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ON A PROBLEM OF H. FRIEDMAN AND ITS

SOLUTION BY T. PRUCNAL

A b s t r a c t T. Prucnal proved, see [8] and [9], that Medvedev’s

logic ML of finite problems is structurally complete. So far, ML

is the only known structurally complete intermediate logic with the

disjunction property. Another proof of Prucnal’s theorem was given

by D. Skvortsov [10]. We refresh Prucnal’s original argument and

prove that all structurally complete intermediate logics with the dis-

junction property coincide on monadic formulas. The logics are also

provided with appropriate Kripke frames.

0. Introduction. T. Prucnal solved (see [8] and [9]) the Problem

41 of H. Friedman [2] whether there exist sets H of propositional formulas

such that the following conditions are satisfied for every formulas α, β

(F1) α ∧ β ∈ H ⇔ α ∈ H and β ∈ H;

(F2) α ∨ β ∈ H ⇔ α ∈ H or β ∈ H;

(F3) α→ β ∈ H ⇔
(

e(α) ∈ H ⇒ e(β) ∈ H, for every substitution e
)

;

(F4) ¬α ∈ H ⇔
(

e(α) 6∈ H, for every substitution e
)

.
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He noticed that (F1) and (F4) are satisfied if H is an intermediate

logics. Hence any intermediate logic H is a solution of Friedman’s problem

iff H is structurally complete1 and enjoys the disjunction property. Then he

showed that Medvedev’s logic ML enjoys these properties. The uniqueness

of the solution remains still open.

Prucnal’s proof is purely syntactical. Another proof of the same theo-

rem was given by D. Skvortsov [10]. The paper [9] contains also an answer

to a similar Problem 42 of H. Friedman [2] concerning modal logic. This

problem, however, is beside the scope of the present paper.

1. Intermediate logics. We consider the standard propositional lan-

guage {∧,∨ →,¬}. Formulas of our language α, β, . . . are built up from the

variables p1, p2, . . . (we also write p instead of p1). The set of all formulas

is denoted by F . As usual, (α→ β)∧ (β → α) is abbreviated to α ≡ β and

we use
∧

X and
∨

X for generalized (finite) conjunctions and disjunctions.

Substitutions are endomorphisms of the algebra of the language.

Let INT and CL be the sets of all intuitionistically and classically valid

formulas, respectively. Any intermediate logic is a set H of formulas2 closed

under the substitution and the modus ponens rule and INT ⊆ H ⊆CL.

The logic KP of Kreisel and Putnam is the least intermediate logic with

(¬α→ β ∨ γ) → (¬α→ β) ∨ (¬α→ γ)

Let B be the set of formulas defined as follows:

(i) ¬α ∈ B, for every α ∈ F ;

(ii) α, β ∈ B ⇒ α ∨ β, α ∧ β, α→ β ∈ B, for every α, β ∈ F .

1 A logic is structurally complete, the notion is due to W.A.Pogorzelski [7], iff all its

admissible and structural rules are derivable. In the case of intermediate logics (for which

the modus ponens rule and the deduction theorem are valid) the structural completeness

is equivalent to (F3)
2 Intermediate logics are identified with the sets of their theorems as it is assumed

that the modus ponens rule is the only basic inferential rule there.
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Note that e(α) ∈ B for every substitution e if α ∈ B. Moreover, e(α) ∈ B

if e(pi) ∈ B for every pi occurring in α. Medvedev’s logic ML of finite

problems is not finitely axiomatizable, see L.L. Maximova, D.P. Skvortsov,

V.B. Šehtman [5]. The following characterization of ML:

α ∈ ML ⇔
(

e(α) ∈ KP, for every substitution e : F → B
)

is due to L.A. Levin [3]. Clearly, KP ⊆ ML and KP ∩ B = ML ∩B. It is

less clear that KP 6= ML. Let us prove that for every α, β ∈ F :

Lemma 1. ((¬¬α→ α) → α ∨ β) → ¬¬α ∨ ((¬¬α→ α) → β) ∈ ML.

Proof. Let φ = e(α) and ψ = e(β) for a substitution e : F → B.

