REPORTS ON MATHEMATICAL LOGIC 38 (2004), 61–64

Jerzy KOTAS

SELF-DUAL BOOLEAN FUNCTIONS

A b s t r a c t. We define a simple method for finding polynomials over Z_2 which realize self-dual Boolean functions.

Self-dual Boolean functions were defined by E. Post in Introduction to a general theory of elementary propositions, American Journal of Mathematics, 4 (1921), 163–185. They turned out to be essential for the checking test if a given class of Boolean functions is complete (i.e. its closure under the superposition is the class of all Boolean functions). Self-dual functions realized by polynomials over Z_2 found also applications in coding theory.

Let $E_2 = \{0, 1\}$. The set E_2^n , $n < \omega$, is called the *n*-dimensional Boolean cube. Elements of the cube are called nodes. The number $k = k_1 + 2k_2 + \ldots + 2^{n-1}k_n$ is called the number of the node $\overline{k} = (k_1, k_2, \ldots, k_n)$ in E_2^n . The node $-\overline{k} = (1 - k_1, \ldots, 1 - k_n)$ is said to be opposite to \overline{k} . A mapping $f : E_2^n \to E_2$ is called an *n*-argument Boolean functions. The function is said to be self-dual if

(1)
$$f(-\overline{k}) = 1 - f(\overline{k})$$

Received July 6, 1999

¹⁹⁹¹ AMS Subject Classification 06E30

for each node \overline{k} . It follows from (1) that any *n*-argument self-dual function is determined uniquely by its values on the nodes with $0 \le k \le 2^{n-1} - 1$. Then $l = f(\overline{0}) + 2f(\overline{1}) + \ldots + 2^{2^{n-1}-1}f(\overline{2^{n-1}-1})$ is called the number of the function f. Clearly, $0 \le l \le 2^{2^{n-1}} - 1$.

The set of the operators $\{\cdot, +, 0, 1\}$ of the field Z_2 is a complete set of Boolean functions. Then each Boolean function f can be given as a polynomial w_f over Z_2 . Let w_f^p be the sum of all components of w_f of the degree p, $0 \le p \le n$. Obviously, if f is a n-argument self-dual function, then $w_f^p = 0$.

For each node \overline{k} in E_2^n with $0 \le k \le 2^{n-1} - 1$ we define a function $\underline{k}: E_2^n \to E_2$ as follows

(2)
$$\underline{k}(\overline{x}) = \begin{cases} 1 & \text{if } \overline{x} \in \{\overline{k}, -\overline{k}\}, \\ 0 & \text{otherwice.} \end{cases}$$

Theorem 1. For every n-argument self-dual function f

(3)
$$f(\overline{x}) = \sum \{\underline{k}(\overline{x}); f(\overline{k}) = 0\} + x_n + 1.$$

Corollary 2. For every n-argument self-dual function f

(4)
$$w_f(\overline{x}) = \sum \{ w_{\underline{k}}(\overline{x}) : f(\overline{k}) = 0 \} + x_n + 1.$$

Assume that the components of the polynomial $w_{\underline{k}}^p$ are ordered and the order coincides with a lexicographical ordering of the variables. Let $(w_{\underline{k}}^p)$ be the sequence of the coefficients of $w_{\underline{k}}^p$. By $L_m(n), m \leq n$, we denote the set of all increasing sequences of the length m in the set $\{1, \ldots, n\}$. Clearly, $card(L_m(n)) = \binom{m}{n}$.

Let $F_m: E_2^n \to E_2^{\binom{n}{m}}$ be the mapping defined by

(5)
$$F_m(\overline{k}) = (c_m(k_{j_1}, \dots, k_{j_m}) : (j_1, \dots, j_m) \in L_m(n)),$$

62

where ${\cal C}_m$ is the $m\text{-}{\rm argument}$ Boolean function such that

$$C_m(x_1,\ldots,x_m) = \begin{cases} 1 & \text{if } x_1 = \ldots = x_m, \\ 0 & \text{otherwice.} \end{cases}$$

By $\vec{F}_m(\vec{k})$ we denote the node of the cube $E_2^{\binom{n}{m}}$ received form $F_m(\vec{k})$ by the reversal of its coordinates.

Theorem 3. For every $0 \le k \le 2^{n-1} - 1$ and every $0 \le p \le n - 1$ the following holds

(6)
$$\left(w_{\underline{k}}^{p}\right) = \vec{F}_{n-p}(\overline{k}).$$

It follows from (4) and (6) that for each n-ary self-dual function f

(7)
$$\left(w_{f}^{p}\right) = \begin{cases} \sum \{\vec{F}_{n-p}\overline{k} : f(\overline{k}) = 0\} & \text{if } 2 \leq p \leq n-1, \\ \sum \{\vec{F}_{n-1}(\overline{k}; f(\overline{k}) = 0\} + (0\dots01) & \text{if } p = 1, \\ (f(\overline{0})) + (1) & \text{if } p = 0, \end{cases}$$

where the symbols \sum and + denote the addition (mod 2) of the coordinates of the nodes involved.

To determine $\begin{pmatrix} w_f^p \end{pmatrix}$ for the *n*-argument self-dual function f with the number l, it suffices:

- 1. Find a binary representation of l in the form $(l_0 l_1 \dots l_{2^{n-1}-1});$
- 2. Determine the set $T_l = \{k; l_k = 0\};$
- 3. Calculate $\vec{F}_{n-p}(\overline{k})$ for each $k \in T_l$;
- 4. Calculate $\left(w_f^p\right)$ using the formula (7).

The sequence (w_f) of the coefficients of the polynomial w_f is the concatenations of the sequences $\left(w_f^{n-1}\right), \left(w_f^{n-2}\right), \ldots, \left(w_f^1\right), \left(w_f^0\right)$.

Example Let us try to determine, according to the above procedure, the polynomials (over Z_2) for the self-dual Boolean function f with the number l = 111. We get

63

 $\begin{array}{ll} 1. & 111 = (10110110), \\ 2. & T_{111} = \{1,4,7\}. \\ 3. & \overline{1} = (0100) \ (w_{\underline{1}}) = (1111), (111000), (1000), (0), \\ & \overline{4} = (0010) \ (w_{\underline{4}}) = (1111), (010101), (0010), (0), \\ & \overline{7} = (1110) \ (w_{\underline{7}}) = (1111), (001011), (0001), (0), \\ & (x_4 + 1) = (0001), (1) \\ & (w_f) = (1111), (100110), (1010), (1). \end{array}$

So, we receive

$$w_f(x_1, x_2, x_3, x_4) = x_1 x_2 x_3 + x_1 x_2 x_4 + x_1 x_3 x_4 + x_2 x_3 x_4 + x_1 x_2 + x_2 x_3 + x_2 x_4 + x_1 + x_3 + 1.$$

Mathematical Institute Pedagogical University Plac Weyssenhoffa 11 Bydgoszcz 85-720, Poland