Jerzy KOTAS

SELF-DUAL BOOLEAN FUNCTIONS

Abstract

We define a simple method for finding polynomials over Z_{2} which realize self-dual Boolean functions.

Self-dual Boolean functions were defined by E. Post in Introduction to a general theory of elementary propositions, American Journal of Mathematics, 4 (1921), 163-185. They turned out to be essential for the checking test if a given class of Boolean functions is complete (i.e. its closure under the superposition is the class of all Boolean functions). Self-dual functions realized by polynomials over Z_{2} found also applications in coding theory.

Let $E_{2}=\{0,1\}$. The set $E_{2}{ }^{n}, n<\omega$, is called the n-dimensional Boolean cube. Elements of the cube are called nodes. The number $k=$ $k_{1}+2 k_{2}+\ldots+2^{n-1} k_{n}$ is called the number of the node $\bar{k}=\left(k_{1}, k_{2}, \ldots, k_{n}\right)$ in $E_{2}{ }^{n}$. The node $-\bar{k}=\left(1-k_{1}, \ldots, 1-k_{n}\right)$ is said to be opposite to \bar{k}. A mapping $f: E_{2}{ }^{n} \rightarrow E_{2}$ is called an n-argument Boolean functions. The function is said to be self-dual if

$$
\begin{equation*}
f(-\bar{k})=1-f(\bar{k}) \tag{1}
\end{equation*}
$$

for each node \bar{k}. It follows from (1) that any n-argument self-dual function is determined uniquely by its values on the nodes with $0 \leq k \leq 2^{n-1}-1$. Then $l=f(\overline{0})+2 f(\overline{1})+\ldots+2^{2^{n-1}-1} f\left(\overline{2^{n-1}-1}\right)$ is called the number of the function f. Clearly, $0 \leq l \leq 2^{2^{n-1}}-1$.

The set of the operators $\{\cdot,+, 0,1\}$ of the field Z_{2} is a complete set of Boolean functions. Then each Boolean function f can be given as a polynomial w_{f} over Z_{2}. Let w_{f}^{p} be the sum of all components of w_{f} of the degree $p, 0 \leq p \leq n$. Obviously, if f is a n-argument self-dual function, then $w_{f}^{p}=0$.

For each node \bar{k} in E_{2}^{n} with $0 \leq k \leq 2^{n-1}-1$ we define a function $\underline{k}: E_{2}{ }^{n} \rightarrow E_{2}$ as follows

$$
\underline{k}(\bar{x})= \begin{cases}1 & \text { if } \bar{x} \in\{\bar{k},-\bar{k}\} \tag{2}\\ 0 & \text { otherwice }\end{cases}
$$

Theorem 1. For every n-argument self-dual function f

$$
\begin{equation*}
f(\bar{x})=\sum\{\underline{k}(\bar{x}) ; f(\bar{k})=0\}+x_{n}+1 . \tag{3}
\end{equation*}
$$

Corollary 2. For every n-argument self-dual function f

$$
\begin{equation*}
w_{f}(\bar{x})=\sum\left\{w_{\underline{k}}(\bar{x}): f(\bar{k})=0\right\}+x_{n}+1 . \tag{4}
\end{equation*}
$$

Assume that the components of the polynomial $w_{\underline{k}}^{p}$ are ordered and the order coincides with a lexicographical ordering of the variables. Let ($w_{\underline{k}}^{p}$) be the sequence of the coefficients of $w_{\underline{k}}^{p}$. By $L_{m}(n), m \leq n$, we denote the set of all increasing sequences of the length m in the set $\{1, \ldots, n\}$. Clearly, $\operatorname{card}\left(L_{m}(n)\right)=\binom{m}{n}$.

Let $F_{m}: E_{2}^{n} \rightarrow E_{2}^{\binom{n}{m}}$ be the mapping defined by

$$
\begin{equation*}
F_{m}(\bar{k})=\left(c_{m}\left(k_{j_{1}}, \ldots, k_{j_{m}}\right):\left(j_{1}, \ldots, j_{m}\right) \in L_{m}(n)\right), \tag{5}
\end{equation*}
$$

where C_{m} is the m-argument Boolean function such that

$$
C_{m}\left(x_{1}, \ldots, x_{m}\right)= \begin{cases}1 & \text { if } x_{1}=\ldots=x_{m} \\ 0 & \text { otherwice }\end{cases}
$$

By $\vec{F}_{m}(\bar{k})$ we denote the node of the cube $E_{2}^{\binom{n}{m}}$ received form $F_{m}(\bar{k})$ by the reversal of its coordinates.

Theorem 3. For every $0 \leq k \leq 2^{n-1}-1$ and every $0 \leq p \leq n-1$ the following holds

$$
\begin{equation*}
\left(w_{\underline{k}}^{p}\right)=\vec{F}_{n-p}(\bar{k}) \tag{6}
\end{equation*}
$$

It follows from (4) and (6) that for each n-ary self-dual function f

$$
\left(w_{f}^{p}\right)= \begin{cases}\sum\left\{\vec{F}_{n-p} \bar{k}: f(\bar{k})=0\right\} & \text { if } 2 \leq p \leq n-1 \tag{7}\\ \sum_{\vec{F}_{n-1}}(\bar{k} ; f(\bar{k})=0\}+(0 \ldots 01) & \text { if } p=1 \\ (f(\overline{0}))+(1) & \text { if } p=0\end{cases}
$$

where the symbols \sum and + denote the addition $(\bmod 2)$ of the coordinates of the nodes involved.

To determine $\left(w_{f}^{p}\right)$ for the n-argument self-dual function f with the number l, it suffices:

1. Find a binary representation of l in the form $\left(l_{0} l_{1} \ldots l_{2^{n-1}-1}\right)$;
2. Determine the set $T_{l}=\left\{k ; l_{k}=0\right\}$;
3. Calculate $\vec{F}_{n-p}(\bar{k})$ for each $k \in T_{l}$;
4. Calculate $\left(w_{f}^{p}\right)$ using the formula (7).

The sequence $\left(w_{f}\right)$ of the coefficients of the polynomial w_{f} is the concatenations of the sequences $\left(w_{f}^{n-1}\right),\left(w_{f}^{n-2}\right), \ldots,\left(w_{f}^{1}\right),\left(w_{f}^{0}\right)$.

Example Let us try to determine, according to the above procedure, the polynomials (over Z_{2}) for the self-dual Boolean function f with the number $l=111$. We get

1. $\quad 111=(10110110)$,
2. $\quad T_{111}=\{1,4,7\}$.
3. $\overline{1}=(0100)\left(w_{\underline{1}}\right)=(1111),(111000),(1000),(0)$,
$\overline{4}=(0010)\left(w_{4}\right)=(1111),(010101),(0010),(0)$,
$\overline{7}=(1110)\left(w_{\underline{\underline{Z}}}\right)=(1111),(001011),(0001),(0)$,
$\left(x_{4}+1\right)=(0001),(1)$
$\left(w_{f}\right)=(1111),(100110),(1010),(1)$.
So, we receive

$$
\begin{aligned}
w_{f}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)= & x_{1} x_{2} x_{3}+x_{1} x_{2} x_{4}+x_{1} x_{3} x_{4}+ \\
& +x_{2} x_{3} x_{4}+x_{1} x_{2}+x_{2} x_{3}+x_{2} x_{4}+x_{1}+x_{3}+1
\end{aligned}
$$

Mathematical Institute
Pedagogical University
Plac Weyssenhoffa 11
Bydgoszcz 85-720, Poland