Since φ ∈ B, there are β1, · · · , βk ∈ F such that

φ ≡ ¬β1 ∨ · · · ∨ ¬βk ∈ KP .

Then ¬φ is equivalent (in KP ) to ¬¬(β1 ∧ . . . ∧ βk) and ¬¬φ → φ

is equivalent to
∨

i(¬¬φ → ¬βi). Next, let us note that the following

equivalences belong to KP, for each i, j ≤ k:

(¬¬φ→ ¬βi) → ¬βj ≡ (¬φ ∨ ¬βi) → ¬βj ≡

≡ (¬φ→ ¬βj) ∧ (¬βi → ¬βj) ≡ (β1 ∧ . . . ∧ βk → ¬βj) ∧ (¬βi → ¬βj) ≡

≡ ¬(β1 ∧ . . . ∧ βk) ∧ (¬βi → ¬βj) ≡ ¬¬φ ∧ (¬βi → ¬βj)

Thus, we get
∨

j((¬¬φ→ ¬βi) → ¬βj) ≡ ¬¬φ ∈ KP and hence we obtain

the following equivalences in KP :

(¬¬φ→ φ) → (φ ∨ ψ) ≡
∨

i

(¬¬φ→ ¬βi) → (φ ∨ ψ) ≡

≡
∧

i

[(¬¬φ→ ¬βi) → (¬β1 ∨ · · · ∨ ¬βk ∨ ψ)] ≡

≡
∧

i

[
∨

j

((¬¬φ→ ¬βi) → ¬βj) ∨ ((¬¬φ) → ¬βi) → ψ)] ≡
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≡
∧

i

[¬¬φ ∨ ((¬¬φ→ ¬βi) → ψ)] ≡

≡ ¬¬φ ∨
∧

i

((¬¬φ→ ¬βi) → ψ) ≡ ¬¬φ ∨ ((¬¬φ→
∨

i

¬βi) → ψ) ≡

≡ ¬¬φ ∨ ((¬¬φ→ φ) → ψ)

¿From the above lemma it follows that the formula (schema)

((¬¬α→ α) → α ∨ ¬α) → (¬¬α ∨ ¬α),

called Scott’s law, belongs of ML. Since it does not belong to KP (use

the Rieger-Nishimura lattice as a model for KP), we get KP 6=ML. It

also follows from the above lemma that there is only finitely many (up

to equivalence) formulas built up from a single variable, say p, in ML. The

Lindenbaum algebra for the monadic fragment of ML is given by:

¬¬ p

p ¬ p

¬¬ p → p

Figure 1.
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2. Prucnal’s trick. For any formula α let us define a substitution eα

putting eα(pi) = α→ pi for every variable pi. The following can be shown

by an easy induction on the length of the formula φ:

Lemma 2(i). α→ (φ ≡ eα(φ)) ∈ INT, for every φ in {→,∧,∨,¬};

(ii). (α→ φ) ≡ eα(φ) ∈ INT, for every φ in {→,∧}.

¿From the above lemma it follows, for instance, that any intermediate

logic in the fragment {→,∧} is structurally complete (an earlier result by

T. Prucnal). The problem of structural completeness becomes more compli-

cated if one admits ∨ and ¬.3 Lemma 2(ii) does not extend to {→,∧,∨,¬}.

Nevertheless, Prucnal managed, see [9], to use his trick to show:

Theorem 3. Medvedev’s logic ML is structurally complete.

Proof. Suppose that γ → β 6∈ ML. We need to find a substitution

e such that e(γ) ∈ ML and e(β) 6∈ ML . Using the definition of ML, we

reduce our argument to the case where β ∈ B and γ = ¬α for some α.

Since ¬γ 6∈ ML, we have ¬γ 6∈ CL and hence γ1 ∧ . . . ∧ γk → γ ∈

ML for some consistent set {γ1, . . . , γk} of literals (i.e. variables or their

negations). We can assume that γ1, . . . , γk are variables as if we replace a

literal by its negation nothing essential will change (recall β, γ ∈ B).

