Jerzy KOTAS and Maciej MAEYCHA

REMARKS ON THE ARRANGEMENT OF IRREDUCIBLE ELEMENTS OF FINITELY GENERATED DISTRIBUTIVE LATTICES IN A BOOLEAN CUBE

Abstract. We consider the problem of embedding of freely generated distributive lattices into Boolean cubes.

Suppose that \mathbf{K} is a finite distributive lattice and let $N_{\mathbf{K}}$ be the set of all its irreducible, different from 1 elements. That is

$$
N_{\mathbf{K}}=\{a \in K ; a \neq 1 \wedge \forall x, y \in K(x \cap y=a \rightarrow x=a \vee y=a)\} .
$$

It is well known that the closure of the set $N_{\mathbf{K}} \cup\{1\}$ on finite intersections equals to the set of all elements of \mathbf{K}.

Suppose that $R_{1}, R_{2}, \ldots, R_{m}$ is a decomposition of the set $N_{\mathbf{K}}$ onto chains and let $\left|R_{i}\right|=r_{i}, 1 \leq i \leq m$. Let

$$
P_{r_{1} \ldots r_{m}}=\prod\left(\left\{0,1, \ldots, r_{i}\right\} ; 1 \leq i \leq m\right) .
$$

Then we define two binary operations \cup and \cap on the set $P_{r_{1} \ldots r_{n}}$ as follows:

$$
\begin{aligned}
& \left(x_{1}, \ldots, x_{m}\right) \cup\left(y_{1}, \ldots, y_{m}\right)=\left(\max \left(x_{1}, y_{1}\right), \ldots, \max \left(x_{m}, y_{m}\right)\right), \\
& \left(x_{1}, \ldots, x_{m}\right) \cap\left(y_{1}, \ldots, y_{m}\right)=\left(\min \left(x_{1}, y_{1}\right), \ldots, \min \left(x_{m}, y_{m}\right)\right) .
\end{aligned}
$$

It is clear that

$$
\mathcal{P}_{r_{1} \ldots r_{m}}=\left\langle P_{r_{1} \ldots r_{m}}, \cup \cap\right\rangle
$$

is a finite distributive lattice.
Let $f: N_{K} \rightarrow\{0,1\}^{n}$ be a mapping such that

$$
(f(a))(i)=1 \Leftrightarrow a \in R_{i}, \quad 1 \leq i \leq m
$$

and let $I: K \rightarrow P_{r_{1} \ldots r_{m}}$ be defined as follows:

$$
I(x)=\left(r_{1}, \ldots, r_{m}\right)-\sum\left(f(a) ; x \leq a \wedge a \in N_{K}\right)
$$

Theorem 1. The mapping I is an embedding of the lattice K into the lattice $\mathcal{P}_{r_{1} \ldots r_{m}}$.

Let F_{n} be a free lattices with n free generators $a_{1}, a_{2}, \ldots, a_{n}$. Clearly,

$$
N_{F_{n}}=\left\{a_{i_{1}} \cup \ldots \cup a_{i_{k}} ; 1 \leq i_{1}<\ldots<i_{k} \leq n \wedge 1 \leq k \leq n-1\right\}
$$

and $\left|N_{F_{n}}\right|=2^{n}-2$.
Corollary 2. a) F_{n} is embeddable into the Boolean cube

$$
\mathcal{P}_{1 \ldots 1}=\left\langle\{0,1\}^{2^{n}-2}, \cup \cap\right\rangle
$$

b) $I\left(a_{i}\right)$ lies in the plane

$$
x_{1}+\ldots+x_{2^{n}-2}=2^{n-1}-1, \quad 1 \leq i \leq n
$$

If we identify each element x of the lattice F_{n} with its image $I(x)$ in the Boolean cube $\mathcal{P}_{1 \ldots 1}=\{0,1\}^{2^{n}-2}$, then the set $N_{F_{n}}$ can be considered as a matrix whose rows are elements of the set. There is only a finite number
of such matrices. They depend on the ordering of $N_{F_{n}}$ and the generators of F_{n} which occur in the plane, see Corollary 2 b . Let us prove that one can find such matrices $\mathfrak{M}^{(n)}$ that $\mathfrak{M}^{(n+1)}$ can be built up from segments of $\mathfrak{M}^{(n)}$.

