
REPORTS ON MATHEMATICAL LOGIC
34 (2000), 23–57

James G. RAFTERY, Clint J. VAN ALTEN

RESIDUATION IN COMMUTATIVE ORDERED
MONOIDS WITH MINIMAL ZERO

1. Introduction

A commutative pomonoid is a structure A = 〈A;⊕, 0;≤〉, whose reduct
〈A;⊕, 0〉 is a commutative monoid where ≤ is a partial order of A for which
⊕ is isotone in both of its arguments. We call A residuated provided that
for any x, y ∈ A there is a least z ∈ A such that x ≤ z ⊕ y, in which
case this z is denoted by x .− y and the binary operation .− on A is called
residuation. In particular, such structures A satisfy x ≤ y ⇔ x .− y ≤ 0.

The abstract study of such pomonoids was inspired by the ideal lattices
of commutative unital rings, with ideal multiplication, reversed set inclu-
sion and the ring itself in the roles of ⊕, ≤ and 0. Here, although (unary)
inverses are absent, residuation supplies a binary operation abstracting
division. More recently, residuated commutative pomonoids in their full
generality have received attention as natural models for fragments of lin-
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ear logic. In this generality, because of the presence of the relation ≤, they
are not algebras.

This paper is a study of those commutative residuated pomonoids A
(as above) that are semi-integral, by which we mean that the monoid iden-
tity 0 is a minimal (not necessarily the least) element of the poset 〈A;≤〉.
In this case A satisfies x ≤ y ⇔ x .− y ≈ 0. Consequently, A is first order
definitionally equivalent to the algebra 〈A;⊕, .−, 0〉 of type 〈2, 2, 0〉, which
we call a sircomonoid. These algebras form a quasivariety SIRCOM, and
the methods of universal algebra become available for their investigation.

A well-understood class of sircomonoids is the quasivariety of pocrims:
these are the integral sircomonoids, i.e., those in which the monoid identity
is the (unique) least element of the order. Another is the variety of abelian
groups 〈G; +,−, 0〉 endowed with the discrete order.1 As it happens, these
two examples illuminate the residuation structure of sircomonoids A =
〈A;⊕, .−, 0〉 in general. Indeed, G = {0 .− x : x ∈ A} is the universe of an
abelian group G = 〈G; +, .−, 0〉 and the function α : x �→ 0 .− (0 .− x) on A

is idempotent and a homomorphism from A onto G; also the congruence
kernel of α is determined by I = α−1[{0}], which is the universe of the
largest subpocrim I of A. Semi-integrality forces all elements of G to be
minimal in 〈A;≤〉; each element of A dominates just one of them. (See
Figure 1 of Section 2.)

The above map α is not generally an endomorphism of A but it is
always an endomorphism of the residuation reduct A− = 〈A; .−, 0〉 of A,
i.e., α retracts A− onto its subalgebra 〈G; .−, 0〉. It is therefore profitable
to consider the residuation subreducts (i.e., the subalgebras of the 〈 .−, 0〉-
reducts) of sircomonoids in their own right. We prove that they are exactly
Iséki’s BCI-algebras, which form a quasivariety BCIA. The nontrivial part
of this result, viz. that every BCI-algebra embeds in the residuation reduct
of a sircomonoid, is an apparently new representation theorem for BCI-
algebras; its proof yields as a special case Pa�lasinski, Ono-Komori and
Fleischer’s theorem that BCK-algebras are just the residuation subreducts
of pocrims.

1 Here, for convenience, − is binary subtraction, rather than unary inversion.
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The quasivarieties SIRCOM and BCIA are not varieties. We prove
them to be relatively congruence extensile and that their relatively (or
relatively finitely) subdirectly irreducible members are absolutely (or ab-
solutely finitely) subdirectly irreducible, respectively.