By Lemma 2(i), we get eγ(β) 6∈ ML as γ → β 6∈ ML . We need to

prove that eγ(γ) ∈ ML. Let us note that γ → eγ(γ) ∈ ML by Lemma 2(i)

and ¬γ → eγ(γ) ∈ ML by the assumption that γ1 ∧ . . . ∧ γk → γ ∈ ML .

Hence eγ(γ) is classically valid which gives eγ(γ) ∈ML.

3 I owe to professor Andrzej Wroński information about his unpublished results:

(i) each intermediate logic in {→,¬,∧} is structurally complete – this result is implicitly

included in Minari–Wroński [6];

(ii) the fragment {→,¬} of intuitionistic logic is not (!) structurally complete;

(iii) the fragment {∨,→} of intuitionistic logic, and any other fragment with → and ∨,

is not structurally complete.
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Though (α → β ∨ γ) → (α → β) ∨ (α → γ) is not intutitionistically

valid, it is sometimes possible to derive the validity of (α → β) ∨ (α → γ)

from the validity of α→ (β ∨γ). Prucnal’s trick is very useful for this kind

of results. In particular, one can prove, see [9]:

Theorem 4. For every intermediate logic H and every formulas α, β, γ:

¬α→ β ∨ γ ∈ H ⇔ (¬α→ β) ∨ (¬α→ γ) ∈ H.

Proof. One implication is clear. Let ¬α → β ∨ γ ∈ H. Similarly as

above, one reduces considerations to the case where γ1 ∧ . . . ∧ γk → γ ∈

H for some variables γ1, . . . , γk. Then we get e¬α(¬α) ∈ H and hence

e¬α(β) ∨ e¬α(γ) ∈ H which gives (¬α → β) ∨ (¬α → γ) ∈ H by use of

Lemma 2(i) .

The above theorem has been substantially strengthened by P. Minari

and A. Wroński [6] with a slight modification of Prucnal’s trick:

Theorem 5. For every intermediate logic H, every formulas β, γ ∈ F and

every Harrop formula 4 α:

α→ β ∨ γ ∈ H ⇔ (α→ β) ∨ (α→ γ) ∈ H.

Proof. Argue as above but instead of eα take the substitution

fα(pi) =

{

α→ pi if pi ∈ X
¬¬α ∧ (α→ pi) otherwise

where X is a maximal consistent set closed under the modus ponens (but

not under the substitution) rule, containing α and CL.

In a similar way we may prove

4 A Harrop formula (in propositional logic ) is any formula in which every occurrence

of disjunction lays inside the antecedent of some implication or inside the scope of some

negation.
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Theorem 6. For every intermediate logic H, every α, β, γ ∈ F and every

formulas φ1, . . . , φk which do not contain the variables p1, . . . , pk

∧

i≤k

(pi ≡ φi) → β∨γ ∈ H ⇔ (
∧

i≤k

(pi ≡ φi) → β)∨(
∧

i≤k

(pi ≡ φi) → γ) ∈ H.

Proof. Let e be a substitution such that e(pi) = φi for i ≤ k and

e(pi) = pi for i > k. By induction on the length of φ one shows

(1)
∧

i

(pi ≡ φi) → (φ ≡ e(φ)) ∈ INT

Since e(pi ≡ φi) ∈ INT for each i, we get

(2) e(φ) ∈ H iff
∧

i

(pi ≡ φi) → φ ∈ H

The implication (⇐) of our theorem is clear. Now, let us assume that
∧

i(pi ≡ φi) → β ∨γ ∈ H. Then, by (2), we get e(β)∨ e(γ) ∈ H and hence,

using (1), we obtain

(
∧

i

(pi ≡ φi) → β) ∨ (
∧

i

(pi ≡ φi) → γ) ∈ H.

Note that the formulas φ1, . . . , φk may contain disjunctions. Thus, we

get a negative answer to a problem posed by Minari, Wroński [6]. They

asked whether any formula α with the considered property (i. e. such that

for every intermediate logic H and every formulas β, γ: if α → β ∨ γ ∈ H,

then (α→ β) ∨ (α→ γ) ∈ H is equivalent to a Harrop formula.
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3. Bounds. Let H be a structurally complete intermediate logic with

the disjunction property. It follows from Theorem 4 that KP ⊆ H and,

thus, we get a lower bound on the considered family of logics. We can also

find an upper bound using (see e.g. L. Maximova [4]):

Theorem 7. Medvedev’s logic ML is the greatest intermediate logic among

those which have the disjunction property and contain KP.

