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A REPRESENTATION THEOREM FOR

CO-DIAGONALIZABLE ALGEBRAS

A b s t r a c t. Tadeusz Prucnal [5] published a proof of the following

representation theorem: for every atomic co-diagonalizable algebra

D there exists an embedding h from D into the field of all subsets of a

topological space X such that, for all a ∈ D, h(∆(a)) is the derivative

of the set h(a). He presented this result on a conference in Poland

in 1983 and left open the question of it could be generalized to all

co-diagonizable algebras. It was my observation that some ideas of

measure theory (extending a measure to a complete measure) could

be applied to define an embedding of any co-diagonalizable algebra

into an atomic co-diagonalizable algebra. Consequently, Prucnal’s

representation theorem holds true for arbitrary co-diagonalizable al-

gebras, which has been published in our common paper [3]. Two

years later, I’ve published a short note [2] examining a more general

situation of embeddability of modal structures into atomic modal

structures. This paper surveys these results with modified proofs

and additional comments.
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Introduction

Co-diagonalizable algebras are dual to diagonalizable algebras, the lat-

ter being algebraic counterparts of provability logic, investigated by Solo-

vay [6] (see Boolos [1], Magari [4], Smoryński [7]). In provability logic, the

arithmetical predicate Pr (Pr(x) means that x is the Gödel number of a

provable formula) is formalized as a modal operator . The axioms and

rules of provability logic are:

(CL) all tautologies of classical propositional logic in the modal language,

(A1) (ϕ→ ψ) → ( ϕ→ ψ),

(A2) ϕ→ ϕ,

(A3) ( ϕ→ ϕ) → ϕ (Löb theorem),

(MP) ϕ→ ψ, ϕ/ψ,

(N) ϕ / ϕ.

A diagonalizable algebra is an algebra D = (D,∪,∩,−, 0, 1, d) such

that (D,∪,∩,−, 0, 1) is a Boolean algebra, and d is a unary operation on

D, satisfying the equalities:

(d1) d(1) = 1,

(d2) d(a ∩ b) = d(a) ∩ d(b),

(d3) d(−d(a) ∪ a) = d(a),

for all a, b ∈ D.

A co-diagonalizable algebra is an algebra D = (D,∪,∩,−, 0, 1,∆) such

that (D,∪,∩,−, 0, 1) is a Boolean algebra, and ∆ is a unary operation on

D, satisfying the equalities:

(CD1) ∆(0) = 0,

(CD2) ∆(a ∪ b) = ∆(a) ∪ ∆(b),

(CD3) ∆(a− ∆(a)) = ∆(a),

for all a, b ∈ D. Clearly, ∆ is definable from d, by ∆(a) = −d(−a), and

conversely. Notice that d(a) ≤ d(d(a)) follows from (d2) and (d3), and

similarly, ∆(∆(a)) ≤ ∆(a) follows from (CD2) and (CD3), where a ≤ b

means a ∪ b = b. (For the ∆−case, first prove ∆(a) = ∆(a ∪ ∆(a)); the



A REPRESENTATION THEOREM FOR CO-DIAGONIZABLE ALGEBRAS 15

inclusion ⊆ holds by the monotonicity of ∆, and the converse inclusion

holds by (CD3), (CD2), De Morgan laws, and monotonicity again.)

An element a ∈ D is called an atom, if a 6= 0, and there is no element

0 < b < a. An algebra D is said to be atomic, if, for every a ∈ D, a 6= 0,

there is an atom b ∈ D such that b ≤ a.

Prucnal theorem

Let C denote the closure operator in a topological spaceX. An element

x ∈ X is called an accumulation point of a set A ⊆ X, if x ∈ C(A− {x}).

The set of all accumulation points of set A is called the derivative of A and

denoted Ad. P (X) denotes the powerset of the set X.

The following theorem is due to Prucnal (5).

Theorem 1. For every atomic co-diagonalizable algebra D, there exist a

topological space X and a mapping h : D 7→ P (X) which is a Boolean

monomorphism and satisfies h(∆(a)) = h(a)d, for all a ∈ D.

We sketch the proof. Let D be an atomic co-diagonalizable algebra.