SIRCOM and BCIA are relatively 0-regular and relatively congruence
modular, but BCIA generates a variety that is neither congruence modular2

nor congruence extensile. Nevertheless, we show that when K is SIRCOM

or BCIA, the relative congruences of any A ∈ K obey the relative commu-
tator identity [x, y]K ≈ x ∩ y ∩ [1, 1]K, (where 1 is A2), that [1, 1]K = [1, 1]
and that 0/[1, 1] is the largest pocrim (or BCK-) subuniverse I of A. The
structure theorem A/I ∼= G is therefore an analogue of the fundamental
theorem of abelian algebras (which fails in certain other relatively modu-
lar quasivarieties), and in K, the finitely subdirectly irreducible algebras
are either affine or relatively prime. Moreover, we show that finite sir-
comonoids and BCI-algebras generate varieties contained in SIRCOM or
BCIA, so results of Freese and McKenzie imply that any such variety is
residually finite and finitely (equationally) based. In fact we show that the
variety and quasivariety generated by a finite BCI-algebra coincide; this is
not true of sircomonoids. We analyse subdirectly irreducible sircomonoids
and develop a construction which allows us to prove that SIRCOM has
continuously many subvarieties not generated only by pocrims and abelian
groups; a similar result holds for BCIA.

Since every sircomonoid is an extension of its largest pocrim subalgebra
I by an abelian group G, it is of interest to characterize the ‘disconnected’
ones, i.e., those that decompose as I×G. We prove that these are just the
sircomonoids whose derived operation x + y = x .− (0 .− y) is associative.
The result yields a finite axiomatization of the quasivariety generated by
all pocrims and all abelian groups, showing it to be a (proper) relative
subvariety of SIRCOM. Analogous results hold for BCIA.

Finally, we consider the logical antecedents of BCI-algebras. We show
that the ‘assertional logic’ of BCIA is a purely axiomatic extension of the

2 The commutator theory of modular varieties therefore does not apply to it directly,

while in the corresponding theory for relatively modular quasivarieties, the analogues of

certain striking general results either fail or are open problems.
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implication fragment BCI of Girard’s linear logic, that it is the least ‘point-
edly algebraizable’ simple extension of BCI and that, unlike BCI, it has
a local deduction theorem.

A few notational preliminaries: For a binary relation ξ on a set S and
s ∈ S, we denote by s/ξ the s-class {r ∈ S : 〈r, s〉 ∈ ξ} of ξ in S. For
any poset P = 〈P ;≤〉 and Y ⊆ P and p ∈ P , we write [Y ) for the dually
hereditary subset {q ∈ P : y ≤ q for some y ∈ Y } of 〈P ;≤〉 generated by
Y and we abbreviate [{p}) as [p).

2. Sircomonoids and a Representation Theorem

A sircomonoid was defined in the introduction but let us give an in-
trinsic definition here: it is an algebra B = 〈B;⊕, .−, 0〉 of type 〈2, 2, 0〉 such
that for a, b, c ∈ B,

(i) 〈B;⊕, 0〉 is a commutative monoid;

(ii) the relation ≤ defined by a ≤ b iff a .− b = 0 is a partial order of B;

(iii) (residuation) a .− b ≤ c iff a ≤ c ⊕ b;

(iv) (semi-integrality) a ≤ 0 implies that a = 0.

In this case, we also have3

(v) (compatibility) a ≤ b and c ≤ d imply that a ⊕ c ≤ b ⊕ d.

The class SIRCOM4 of all sircomonoids therefore satisfies the following
identities and quasi-identity (where our convention is that x .− y .− z

abbreviates (x .− y) .− z).

(M1) x .− y .− z ≈ x .− (z ⊕ y),

(M2) x .− 0 ≈ x,

(M3) x .− x ≈ 0,

3 Using (iii), from (a ⊕ c) .− c ≤ a ≤ b, we infer a⊕ c ≤ b ⊕ c. Similarly, c ≤ d implies

c ⊕ b ≤ d ⊕ b, so (v) follows by commutativity of ⊕ and transitivity of ≤.
4 acronym for semi-integral residuated commutative ordered monoid
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(M4) x .− y .− (x .− z) .− (z .− y) ≈ 0,

(M5) (x .− y ≈ 0 and y .− x ≈ 0) ⇒ x ≈ y.