Proof. To show that ML has the disjunction property it is sufficient

to know that KP does. We apply Levin’s definition of ML. Let L be a logic

with the disjunction property and KP ⊆ L. If α ∈ L \ ML, we can assume

that α ∈ B \KP and easy get to a contradiction with Glivienko’s theorem.

We conclude that KP ⊆ H ⊆ ML. The upper bound is optimal as ML

is a structurally complete intermediate logic with the disjunction property.

The lower bound can be improved. Prucnal said in [9], without giving a

detailed proof, that H must contain all formulas of the form (α→ β) → β

where α ∈ ML and β ∈ B. Let us try to reconstruct his argument.

Suppose that B′ is the extension of the set B with the following con-

dition (in addition to (i) and (ii) from the definition of B)

(iii) if β ∈ B′ and α ∈ F , then α→ β ∈ B ′.

We prove that H∩B′ = ML∩B′. The inclusion (⊆) is obvious as H ⊆ ML.

Assume that e(φ) ∈ ML, and prove (by induction on the length of φ) that

e(φ) ∈ H for every substitution e and every φ ∈ B ′. If φ = ¬α for some α,

the above obviously holds. If φ is α∧β or α∨β, it suffices only to make use

of the inductive hypothesis (and the disjunction property for ML). Suppose

that φ = α → β for some α and some β ∈ B ′. Let e, f be substitutions

and e(α → β) ∈ ML. If f(e(α)) ∈ H, then f(e(α)) ∈ ML and hence

f(e(β)) ∈ H by the inductive hypothesis. Then by structural completeness

of H, we get e(α) → e(β) ∈ H.
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Now, we can improve the lower bound. Note, for instance, that Scott’s

law (see Lemma 1.) belongs to B ′. Hence H must be an extension of Scott’s

logic, as well. It means, in particular, that KP =H is not allowed. Since

KP has the disjunction property, it means that KP is not structurally

complete.5

Another conclusion which can be drawn is that the logic H and ML co-

incide on monadic formulas, that is formulas built up from a single variable

p. The problem arises if one can show they coincide on arbitrary formulas.

4. Kripke models. We set out with an observation that the condi-

tions (F1)-(F4) resemble very much forcing conditions in a Kripke model.

So, let us assume that H fulfills (F1)-(F4) (we do not assume at the moment

that H is an intermediate logic), and define a Kripke model for H. A closer

inspection of Friedman’s conditions reveals that, if we want to incorporate

them in a Kripke model, we must take substitutions as ‘possible worlds’.

So, let E be the set of all substitutions in F and define a binary relation �

on E by

e � f ⇔ ∃g∈E f = g ◦ e.

Note that � is transitive and reflexive. The model E(H) = 〈E,�, ‖–H〉 is

given if the forcing relation ‖–H is defined, for every pi:

e ‖–H pi ⇔ e(pi) ∈ H.

Note that the frame 〈E,�〉 of our model does not depend on H, only the

relation ‖–H does. Moreover, E(H) is an intuitionistic model, that is

if e � f and e ‖–H pi, then f ‖–H pi,

5 An unpublished result of Andrzej Wroński. Note that we manage to show that KP

is not structurally complete without producing a structural and admissible rule which is

not derivable there. It does not follow from the above that the rule

(¬¬α → α) → (α ∨ ¬α) /¬¬α ∨ ¬α,

given by Scott’s law is an admissible rule of KP.
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if (and only if) H is closed under substitutions. Let us prove that the forc-

ing relation extends in a natural way to arbitrary formulas:

Theorem 8. For every e ∈ E and every formula α ∈ F

e ‖–H α ⇔ e(α) ∈ H.

Proof. We prove by induction on the length of the formula α. If α

is a variable the above holds by definition. Let us assume the equivalence

holds for α and β.

