one: we will consider now the set {a, 1B, 1B → a}. This finishes

the proof. �

Now, let

D(31) = (p → (p → p)) ∧ ((p → p) → p) ∧ (p → q) ∧ (p → p),

and let

χ(31) = D(31) ∧ (q → q) → (q → p).

Let A = 〈A,∇A〉 be an R+-matrix and let E(A) be the set of all A-

tautologies, i.e. the set of all formulae whose value belongs to ∇A under



UPPER PART OF THE LATTICE OF EXTENSIONS OF THE RELEVANT LOGIC R+ 11

any valuation. By E(31) denote the set of 31-tautologies, i.e. all the the

formulae A which satisfy the condition: h(A) = 1 or h(A) = a where a, 1

belong to 31.

Now we prove a Jankow-style lemma.

Lemma 3.3. Let A be an R+-algebra and let A = 〈A,∇A〉 be a matrix

determined by this algebra. Then the following conditions are equivalent:
(i) χ(31) 6∈ E(A)

(ii) 31 ∈ HS(A),

(iii) E(A) ⊆ E(31).

Proof. (i) ⇒ (ii). Let A be an R+-algebra and let A = 〈A,∇A〉 be

the matrix determined by this algebra. Let χ(31) 6∈ E(A). Then there is a

valuation h such that h(χ(31)) 6∈ ∇A.

Note that even if the algebra A has a unit and a zero (denote them

by 1A, 0A, respectively), h(D(31) ∧ (q → q)) 6= 0A, because if not, then

h(χ(31)) = 1A.

Moreover, h(p) 6= h(q). To prove it, assume that h(p) = h(q) and let

h(p) = b. Now, since h(χ(31)) 6∈ ∇A, the inequality (b → (b → b)) ∧ ((b →

b) → b)∧ (b → b) ≤ (b → b) cannot hold for this b. However, this inequality

is simply an instance of a well-known lattice inequality x ∧ y ≤ y. Thus

h(p) 6= h(q).

Finally, note that h(q → p) does not belong to ∇A. For if it does,

then h(q) ≤ h(p), and since x ≤ y entails here z → x ≤ z → y, h(q →

q) ≤ h(q → p). Note that in each lattice the following implication holds: if

x ≤ y, then z ∧ x ≤ y, thus h(χ(31)) ∈ ∇A, but it is impossible.

Consider now a subalgebra of A, generated by h(p), h(q); denote this

subalgebra by B. Note that the filter ∇B = [h(p → p) ∧ h(q → q))B is a

filter of designated elements of the matrix B, determined by the algebra B.

Thus the filter ∇ = [h(D(31) ∧ (q → q))B is a nontrivial normal filter on

B (0A 6∈ ∇, ∇B ⊆ ∇). Note now that h(q → p) 6∈ ∇. For if it does, then

h(D(31) ∧ (q → q)) ≤ h(q → p), i.e. h(χ(31)) ∈ ∇A, but it is impossible.

It follows from it that in fact the normal filter ∇ is nontrivial. Thus ∇

determines a (nontrivial) congruence relation Θ(∇) in the algebra B.

We prove now that the algebra 31 is a subalgebra of the quotient algebra

B/Θ(∇).

Let us denote by ∇∗ the filter of designated elements of B/Θ(∇) and let

us introduce the following abbreviations: a = h(p)/Θ(∇), b = h(q)/Θ(∇).
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a) Since h(D(31))/Θ(∇) ∈ ∇∗, the equality a → a = a as well as

the inequality a ≤ b hold. Of course, the set {a} is closed under lattice

operations, thus it is a one-element subalgebra of the algebra B/Θ(∇).

b) b → a does not belong to ∇∗. Assume contrary. Then h(q)/Θ(∇) ≤

h(p)/Θ(∇), and since h(p) → h(q) ∈ ∇, h(p) ≡ h(q)(Θ(∇)), thus h(q) →

h(p) ∈ ∇, but it is impossible (cf. above).

It follows from it that although in our algebra the inequality a ≤ b

holds, nevertheless the equality a = b does not hold, thus a < b. Note that

a cannot be an unit of the quotient algebra.

In this way we proved that the assumptions of the previous Lemma are

satisfied. In consequence 31 ∈ SHS(A), thus 31 ∈ HS(A).

(ii) ⇒ (iii): Obvious.

(iii) ⇒ (i): Let h be a valuation of the algebra of formulae F in the

algebra 31 which satisfies the following conditions: h(p) = a, h(q) = 1.

Thus h(D(31 ∧ (q → q)) = a and h(q → p) = 0; since in 31 the equality

a → 0 = 0 holds, χ(31) 6∈ E(A), and it finishes the proof of this Lemma.�

The last Theorem is a simple consequence of this Lemma.

Theorem 3.4. Let L be an extension of the relevant logic R+. Then

for L the relevance principle holds if and only if the formula χ(31), i.e. the

formula (p → (p → p)) ∧ ((p → p) → p) ∧ (p → q) ∧ (p → p) ∧ (q → q) →

(q → p) is not a theorem of L.
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