More strongly:

Proposition 1. The class of all sircomonoids is just the quasivariety

axiomatized by (M1) – (M5).5

The proof is very similar to arguments [22],[39] for ‘pocrims’ (defined
below) and a related class, and will be omitted. We shall show (Theorem 2
below) that the last four of the above properties axiomatize the class of
residuation subreducts of sircomonoids. These four axioms have been the
subject of much investigation in their own right, however: algebras of type
〈2, 0〉 satisfying (M2) – (M5) are called BCI-algebras; they were introduced
by K. Iséki in [21]. Let BCIA denote the quasivariety of all such algebras.
Neither SIRCOM nor BCIA is a variety: see [17],[44].

Theorem 2. Every BCI-algebra is a subalgebra of the reduct 〈B; .−, 0〉
of a sircomonoid B = 〈B;⊕, .−, 0〉. Thus, BCI-algebras are exactly the

residuation subreducts of sircomonoids.

A pocrim [5],[17] is a sircomonoid B in which 0 is the (unique) least
element of the partial order ≤, i.e., B satisfies 0 .− x ≈ 0. A BCI-algebra
satisfying this identity is called a BCK-algebra: these algebras also arose
in [21] and they are exactly the residuation subreducts of pocrims (see
[11],[33],[35]).

Before proving Theorem 2, we need some structural properties of BCI-
algebras. It follows directly from the axioms (M2) – (M5) that the relation
≤ defined on a BCI-algebra A = 〈A; .−, 0〉 by the rule x ≤ y ⇔ x .− y = 0
is a partial order of A with respect to which 0 is minimal in A, and that
the binary operation .− is isotone in its first argument and antitone in its
second. The following identities are further well known consequences of

5 (M3) is derivable from (M2) and (M4): x .− x ≈ x .− 0 .− (x .− 0) .− (0 .− 0) ≈ 0.
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(M2) – (M5)6 :

(1) x .− y .− z ≈ x .− z .− y,

(2) x .− (x .− y) ≤ y,

(3) x .− (x .− (x .− y)) ≈ x .− y,

(4) x .− y .− (z .− y) ≤ x .− z,

(5) 0 .− (x .− y) ≈ 0 .− x .− (0 .− y).

Let A = 〈A; .−, 0〉 be a BCI-algebra. The function β : A → A defined
by β(x) = 0 .− x is an endomorphism of A, by (5). Its image G = {0 .−
x : x ∈ A} is consequently the universe of a subalgebra G of A. By (3),
therefore, the map α = β2 is an idempotent endomorphism of A, i.e., α

retracts A onto G. It follows that α and β have the same congruence kernel
θ = {〈a, b〉 ∈ A : 0 .− a = 0 .− b}, that G is a transversal of θ and that
if I = 0/θ then I ∩ G = {0}. (These observations are strengthened in
Lemma 3 below.) Note that I = {a ∈ A : 0 ≤ a} and that I is the universe
of a subalgebra I of A, again by (5). Evidently I is the largest subalgebra
of A that is a BCK-algebra. (Moreover, if A is the residuation reduct of
a sircomonoid A+ then I is closed under ⊕, by (M1), so I is then the
residuation reduct of the largest pocrim subalgebra of A+.)

The subalgebra G of A is the subtraction reduct of an abelian group
G+ = 〈G; +, .−, 0〉 where for a, b ∈ G, we define a + b = a .− (0 .− b). (A
proof of this can be found in [30, Theorem 3]) The unary inversion is given
by −a = 0 .− a, so .− is the binary subtraction operation. (For convenience,
we take groups to have type 〈2, 2, 0〉, rather than 〈2, 1, 0〉.) The restriction
of ≤ to G is the discrete order. We adopt the practice of writing −c for
0 .− c when c ∈ G but not when c ∈ A \ G. In the former case, of course,
−(−c) = c.