If e ‖–H α ∧ β, then e ‖–H α and e ‖–H β, hence e(α ∧ β) ∈ H by

our inductive hypothesis and (F1). The reverse is also clear. A similar

argument can also be used for α ∨ β using (F2) instead of (F1).

Suppose that e ‖–H α → β and let g(e(α)) ∈ H for a substitution

g ∈ E. Note that e � g ◦ e and g ◦ e ‖–H α by inductive hypothesis.

Hence g ◦ e ‖–H β by the definition of the forcing relation. Using inductive

hypothesis, we obtain g(e(β)) ∈ H. Thus, it has been shown that, for

every substitution g, if g(e(α)) ∈ H, then g(e(β)) ∈ H. By (F3), we get

e(α) → e(β) ∈ H.

Suppose, on the other hand, that e(α → β) ∈ H and let f ‖–H α

for a substitution f � e. Then f = g ◦ e for some g and, by inductive

hypothesis, we get g(e(α)) ∈ H. Thus, by (F3), we have g(e(β)) ∈ H and

hence f ‖–H β. We have shown that f ‖–H α yields f ‖–H β, for every

f � e. It means that e ‖–H α→ β by the definition of the forcing relation

in any Kripke model.

The formula ¬α is handled in a similar way. If e(¬α) ∈ H, then by

the condition (F4) we get g(e(α)) 6∈ H and hence g ◦ e ‖6–H α for every

substitution g. This gives e ‖–H ¬α. If, on the other hand, e ‖–H ¬α, then

g ◦ e ‖6–Hα and hence g(e(α)) 6∈ H for every g. It means that e(¬α) ∈ H

by the condition (F4).
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There is always a plenty of substitutions and hence the received set

E of all possible worlds is rather huge. On the other hand substitutions

are very much alike and hence possible words can be reduced by certain

similarities.

In the first place, we can restrict ourselves to finitely generated sub-

languages. Suppose that Fn is the set of all formulas in {→,∨,∧,¬} built

up from the variables p1, . . . , pn and let En(L) be the reduct of the model

E(L) to the language Fn. Practically, there is no much difference between

the two models, except for the forcing relation in En(L) is restricted to the

variables p1, . . . , pn. Since it does not play any role for e ‖–H α how the

relation is defined on variables which do not occur in α, for every formula

α ∈ Fn we get:

E(L) ‖– α ⇔ En(L) ‖– α.

In the second place, we can reduce En(L) by use of some p−morhpisms.

Let us recall that given two Kripke models, say A = 〈A,�A, ‖–A〉 and

B = 〈B,�B , ‖–B〉, a mapping M from A onto B is called a p−morphism iff

(i) a �A b ⇒ M(a) �B M(b);

(ii) M(a) �B y ⇒ ∃b(y = M(b) and a �A b);

(iii) a ‖–A pi ⇔ M(a) ‖–B pi;

for every a, b ∈ A, every y ∈ B, and every variable pi. One easily shows

that, if M is a p−morhpism, then for every a ∈ A and every formula α:

a ‖–A α ⇔ M(a) ‖–B α

Let us consider the case n = 1, assuming this time that H is an

intermediate logic. Each possible world e in E1(L), which is a substitution

in F1, can be identified with the formula e(p). What is more, the only

information required is whether e(p) ∈ H, or not. We get the following

possibilities

(1) e(p) ∈ H. Then f(p) ∈ H and hence f ‖–H p for each f � e. We

can clearly identify all such worlds e that e(p) ∈ H as they force exactly

the same formulas.
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(2) ¬e(p) ∈ H and hence e(p) is inconsistent. Then f(p) is inconsistent

for each f � e and hence f ‖–H ¬p. Similarly as above, the identification

of all such substitutions e is possible.

(3) e(p) ∈ CL\H. Then f(p) can be valid for some f � e, but cannot

be inconsistent. Hence e ‖–H ¬¬p and e ‖6–H p. Again, all such worlds e

force the same formulas and we can identify them.

(4) e(p) is regular, that is equivalent inH to ¬α for some α, but neither

valid, nor inconsistent. Substitutions of e(p) can be valid or inconsistent

but cannot belong to CL \H. So, we have e ‖–H ¬¬p→ p but e ‖6 –H ¬¬p.