At(D) denotes the set of all atoms in D. The mapping h : D 7→ P (At(D))

defined by:

h(a) = {x ∈ At(D) : x ≤ a}

is a Boolean monomorphism of the Boolean algebra (D,∪,∩,−, 0, 1) into

the field of sets (P (At(D)),∪,∩,−,Ø, At(D)). We put X = At(D), and

the topology is defined by taking all sets of the form h(a ∩ −∆(−a)), for

a ∈ D, as a subbase (actually, it is a base). Accordingly, open sets are

joins of sets from the base, and closed sets are meets of sets of the form

h(a ∪ ∆(a)), for a ∈ D. Therefore, the closure operator C in X is defined

by:

C(A) =
⋂

{h(a ∪ ∆(a)) : A ⊆ h(a ∪ ∆(a))}.

The equality h(∆(a)) = h(a)d amounts to the equivalence:

x ≤ ∆(a) iff x ∈ C(h(a) − {x})
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for all x ∈ At(D), a ∈ D.

We prove the “only if” part. Assume x ≤ ∆(a), x ∈ At(D), a ∈ D,

and take an arbitrary b ∈ D such that h(a) − {x} ⊆ h(b ∪ ∆(b)). We have

h(x) = {x}, since x is an atom, which yields h(a) − {x} = h(a − x), and

consequently a − x ≤ b ∪ ∆(b), since h is a Boolean monomorphism. We

have x ≤ ∆(a) = ∆(a − ∆(a)) ≤ ∆(a − x) ≤ ∆(b ∪ ∆(b)) = ∆(b), by the

assumption, (CD3), the monotonicity of ∆, the latter inequality, and a law

mentioned above. Then, x ≤ b ∪ ∆(b), and consequently x ∈ h(b ∪ ∆(b)),

which yields x ∈ C(h(a) − {x}).

We prove the “if” part. Assume x ∈ C(h(a) − {x}), x ∈ At(D),

a ∈ D. We have h(a) − {x} = h(a − x) ⊆ h((a − x) ∪ ∆(a − x)), by the

monotonicity of h. The latter set is closed, hence x ∈ h((a−x)∪∆(a−x)),

and consequently x ≤ (a − x) ∪ ∆(a − x). Since x ∩ (a − x) = 0, then

x ≤ ∆(a− x) ≤ ∆(a), by the monotonicity of ∆, which finishes the proof.

Generalization

To prove Prucnal’s theorem for arbitrary co-diagonalizable algebras we

need the following:

Theorem 2. For every co-diagonalizable algebra D, there exists a mono-

morphism of D into an atomic co-diagonalizable algebra.

The above theorem has been proven in [3]. Clearly, if f is an embedding

of a co-diagonalizable algebra D into an atomic co-diagonalizable algebra

D′, and h is the mapping of D′ into the field of subsets of a topological

space X, described in the preceding section, then h ◦ f is a mapping of D

into the field of subsets of X, fulfilling the conditions of Prucnal’s theorem.

We sketch the proof of Theorem 2. Fix a co-diagonalizable algebra

D = (D,∪,∩,−, 0, 1,∆). By the Stone representation theorem for Boolean

algebras, we can assume D be a field of subsets of a nonempty set U ; the

operations ∪, ∩, and − are set-theoretic join, meet and complementation,

0 = Ø and 1 = U , while ∆ is an operator from D into D.
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We choose an arbitrary infinite set N and, for every A ∈ D, define

f(A) = A×N . Clearly, f is a Boolean monomorphism from the algebra D

into the field of all subsets of the set T = U ×N such that, for all A ∈ D,

A 6= Ø iff f(A) is infinite. For Y,Z ⊆ T , we define an equivalence relation:

Y ∼ Z iff the symmetrical difference Y ÷Z (i.e. the set (Y −Z)∪ (Z−Y ))

is finite. Clearly, the relation ∼ is a congruence on the field P (T ). We

define:

D′ = {B ⊆ T : (∃A ∈ f [D])A ∼ B}

where f [D] denotes the image of D under f . Since f [D] is a field of subsets

of T , and ∼ is a congruence, then D′ is also a field of subsets of T which

contains f [D]. Further, for any B ∈ D′, there is exactly one set A ∈ f [D]

such that A ∼ B. For, if A1 ∼ B, A2 ∼ B, A1, A2 ∈ f [D], then A1 ÷ A2

is finite, and consequently, A1 = A2, since all nonempty sets in f [D] are

infinite. By B? we denote the unique set A ∈ f [D] such that A ∼ B.

Clearly, (·)? is a Boolean homomorphism from D′ onto f [D].