When A is the residuation reduct of a sircomonoid A+ = 〈A;⊕, .−
, 0〉, the operations + and ⊕ need not coincide on G; indeed, G need not

6 To derive (5), note first that 0 .− y ≈ x .− y .− x (by (M3), (1)), whence 0 .− x .−
(0 .− y) ≈ 0 .− x .− (x .− y .− x) ≤ 0 .− (x .− y) (by (4)). Then since 0 ≈ 0 .− x .− (0 .− x),

we have 0 .− (0 .− x .− (0 .− y)) ≈ 0 .− x .− (0 .− x) .− (0 .− x .− (0 .− y)) ≤ 0 .− y .− (0 .−
x) ≤ x .− y (by (M4)), whence 0 .− (x .− y) .− (0 .− x .− (0 .− y)) ≈ 0 .− (0 .− x .− (0 .−
y)) .− (x .− y) ≈ 0, i.e., 0 .− (x .− y) ≤ 0 .− x .− (0 .− y).
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be closed under ⊕. In this case α is an epimorphism7 from A+ to the
group G+ (so θ is a congruence of A+ and A+/θ ∼= G+) but α is not an
endomorphism of A+.

Parts (i), (ii) and (iii) of the next lemma are proved in [32].

Lemma 3.

(i) θ is the transitive closure of the relation ≤ ∪ (≤−1) on A.

(ii) If a ∈ A then a/θ = −(0 .− a)/θ = [−(0 .− a)), so −(0 .− a) ∈ G is the

unique minimal element g of 〈A;≤〉 such that g ≤ a. In particular, G

is the set of all minimal elements of 〈A;≤〉.
(iii) If a ∈ A and g ∈ G then g .− a = 0 .− (a .− g) ∈ G.

(iv) If g1, g2 ∈ G and g1 ≤ a1 ∈ A and g2 ≤ a2 ∈ A then g1
.− g2 ≤ a1

.− a2.

If in addition, A is the residuation reduct of a sircomonoid 〈A;⊕, .−, 0〉
then g1 + g2 ≤ a1 ⊕ a2. (See Figure 1 below.)

(v) If I = {0} then A = G.

Proof. To prove the first assertion of (iv), note that g1
.− g2

.− (a1
.−

a2) ∈ 0/θ ∩ G (by (i) and (iii)) = {0}. For the second, observe that

(g1 + g2) .− (a1 ⊕ a2) = g1
.− (−g2) .− a2

.− a1

= g1
.− a1

.− (−g2) .− a2 = −(−g2) .− a2 = g2
.− a2 = 0.

Note that (v) follows from (ii), (M3) and (M5).

For a BCI-algebra A as above, an element b ∈ A and a finite nonempty
sequence �a = a1, . . . , an of elements of A, define b .− �a = b .− a1

.− . . . .− an

and
J(�a) = {x ∈ A : x .− �a = 0}

and let J(A) be the set of all such J(�a). Observe that each J(�a) is
nonempty, e.g., x .− (x .− �a) ∈ J(�a) for all x ∈ A, by (1) and (M3).
Define a binary operation ∗ on J(A) by

J(a1, . . . , an) ∗ J(b1, . . . , bm) = J(a1, . . . , an, b1, . . . , bm).

7 Using (3), (5) and (M1), we have (−(0 .− x)) + (−(0 .− y)) ≈ (−(0 .− x)) .− (0 .−
y) ≈ 0 .− (0 .− x .− y) ≈ −(0 .− (y ⊕ x)).
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Let J(A) = 〈J(A); ∗, {0};⊆〉.
Parts (i), (iii) and (iv) of the following lemma were proved by Huang

[20] but to see that Huang’s construction is the same as the one presented
here, one needs to note that for J(�a), J(�b) ∈ J(A),

J(�a) ⊆ J(�b) iff x .− �b .− (x .− �a) = 0, for all x ∈ A.