Again, the identification of all such worlds e is possible.

All remaining worlds can be put into the five class. The received Kripke

model P = 〈P,≤, ‖–〉 is given in Figure 2. where instead of the forcing

relation we label nodes with forced formulas. It means, in particular, that

the variable p is forced at one node only – the one labeled with p.

¬ p p

¬¬ p¬¬ p → p

 p → p

Figure 2.

We also get a mapping M : E1 → P and it is clear that the mapping

fulfills the conditions (i) and (iii) from the definition of a p−morphism.

There is a little problem with the condition (ii). To show this we should

consider all possibilities. Almost all of them are trivial. For instance, if

M(e) = ¬¬p→ p, then e(p) is regular, but neither valid, nor inconsistent.

Hence f(e(p)) ∈ INT and ¬g(e(p)) ∈ INT for some substitutions f and g.

Thus, we get M(f ◦ e) = p and M(g ◦ e) = ¬p. Similarly, if M(e) = ¬¬p,

then e(p) is classically valid and hence there is a substitution f such that

f(e(p)) ∈ H. Thus, M(f ◦ e) = p and f ◦ e � e.
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But let us consider the worst case with M(e) = p→ p. If we take y = p

or y = ¬p, there will be no problem to find f � e such that M(f) = y

as e(p) is neither valid, nor inconsistent. Let y = ¬¬p. If ¬¬f(e(p)) ∈ H

yields f(e(p)) ∈ H for every substitution f , then we get ¬¬e(p) → e(p) ∈ H

by (F3) and hence e(p) is regular which contradicts our assumptions. Thus,

there exists a substitution f such that ¬¬f(e(p)) ∈ H and f(e(p)) 6∈ H and

it means that M(f ◦ e) = y. There remains to consider the possibility that

y = ¬¬p → p. If ¬¬f(e(p)) → f(e(p)) ∈ H yields f(e(¬p)) ∨ f(e(p)) ∈ H

for every substitution f , then (¬¬e(p) → e(p)) → ¬e(p) ∨ e(p) ∈ H by

(F3) and hence ¬e(p) ∨ ¬¬e(p) ∈ H by Scott’s law. Then, by (F2), either

¬e(p) ∈ H or ¬¬e(p) ∈ H which is impossible as M(e) = p → p. Thus

there must exist a substitution f such that ¬¬f(e(p)) → f(e(p)) ∈ H and

¬f(e(p)) ∨ f(e(p)) 6∈ H which gives M(f ◦ e) = y.

We conclude that E1(H) reduces to a much simpler (finite) model P,

the same model for each logic H. Note that the mapping M might depend

on the logic H. It might happen that e(p) were valid in one logic and in-

valid in another, hence M(e) would be p in one logic and something else in

the other.

5. The fragment {→,∧,¬}. Simple examples show that the sit-

uation become more complicated when we deal with arbitrary (not only

monadic) formulas. In particular, let us note that the product of two copies

of the p−morphism used for E1(H) is not a p−morphism from E2(H) onto

P2. Indeed, let e be a substitution such that e(p1) = e(p2) = p. We have

f(p1) = f(p2) for every f � e. Thus, the submodel of E2(H) determined

by e (that is the submodel on {f : e � f}) is mapped by the product of

the p−morphisms onto a proper submodel of P2 (isomorphic with P), not

onto P2. On the other hand, the substitution e is identified in the product

with the identity substitution. This would not be possible if E2(H) and

P2 were p−morphic.
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One sees that to describe (in terms of p−morphisms) P2(H) one needs

not only P2, but its certain submodels as well. Submodels occur as sub-

stitutions may introduce certain dependencies between variables. It is not

clear, however, how to construct a model from these submodels of P 2. A

fresh start is required.

Let us note that the model P coincides with the frame of all (up to

equivalence) consistent monadic formulas in {→,¬} ordered by the (inverse

of the) usual Lindenbaum order relation. Though connections between the

model En(H) and formulas in {→,¬} are not clear, let us try to develop

this idea and use a similar labeling of frame nodes in a general case. Thus,

we correlate with each substitution e, the set of all {→,¬}-formulas (built

up from the variables {p1, . . . , pn}) which are satisfied by e, i. e. formulas

α such that e(α) ∈ H. In fact, we correlate a single {→,¬,∧}-formula with

each e as the following theorem is well-known (see Diego [1]:)

Theorem 9. There is only finitely many (up to equivalence) formulas in

the intuitionistic fragment {→,¬,∧}.