Let G_{n} be a matrix with n rows and $2^{n}-2$ columns such that

1) the first $\binom{n}{1}$ columns are $\{0,1\}$ words, ordered lexicographically, and contain 1 only once;
2) the next $\binom{n}{2}$ columns are $\{0,1\}$ words, ordered lexicographically, and contain 1 twice;
$\mathrm{n}-1$) the last $\binom{n}{n-1}$ columns are $\{0,1\}$ words, ordered lexicographically, and contain 0 only once.

Let us assume that elements of the form $a_{i_{1}} \cup \ldots \cup a_{i_{j}}$ for each $1 \leq j \leq$ $n-1$ are ordered lexicographically with respect to their indices i_{1}, \ldots, i_{j}, and let us assume that $a_{i_{1}} \cup \ldots \cup a_{i_{j}}$ proceeds $a_{k_{1}} \cup \ldots \cup a_{k_{l}}$ if $j>l$. Such orderings on $N_{F_{n}}$ are said to be quasi-natural. Let $\mathfrak{M}^{(n)}$ be a matrix such that its k-th row is the k-th element in a given quasi-natural ordering on $N_{F_{n}}$ with $1 \leq k \leq 2^{n}-2$.

Theorem 3. The matrix G_{n} and the matrix consisting of the last $\binom{n}{n-1}$ rows of the matrix $\mathfrak{M}^{(n)}$ are the same and hence the rows of G_{n} are generators of the lattice F_{n}.

One can divide the set of all rows of $\mathfrak{M}^{(n)}$ into n-1 classes. The first one contains all generators of the lattice F_{n}, the second all elements of the form $a_{i} \cup a_{j}$ etc. The set of all columns of $\mathfrak{M}^{(n)}$ can also be divided into $n-1$ classes. The first one contains the first $\binom{n}{1}$ columns of $\mathfrak{M}^{(n)}$, the second contains the next $\binom{n}{2}$ columns etc. Let $\mathfrak{M}_{i, k}^{(n)}$ denote the submatrix of $\mathfrak{M}^{(n)}$ containing those elements which occur in the i-th set of the rows of $\mathfrak{M}^{(n)}$ and in the k-th set of its columns.

Theorem 4. For each natural number $n \geq 2$ and each $1 \leq i, k \leq n-1$,
(a) $\mathfrak{M}_{i, k}^{(n)}=[1]$ for $i+k>n$ where [1] is the matrix in which all elements are equal to 1 ;
(b) $\quad \mathfrak{M}_{i, k}^{(n)}=\left(\begin{array}{ccc}0 & & 1 \\ & \ddots & \\ 1 & & 0\end{array}\right)$ for $i+k=n$;
(c) $\quad \mathfrak{M}_{1,1}^{(n)}=\left(\begin{array}{ccc}0 & & 1 \\ & \ddots & \\ 1 & & 0\end{array}\right)$;
(d) $\quad \mathfrak{M}_{1, k}^{(n+1)}=\left(\begin{array}{c|c}0 & 1 \\ \hline \mathfrak{M}_{1, k}^{(n)} & \mathfrak{M}_{1, k-1}^{(n)}\end{array}\right)$ for $1<k<n-1$;
(e) $\quad \mathfrak{M}_{i, 1}^{(n+1)}=\left(\begin{array}{c|c}\mathfrak{M}_{i-1,1}^{(n)} & 1 \\ \hline \mathfrak{M}_{i, 1}^{(n)} & 0\end{array}\right)$ for $1 \leq i<n-1$;
(f) $\quad \mathfrak{M}_{i, k}^{(n+1)}=\left(\begin{array}{c|c}\mathfrak{M}_{i, k}^{(n)} & 1 \\ \hline \mathfrak{M}_{i-1, k}^{(n)} & \mathfrak{M}_{i-1, k-1}^{(n)}\end{array}\right)$ for $i+k<n$ and $i \neq 1 \neq k$.

Mathematical Institute
Pedagogical University
Plac Weyssenhoffa 11
Bydgoszcz 85-720, Poland