(Sufficiency is obvious. For necessity, use the fact that x .− (x .− �a) ∈ J(�a).)
From this it follows that J(a) ⊆ J(�b) whenever a ∈ J(�b).

Lemma 4.

(i) J(A) is a commutative pomonoid.

(ii) {{g} : g ∈ G} is the set of minimal elements of 〈J(A);⊆〉; in particular,

{0} is a minimal element and every J(�c) ∈ J(A) contains a unique

minimal element, viz. J(−(0 .− �c)).

(iii) For any a ∈ A, and J(�b) ∈ J(A), we have J(a .− �b) =
⋂{J(�c) ∈ J(A) :

J(a) ⊆ J(�c) ∗ J(�b)}.
(iv) The map ηA : a �→ J(a) (a ∈ A) is an isotone embedding of 〈A;≤〉

into 〈J(A);⊆〉 with ηA(0) = J(0) = {0}.
(v) Let g1, g2 ∈ G, and let J(�a), J(�b) ∈ J(A) with g1 ∈ J(�a) and g2 ∈ J(�b).

Then g1 + g2 (= g1
.− (0 .− g2)) ∈ J(�a) ∗ J(�b). If g1 ≤ a ∈ A then

g1
.− g2 ∈ J(a .− �b).

Proof. (i) and (iv) are straightforward. For (iii), see [20] Theorem 2.1.
In (ii), observe first that, for each g ∈ G, {g} = J(g) (Lemma 3(ii)) is a
minimal element of 〈J(A);⊆〉. For the converse, note that if x ∈ J(�c) then
−(0 .− x) ∈ J(�c) (by (2)), so J(−(0 .− x)) ⊆ J(�c), and −(0 .− x) ∈ G. If
J(�c) is also minimal then J(−(0 .− x)) = J(�c). For uniqueness, suppose
that J(0 .− y), J(0 .− z) ⊆ J(�c), so 0 .− y .− �c = 0 = 0 .− z .− �c, i.e.,
0 .− �c ≤ y, z. Then −(0 .− �c) ≥ 0 .− y, 0 .− z, and all three of these are in
G, so they are equal. Under the assumptions of (v),

(g1 + g2) .− �a .− �b = g1
.− �a .− (−g2) .− �b = (−(−g2)) .− �b = g2

.− �b = 0

and if J(a) ⊆ J(�c,�b) then g1
.− �c .− �b = 0 (because g1

.− a = 0); now

g1
.− g2

.− �c = g1
.− �c .− g2 ≥ g1

.− �c .− �b .− (g2
.− �b) = 0 .− 0 = 0
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but g1
.− g2

.− �c ∈ G (by Lemma 3(iii)) so g1
.− g2

.− �c = 0, i.e., g1
.− g2 ∈

J(�c). By (iii), g1
.− g2 ∈ J(a .− �b).

Although (iii) says that the images of elements of A under the embed-
ding ηA are ‘residuable’ in J(A), the pomonoid J(A) is not fully residuated.
To fill this gap we require a further embedding construction. At this point
a naive application to a BCI-algebra A of the constructions in [33] and [11]
(which would embed J(A) into the dual of the lattice of its order filters,
endowed with a suitable monoid operation) yields a containing residuated
commutative pomonoid M whose zero is not minimal. The following con-
struction and lemma show how to choose M differently so that it has a
minimal zero.

Let B = 〈B; ∗, 0B;≤〉 be a commutative pomonoid. Take an abelian
group G = 〈G; +,−, 0G〉 with 0 = 0B = 0G ∈ G ⊆ B. Assume that for
each b ∈ B there is a unique g ∈ G with g ≤ b, so G is the set of minimal
elements of 〈B;≤〉. Also assume that for any g1, g2 ∈ G and b1, b2 ∈ B,

(6) if g1 ≤ b1 and g2 ≤ b2 then g1 + g2 ≤ b1 ∗ b2.