Now, let us prove – a result by M. Szatkowski [11] – that Medvedev’s

logic ML is a conservative extension of the inuitionistic logic in the frag-

ment {→,¬,∧}. By the same, ML is also a conservative extension, in

{→,¬,∧}, of any structurally complete intermediate logic with the dis-

junction property.

Theorem 10. α ∈ ML ⇔ α ∈ INT, for every formula α in {→,¬,∧}.

Proof. One implication is clear as INT ⊆ ML. Our proof of (⇒) is

inductive with respect to the number of variables in α. If α is monadic, the

implication holds. We assume the implication holds for formulas with less

(<) variables than α, assume that α 6∈ INT, and show α 6∈ ML.

Note that each formula in {→,¬,∧} is equivalent to a conjunction of

formulas in {→,¬}. So, we may assume that α is α1∧. . .∧αn → β for some
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α1, . . . , αn, β in {→,¬} where β is either a variable, or a negation of some

formula. If β is a negation, then α is not classically valid (as α 6∈ INT) and

hence α 6∈ ML. Thus, we can assume that β is a variable.

Let us extend {α1, . . . , αn} to a maximal set X of {→,¬}-formulas

built up from the variables in α (see Theorem 9) such that

∧

X → β /∈ INT.

Let Y be the set of all {→,¬}-formulas, built up from the variables in α,

which do not belong to X. We have
∧

X → γ /∈ X and γ → β ∈ X for

every γ ∈ Y . Let X0 and Y0 be the subsets of X and Y , correspondingly,

containing those formulas which do not contain the variable β.

a) If ¬¬β /∈ X, then ¬¬β → β ∈ X and hence
∧

X → ¬¬β /∈ INT. It

also means that
∧

X → ¬¬β is not classically valid and this clearly suffices

for α /∈ ML. Thus, we may assume that ¬¬β ∈ X.

b) Let β → γ ∈ X for some γ ∈ Y0 . Then β ≡ γ ∈ X and hence the

set X is equivalent (in INT) to X0∪{β ≡ γ}. We also get
∧

X0 → γ /∈ INT

and hence, by inductive hypothesis, we obtain
∧

X0 → γ /∈ ML. This, in

turn, gives us
∧

X → β /∈ ML which completes our argument. Thus, we

may also assume that β → γ ∈ Y and hence (β → γ) ≡ γ ∈ X for every

γ ∈ Y0.

c) Let pi be a variable in α different from β. If pi ∈ X, we can

easily reduce X to an equivalent set Z ∪ {pi} where Z does not contain p.

Then using our inductive hypothesis we obtain
∧

Z → β /∈ ML and hence
∧

X → β /∈ ML which suffices for α /∈ ML. We can argue in the same way

if ¬pi ∈ X.

We conclude that the set X is (equivalent to)

X0 ∪ {¬¬β} ∪ {β → γ) → β : γ ∈ Y0}

where X0 contains neither pi nor ¬pi for any variable p.

If
∧

X0 →
∨

Y0 ∈ ML, then
∧

X0 → γ ∈ ML for some γ ∈ Y0, by The-

orem 5 and the disjunction property in ML. This, however, contradicts our
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inductive hypothesis. Thus,
∧

X0 →
∨

Y0 /∈ ML and hence, by structural

completeness of ML, we get e(X0) ⊆ ML and e(Y0) ∩ ML = Ø for some

substitution e. We may clearly assume that the substitution is not defined

on the variable β. Next, let us consider the following possibilities:

(i) There is a formula γ0 ∈ Y0 such that
∨

Y0 ≡ γ0 ∈ X0. Then the

set X is equivalent (in intuitionistic logic) to X0 ∪ {¬¬β, (β → γ0) → β}.

Let pi be any variable which does not occur in e(γ0). If

((pi → e(γ0)) → pi) → (¬¬pi → pi) /∈ ML

we can extend the substitution e with the condition e(β) = pi to (a substi-

tution such that) get
∧

e(X) → e(β) /∈ ML. Hence α /∈ ML . So, suppose

that

(∗) ((pi → e(γ0)) → pi) → (¬¬pi → pi) ∈ ML

and take φ = (pi → e(γ0))∨pi. Since φ is classically vaid, we get ¬¬φ ∈ ML.

Let us note that e(γ0) → φ ∈ INT and (φ → e(γ0))) → e(γ0) ∈ INT.

Hence (φ → e(γ0))) → φ ∈ INT which gives φ ∈ ML by (∗). Then, by the

disjunction property in ML, we get either e(γ0) ∈ ML, or pi → e(γ0) ∈ ML.

Since pi does not occur in e(γ0), in both cases e(γ0) ∈ ML. This is, however,

impossible as γ0 ∈ Y0 and e(Y0) is disjoint with ML.

(ii) Let {γ1, . . . , γn}, with n > 1, be a minimal subset of Y0 such that

for every γ ∈ Y0 there is an integer i ≤ n with γ → γi ∈ X0. Clearly,

∨

Y0 ≡ (γ1 ∨ · · · ∨ γn) ∈ X0 and (γi → γj) ≡ γj ∈ X0 if i 6= j.

Let us take e(β) = e(γ1)∨ . . .∨e(γn). Note that e(γ1∨ . . .∨γn) is classically

valid as Y0 contains all variables (except of β) occurring in α and their

negations. Hence e(¬¬β) ∈ INT.

Let us show that (e(β) → e(γ)) → e(γ) ∈ ML for every γ ∈ Y0. Since

e(X0) ⊆ ML, it suffices to show that

((γ1 ∨ . . . ∨ γn) → γ) → (γ1 ∨ · · · ∨ γn) ∈ X0
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for every γ ∈ Y0. Let γ → γi ∈ X0 for an i ≤ n. Then

((γ1 ∨ . . . ∨ γn) → γ) → ((γ1 ∨ · · · ∨ γn) → γi) ∈ X0

Since (γj → γi) → γi ∈ X0 for any j 6= i (and n > 1,) we get

((γ1 ∨ · · · ∨ γn) → γ) → γi ∈ X0

Thus, we have shown that e(X) ⊆ ML. Since e(β) 6∈ ML by the disjunction

property in ML, we get e(α) /∈ ML which completes our argument.

Let Pn be the set of all (up to equivalence) consistent in intuitionis-

tic logic (and hence in any intermediate logic) {→,¬,∧}-formulas built up

from the variables p1, . . . , pn. We define a Kripke model Pn = 〈Pn,≤, ‖–〉

taking β ≤ α iff α → β ∈ INT, and assuming that α ‖– pi iff pi ≤ α. It is

clear that Pn is an intuitionistic model. Next, let Mn(e), for any e ∈ En,

be the greatest in Pn formula α such that e(α) ∈ H. Note that the defi-

nition of Pn does not depend on the logic H but that of Mn(e) does. As

it has been shown above M1 : E1 → P1 is a p−morphism. Unfortunately,

Mn : En → Pn is not a p−morphism if n ≥ 2. Thus, our approach fails.

The failure of this can be shown even for n = 2. Namely, let us take

a substitution e such that e(p1) = p1 and e(p2) = ¬¬p1 ∨ (¬¬p1 → p1).

Then M2(e) is a conjunction of ¬¬p2 and all formulas (up to equivalence)

of the form (α → p2) → α for each invalid α in {→,¬} built up from the

variable p1 only. We clearly get M2(e) ≤ p2. But if f(e(p2)) ∈ H, then

¬¬f(e(p1)) ∈ H or ¬¬f(e(p1)) → f(e(p1)) ∈ H. Thus, M2(f ◦ e) = p2

holds for none f .

Clearly, it is not possible that the models Pn and En(H) were equiv-

alent for n > 1. One of them is finite and the other is a model for ML.

Since the positive (without negation) fragment of ML coincides with that

of intuitionistic logic, its model cannot be finite (if at least two variables

are allowed).
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