Consider an algebra D′ = (D′,∪,∩,−,Ø, T,∆′) such that (D′,∪,∩,

−,Ø, T ) is the field of sets described above, and the operator ∆′ is defined

as follows: ∆′(A) = f(∆(f−1(A))), for A ∈ f [D], and ∆′(B) = ∆′(B?), for

B 6∈ f [D], B ∈ D′. Evidently, this definition is correct, and f is a Boolean

monomorphism of D into D′. Further, f(∆(A)) = ∆′(f(A)), for all A ∈ D,

hence f is a monomorphism of D into D′.

We show that D′ is a co-diagonalizable algebra. (CD1) is true, since

Ø ∈ f [D], hence ∆′(Ø) = f(∆(Ø)) = f(Ø) = Ø. For (CD2), we calculate:

∆′(A ∪ B) = ∆′((A ∪ B)?) = ∆′(A? ∪ B?) = ∆′(A?) ∪ ∆′(B?) = ∆′(A) ∪

∆′(B). (CD3) is also true, by a similar argument (use (∆′(A))? = ∆′(A?)).

Finally, D′ is atomic, since all finite subsets of T belong to D ′ (they

are equivalent to the empty set).

The proof of Theorem 2 is finished. Theorems 1 and 2 yield:

Theorem 3. For every co-diagonalizable algebra D, there exist a topolog-

ical space X and a mapping h : D 7→ P (X) which is a Boolean monomor-

phism and satisfies h(∆(a)) = h(a)d, for all a ∈ D.
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Notice that the derivative operator (·)d on a topological space need not

fulfill (CD3), hence the field of all subsets of a topological space enriched

with the derivative operator need not be a co-diagonalizable algebra. It

would be interesting to characterize those topological spaces which deter-

mine co-diagonalizable algebras.

More on Theorem 2

The method of embedding a co-diagonalizable algebra into an atomic

one, applied in the proof of Theorem 2, can be used for many other modal

structures. General conditions for that kind of embedding have been for-

mulated in [2].

A modal structure is a structure D = (D,∪,∩,−, 0, 1, (Rs)s∈S , (Ft)t∈T )

such that (D,∪,∩,−, 0, 1) is a Boolean algebra, Rs, for s ∈ S, is an ns−ary

relation on D, and Ft, for t ∈ T , is an nt−ary operation on D. We refer to

relations Rs and operations Ft as modal relations and operations, respec-

tively. A modal structure D is said to be atomic, if the underlying Boolean

algebra is atomic.

Let L be the first-order language for a fixed signature of modal struc-

tures. We use rs and ft as the relation and operation symbols corresponding

to Rs and Ft, respectively. The set TER, of all terms of L, is defined as

usual. We define a subset T0 of TER by the following recursion: (i) all

terms ft(u1, . . . , un) such that t ∈ T , n = nt, and u1, . . . , un are arbitrary

terms, belong to T0, (ii) 0, 1 ∈ T0, (iii) if u, v ∈ T0, then also (−u), (u ∪ v)

and (u ∩ v) belong to T0. Informally, T0 consists of those terms from TER

whose every variable is in the scope of some modal operation symbol. We

also define a set At0 which consists of all atomic formulas of the form u = v

such that u, v ∈ T0 or rs(u1, . . . , un) such that s ∈ S, n = ns and u1, . . . , un

are arbitrary terms. Finally, the set Fm0 is defined as the set of all formulas

of L which are formed out of atomic formulas from At0 by means of logical

connectives and quantifiers. Clearly, Fm0 is the set of those formulas of L

in which every occurrence of a variable falls into the scope of some modal

relation or operation symbol (except for the occurrences in ∀x and ∃x).
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Let D and D′ be modal structures of the same signature. A momo-

morphism h from D into D′ is a Boolean monomorphism from the Boolean

algebra underlying D into that underlying D ′ which satisfies the following

conditions:

(h1) Rs(a1, . . . , an) iff R′
s(h(a1), . . . , h(an)), where n = ns,

(h2) h(Ft(a1, . . . , an)) = F ′
t (h(a1), . . . , h(an)), where n = nt,

for all s ∈ S, t ∈ T , a1, . . . , an ∈ D; here Rs, R
′
s stand for the corresponding

designated relations in D and D′, respectively, and similarly for Ft, F
′
t . This

notion is a standard notion of a monomorphism for relational structures.

A monomorphism h from D into D′ is said to be elementary for Fm0,

if for every formula ϕ from Fm0 and all elements a1, . . . , an ∈ D, there

holds the equivalence:

D |= ϕ[a1, . . . , an] iff D′ |= ϕ[h(a1), . . . , h(an)],

where n is the number of free variables in ϕ, and |= denotes the standard

satisfaction relation. We write D ≺0 D′, if there exists a monomorphism

from D into D′ which is elementary for Fm0. Clearly, if D ≺0 D′, then

D |= ϕ iff D′ |= ϕ, for any sentence ϕ from Fm0.

Now, Theorem 2 can be generalized to the following:

Theorem 4. For every modal structure D, there exists an atomic modal

structure D′ such that D ≺0 D′.

It follows from this theorem that, if Γ is a set of sentences from Fm0,

then every modal structure D which is a model of Γ is embeddable into an

atomic modal structure D′ which is also a model of Γ. Thus, Theorem 2 is a

consequence of Theorem 4, since (the universal closures of) axioms (CD1)-

(CD3) belong to Fm0. In the same way, analogous embedding theorems

can be obtained for other modal structures, e.g. diagonalizable algebras,

normal modal algebras, deontic algebras corresponding to logics KD and

KD4, various preference algebras (with a modal preference ordering) and

so on. This method cannot be applied to modal structures whose at least
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one axiom does not belong to Fm0, as e.g. d(a) ≤ a corresponding to the

logic T.

The proof of Theorem 4 is similar to that of Theorem 2. One identifies

D with a field of sets, supplied with modal relations and operations. The

field D′ and a Boolean monomorphism f from D into D′ are defined as

above. Then, modal relations and operations are defined on D ′, by setting:

(R1) R′
s(A1, . . . , An) iff Rs(f

−1(A1), . . . , f
−1(An)), for A1, . . . , An ∈ f [D],

(R2) R′
s(A1, . . . An) iff R′

s(A
?
1, . . . , A

?
n), for A1, . . . , An ∈ D′,

(F1) F ′
t (A1, . . . , An) = f(Ft(f

−1(A1), . . . , f
−1(An))), for A1, . . .,

An ∈ f [D],

(F2) F ′
t (A1, . . . , An) = F ′

t (A
?
1, . . . , A

?
n), for A1, . . . , An ∈ D′.

Again, D′ is an atomic modal structure. The mapping f is a monomor-

phism of D into D′, hence f [D] is the universe of a substructure f [D] of

D′. The following equivalence holds:

D′ |= ϕ[A1, . . . , An] iff f [D] |= ϕ[A?
1, . . . , A

?
n],

for every formula ϕ from Fm0 and all A1, . . . , An ∈ D′. To prove this

equivalence, one first proves that, for every term u ∈ T0,

uD
′

(A1, . . . , An) = uf [D](A?
1, . . . , A

?
n),

for all A1, . . . , An ∈ D′, where n is the number of variables occurring in

u, and uM stands for the value of term u in structure M under the given

assignment. For, (·)? is a Boolean homomorphism and satisfies:

F ′
t (A1, . . . , An)? = F ′

t (A1, . . . , An) = F ′
t (A

?
1, . . . , A

?
n),

since F ′
t (A1, . . . , An) ∈ f [D]. Consequently, (·)? is a homomorphism from

D′ onto f [D] with respect to all Boolean and modal operations. Now, the

required equality can easily be proven by double induction on the complex-

ity of u and the number of occurrences of modal operation symbols in u.

The equivalence is proved by induction on the complexity of ϕ.
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Since f is an isomorphism of D onto f [D], then, for every formula ϕ

of L and all A1, . . . , An ∈ D, there holds:

D |= ϕ[A1, . . . , An] iff f [D] |= ϕ[f(A1), . . . , f(An)],

which, together with the equivalence from the preceding paragraph and

the fact f(Ai)
? = f(Ai), shows that f is a monomorphism from D into D ′,

elementary for Fm0. The proof of Theorem 4 is finished.

Let κ be an infinite cardinal. If the Boolean algebra underlying D is

a κ−complete field of sets (that means, it is closed under joins of families

{Aj}j∈J such that Aj ∈ D, for j ∈ J , and the cardinality of J is not

greater than κ), then there exists an atomic modal structure D ′ such that

D ≺0 D′, and the Boolean algebra underlying D′ is a κ−complete field of

sets. This fact can be proved in a similar way as Theorems 2 and 4 except

that for the set N one chooses a set of cardinality κ+ (the successor of κ),

and the relation ∼ is defined as follows: A ∼ B, if A÷ B is of cardinality

not greater than κ. In [2], the assumption is more general: the Boolean

algebra underlying D is κ−complete, and it is erroneous, since not every

κ−complete Boolean algebra can be represented as a κ−complete field of

sets.
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