For each g ∈ G, let Cg be the set of all subsets of [g) = {b ∈ B : g ≤ b} that
are dually hereditary (i.e., upward closed) in 〈B;≤〉 and let C =

⋃
g∈G Cg.

For S, T ∈ C, define S ⊕ T = [{a ∗ b : a ∈ S and b ∈ T}). By (6), ⊕ is a
binary operation on C.

Lemma 5. The structure 〈C;⊕, [0);⊇〉 is a commutative residuated

pomonoid with minimal zero. In its equivalent sircomonoid C = C(B) =
〈C;⊕, .−, [0)〉, we have S .− T = [{b ∈ B : b ∗ T ⊆ S}) for S, T ∈ C,

where b ∗ T = {b ∗ t : t ∈ T}. The map χB : b �→ [b) (b ∈ B) from B
to 〈C;⊕, [0);⊇〉 is an isotone monoid embedding that preserves existing

residuals, i.e., whenever a, b ∈ B and c is the least element of B such that

a ≤ c ∗ b then χB(c) = χB(a) .− χB(b).

The proof of the lemma is straightforward. The crucial facts are that
every element of C is contained in [g) for a unique g ∈ G and that, since
G is a group, whenever S ∈ Cg and T ∈ Ch and U ∈ Ck with U ⊕ T ⊆ S

then k = g − h.
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For any BCI-algebra A, by combining Lemmas 4 and 5, we obtain a
〈 .−, 0〉-embedding χJ(A)◦ηA : a �→ {J(�c) ∈ J(A) : J(a) ⊆ J(�c)} (a ∈ A) of
A into the residuation reduct of the sircomonoid C(J(A)). This completes
the proof of Theorem 2. In the case that 0 is the least element of a BCI-
algebra A (i.e., G = {0} and A = I), the above construction yields the
result of Pa�lasinski [35], Ono-Komori [33] and Fleischer [11] that BCK-
algebras are just the residuation subreducts of pocrims.

g − h g 0 h = −(0 .− b) g + h

a .− b
a

c a .− c

b
a ⊕ b

g ⊕ h

pocrim
I = [0)

︸ ︷︷ ︸
abelian group G = {0 .− x : x ∈ A}

Figure 1. The structure of a sircomonoid A

3. Algebraic Analysis of Sircomonoids

Let L be a language of algebras and K a quasivariety of L-algebras. A
congruence θ of an L-algebra A (with universe A) is called a K-congruence
(or relative congruence) of A if A/θ ∈ K. We denote by ConK A the set
of all K-congruences of A. This set becomes an algebraic lattice ConK A
when ordered by inclusion. (As such it coincides with the full congruence
lattice ConA if K is a variety and A ∈ K.) The least congruence and K-
congruence of A containing X ⊆ A2 are denoted, respectively, by ΘA(X)
and ΘA

K (X).

Let A ∈ K. We call A, K-subdirectly irreducible (or relatively sub-
directly irreducible) if A has a smallest nonidentity K-congruence. Every
algebra in K is a subdirect product of K-subdirectly irreducible algebras in
K. We call A finitely K-subdirectly irreducible if the identity congruence
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of A is meet irreducible in ConK A. A [finitely] K-subdirectly irreducible
algebra need not be [finitely] subdirectly irreducible in the absolute sense.
We say that A is K-simple if it has just two K-congruences.

We call K relatively congruence modular [resp. distributive] if the lattice
ConK A is modular [resp. distributive] for all A ∈ K. We say that K has
the relative congruence extension property (RCEP) if for any K-congruence
ξ of a subalgebra B of any A ∈ K we have B2 ∩ ΘA

K (ξ) = ξ.

We call K relatively 0-regular if 0 is a constant symbol of L and the
K-congruences of algebras A in K are determined by their 0-classes, i.e.,
whenever ξ, ζ ∈ ConK A with 0A/ξ = 0A/ζ then ξ = ζ. Such quasivarieties
K are characterized8 by the existence of binary L-terms dj, j < m ∈ ω,
such that

K |= (
∧

j<m dj(x, y) ≈ 0) ⇔ x ≈ y. (7)

In this case the 0-classes of relative congruences of any algebra A ∈ K also
form an algebraic lattice onto which the map ξ �→ 0A/ξ (ξ ∈ ConK A) is a
lattice isomorphism.9 The inverse isomorphism is given by J �→ {〈a, b〉 ∈
A2 : dj(a, b) ∈ J for all j < m}. A relatively 0-regular quasivariety need
not be relatively congruence modular (e.g., [7]) but 0-regular varieties are
congruence modular [14].

It is well known that the quasivarieties of pocrims and of BCK-algebras
are relatively congruence distributive. Note that SIRCOM and BCIA are
not relatively distributive, as they contain varieties of abelian groups (up
to term equivalence).

3.1. Closed Ideals. Now let A be a sircomonoid (with K = SIRCOM) or
a BCI-algebra (with K = BCIA); let 0 = 0A. A subset J of A is called a
closed ideal10 of A if J = 0/ξ for some ξ ∈ ConK A. It is known (e.g., see
[29]) that the closed ideals of A are just the nonempty subsets J of A such

8 For varieties, this characterization of 0-regularity appears in [9],[10].
9 See [6] for a proof and internal characterization of the 0-classes.

10 The literature on BCI-algebras reserves the term ideal for a more general kind of

subset.
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that for any a, b ∈ A, if b, a .− b ∈ J then (i) a ∈ J and (ii) 0 .− b ∈ J . It
follows that a closed ideal of A is both a subuniverse of A and a hereditary
subset of 〈A;≤〉. By (M3) and (M5), K is relatively 0-regular, so the set
CId A of all closed ideals of A is the universe of an algebraic lattice CIdA
(ordered by inclusion) and the map ξ �→ 0/ξ (ξ ∈ ConK A) is a lattice
isomorphism from ConK A onto CIdA, with inverse isomorphism given
by J �→ ξ(J) := {〈a, b〉 ∈ A2 : a .− b, b .− a ∈ J} (J ∈ CId A). We
abbreviate the factor algebra A/ξ(J) ∈ K as A/J . For Y ⊆ A, denote the
closed ideal of A generated by Y (i.e., the intersection of all closed ideals
of A that contain Y ) as CigA(Y ).

Lemma 6. Let A be a sircomonoid or BCI-algebra and Y ⊆ A. Let

Z = {a ∈ A : ∃n ∈ ω and ∃ b1, . . . , bn ∈ Y ∪ (0 .− Y ) such that a .− �b =
0}, where 0 .− Y = {0 .− y : y ∈ Y }. Then Z = CigA(Y ).11

Proof. The only nontrivial task is checking that Z is a closed ideal of
A. Certainly 0 ∈ Z (e.g., choose n = 0). Let a ∈ A and b, a .− b ∈ Z. Then
there exist finite (possibly empty) sequences �c, �d of elements of Y ∪(0 .− Y )
with b .− �c = 0 = a .− b .− �d = a .− �d .− b. Now

a .− �d .− �c = a .− �d .− �c .− (b .− �c) .− (a .− �d .− b) = 0, by (4),

so a ∈ Z. Suppose �c is c1, . . . , cm. Then, by (5),

0 .− b .− (0 .− c1) .− . . . .− (0 .− cm) = 0 .− (b .− �c) = 0 .− 0 = 0. (8)

If ci ∈ Y then 0 .− ci ∈ 0 .− Y . If ci = 0 .− y for some y ∈ Y then, by
(2), the equation (8) remains true when we replace 0 .− ci by y. Thus,
0 .− b ∈ Z, as required.

Corollary 7. Both the quasivariety of sircomonoids and the quasivari-

ety of BCI-algebras have the relative congruence extension property. Thus,

any of their subvarieties has the congruence extension property (CEP).

Proof. Let A be a sircomonoid or a BCI-algebra. By relative 0-
regularity it suffices to show that for any subalgebra B of A and any

11 When n = 0 (e.g. when Y = Ø) interpret a .− �b as a. Thus, CigA(Ø) = {0}.
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closed ideal J of B, we have B ∩ CigA(J) = J . This follows directly from
the previous lemma.

Let A be a BCI-algebra or sircomonoid and a, b ∈ A. Define b .− (0a) =
b and, for n ∈ ω, b .− ((n + 1)a) = b .− (na) .− a. If A is a sircomonoid,
define 0a = 0A and, for n ∈ ω, (n+ 1)a = (na)⊕a. (Thus, expressions like
a .− (nb) are unambiguous in sircomonoids.) As a special case of Lemma 6,
we have that b ∈ CigA({a}) if and only if there exist n,m ∈ ω such that
b .− (na) .− (m(0 .− a)) = 0 (which is equivalent, in a sircomonoid, to
b ≤ (na) ⊕ (m(0 .− a))). In particular, for g ∈ G = {0 .− a : a ∈ A}, if
J = CigA({g}) then J ∩ G is the subgroup of 〈G; +, .−, 0〉 generated by g

and if I = [0) then, by Lemma 3, J ∩ I = {i ∈ I : i .− (ng) .− (n(−g)) = 0
for some n ∈ ω}. (In a sircomonoid, J ∩ I = {i ∈ I : i ≤ n(g ⊕ (−g)) for
some n ∈ ω}.)

Lemma 8. Let A be a sircomonoid or a BCI-algebra and let J ⊆ A.

Then J is a closed ideal of A if and only if the following is true: for any

〈 .−, 0〉 term

t(x1, . . . , xm, y1, . . . , yn) = t(�x, �y) (m,n ∈ ω),

if all BCI-algebras satisfy t(�x,�0) ≈ 0, and �a is a1, . . . , am ∈ A and �c is

c1, . . . , cn ∈ J then t(�a,�c) ∈ J.12

Proof. Necessity: Note that if τ is any reflexive binary relation on A

that is a subuniverse of A2 (e.g., any congruence or relative congruence of
A) then 0/τ satisfies the lemma’s condition on terms. In particular, this is
true of the closed ideals of A. Sufficiency: Let J ⊆ A satisfy the condition
on terms. Using the nullary term 0, we infer that 0 ∈ J . Let a ∈ A and
b, a .− b ∈ J . Then 0 .− b ∈ J because BCIA satisfies t(0) ≈ 0, where t(y)
is 0 .− y. Finally, if t(x, y1, y2) is x .− (x .− y1

.− y2) then BCIA satisfies
t(x, 0, 0) ≈ 0, so a = a .− 0 = a .− (a .− (a .− b) .− b) = t(a, a .− b, b) ∈ J .
Thus, J is a closed ideal of A.

12 This shows that for sircomonoids and BCI-algebras, the notion of closed ideal coin-

cides with that of ‘ideal’ studied by A. Ursini [13] for algebras with a 0.
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The next two corollaries are derived from this lemma exactly as for
pocrims and related quasivarieties: see, e.g., [39, Lemma 12] and [41, Corol-
lary 3.4], respectively.

Corollary 9. Let K be SIRCOM or BCIA and A ∈ K. For any reflexive

binary relation τ on A that is a subuniverse of A2 (e.g., any congruence

of A) we have ΘA
K (τ) = {〈a, b〉 ∈ A2 : a .− b, b .− a ∈ 0/τ}, hence 0/τ =

0/ΘA
K (τ).

For a class K of L-algebras, let V(K) and Q(K) denote, respectively,
the variety and the quasivariety generated by K. Thus for a quasivariety
K, V(K) is the class of all homomorphic images of members of K.

Corollary 10. Let K be SIRCOM or BCIA. A quasi-identity of the

form (∧
i<nsi(�x) ≈ 0

) ⇒ t(�x) ≈ 0

is satisfied by K iff it is satisfied by the variety V(K).

Corollary 11. