REPORTS ON MATHEMATICAL LOGIC 38 (2004), 65–68

Jerzy KOTAS and Maciej MAŁYCHA

REMARKS ON THE ARRANGEMENT OF IRREDUCIBLE ELEMENTS OF FINITELY GENERATED DISTRIBUTIVE LATTICES IN A BOOLEAN CUBE

A b s t r a c t. We consider the problem of embedding of freely generated distributive lattices into Boolean cubes.

Suppose that **K** is a finite distributive lattice and let $N_{\mathbf{K}}$ be the set of all its irreducible, different from 1 elements. That is

$$N_{\mathbf{K}} = \{ a \in K; a \neq 1 \land \forall_{x,y \in K} (x \cap y = a \to x = a \lor y = a) \}.$$

It is well known that the closure of the set $N_{\mathbf{K}} \cup \{1\}$ on finite intersections equals to the set of all elements of \mathbf{K} .

Suppose that R_1, R_2, \ldots, R_m is a decomposition of the set $N_{\mathbf{K}}$ onto chains and let $|R_i| = r_i, 1 \leq i \leq m$. Let

$$P_{r_1...r_m} = \prod (\{0, 1, \dots, r_i\}; \ 1 \le i \le m).$$

Received July 6, 1999

1991 AMS Subject Classification 06E25

Then we define two binary operations \cup and \cap on the set $P_{r_1...r_n}$ as follows:

$$(x_1,\ldots,x_m)\cup(y_1,\ldots,y_m)=(\max(x_1,y_1),\ldots,\max(x_m,y_m)),$$

$$(x_1, \ldots, x_m) \cap (y_1, \ldots, y_m) = (\min(x_1, y_1), \ldots, \min(x_m, y_m))$$

It is clear that

$$\mathcal{P}_{r_1...r_m} = \langle P_{r_1...r_m}, \cup, \cap \rangle$$

is a finite distributive lattice.

Let $f: N_K \to \{0, 1\}^n$ be a mapping such that

 $(f(a))(i) = 1 \Leftrightarrow a \in R_i, \quad 1 \le i \le m$

and let $I: K \to P_{r_1 \ldots r_m}$ be defined as follows:

$$I(x) = (r_1, \dots, r_m) - \sum (f(a); \ x \le a \land a \in N_K).$$

Theorem 1. The mapping I is an embedding of the lattice K into the lattice $\mathcal{P}_{r_1...r_m}$.

Let F_n be a free lattices with n free generators a_1, a_2, \ldots, a_n . Clearly,

$$N_{F_n} = \{a_{i_1} \cup \ldots \cup a_{i_k}; \ 1 \le i_1 < \ldots < i_k \le n \land 1 \le k \le n-1\}$$

and $|N_{F_n}| = 2^n - 2$.

Corollary 2. a) F_n is embeddable into the Boolean cube

$$\mathcal{P}_{1\dots 1} = \langle \{0,1\}^{2^n - 2}, \cup, \cap \rangle.$$

b) $I(a_i)$ lies in the plane

$$x_1 + \ldots + x_{2^n - 2} = 2^{n-1} - 1, \qquad 1 \le i \le n.$$

If we identify each element x of the lattice F_n with its image I(x) in the Boolean cube $\mathcal{P}_{1...1} = \{0,1\}^{2^n-2}$, then the set N_{F_n} can be considered as a matrix whose rows are elements of the set. There is only a finite number

66

.

of such matrices. They depend on the ordering of N_{F_n} and the generators of F_n which occur in the plane, see Corollary 2b. Let us prove that one can find such matrices $\mathfrak{M}^{(n)}$ that $\mathfrak{M}^{(n+1)}$ can be built up from segments of $\mathfrak{M}^{(n)}$.

Let G_n be a matrix with n rows and $2^n - 2$ columns such that

1) the first $\binom{n}{1}$ columns are $\{0,1\}$ words, ordered lexicographically, and contain 1 only once;

2) the next $\binom{n}{2}$ columns are $\{0, 1\}$ words, ordered lexicographically, and contain 1 twice;

n - 1) the last $\binom{n}{n-1}$ columns are $\{0,1\}$ words, ordered lexicographically, and contain 0 only once.

Let us assume that elements of the form $a_{i_1} \cup \ldots \cup a_{i_j}$ for each $1 \leq j \leq n-1$ are ordered lexicographically with respect to their indices i_1, \ldots, i_j , and let us assume that $a_{i_1} \cup \ldots \cup a_{i_j}$ proceeds $a_{k_1} \cup \ldots \cup a_{k_l}$ if j > l. Such orderings on N_{F_n} are said to be *quasi-natural*. Let $\mathfrak{M}^{(n)}$ be a matrix such that its k-th row is the k-th element in a given quasi-natural ordering on N_{F_n} with $1 \leq k \leq 2^n - 2$.

Theorem 3. The matrix G_n and the matrix consisting of the last $\binom{n}{n-1}$ rows of the matrix $\mathfrak{M}^{(n)}$ are the same and hence the rows of G_n are generators of the lattice F_n .

One can divide the set of all rows of $\mathfrak{M}^{(n)}$ into n-1 classes. The first one contains all generators of the lattice F_n , the second all elements of the form $a_i \cup a_j$ etc. The set of all columns of $\mathfrak{M}^{(n)}$ can also be divided into n-1 classes. The first one contains the first $\binom{n}{1}$ columns of $\mathfrak{M}^{(n)}$, the second contains the next $\binom{n}{2}$ columns etc. Let $\mathfrak{M}_{i,k}^{(n)}$ denote the submatrix of $\mathfrak{M}^{(n)}$ containing those elements which occur in the *i*-th set of the rows of $\mathfrak{M}^{(n)}$ and in the *k*-th set of its columns. Theorem 4. For each natural number n ≥ 2 and each 1 ≤ i, k ≤ n − 1,
(a) 𝔐⁽ⁿ⁾_{i,k} = [1] for i + k > n where [1] is the matrix in which all elements are equal to 1;

(b)
$$\mathfrak{M}_{i,k}^{(n)} = \begin{pmatrix} 0 & 1 \\ & \ddots & \\ 1 & 0 \end{pmatrix}$$
 for $i + k = n;$

(c)
$$\mathfrak{M}_{1,1}^{(n)} = \begin{pmatrix} 0 & 1 \\ & \ddots & \\ 1 & 0 \end{pmatrix};$$

(d)
$$\mathfrak{M}_{1,k}^{(n+1)} = \left(\begin{array}{c|c} 0 & 1 \\ \hline \mathfrak{M}_{1,k}^{(n)} & \mathfrak{M}_{1,k-1}^{(n)} \end{array} \right) \text{ for } 1 < k < n-1;$$

(e)
$$\mathfrak{M}_{i,1}^{(n+1)} = \left(\begin{array}{c|c} \mathfrak{M}_{i-1,1}^{(n)} & 1 \\ \hline \mathfrak{M}_{i,1}^{(n)} & 0 \end{array} \right)$$
 for $1 \le i < n-1$;

(f)
$$\mathfrak{M}_{i,k}^{(n+1)} = \left(\begin{array}{c|c} \mathfrak{M}_{i,k}^{(n)} & 1\\ \hline \mathfrak{M}_{i-1,k}^{(n)} & \mathfrak{M}_{i-1,k-1}^{(n)} \end{array} \right) \text{ for } i+k < n \text{ and } i \neq 1 \neq k.$$

Mathematical Institute Pedagogical University Plac Weyssenhoffa 11 Bydgoszcz 85-720, Poland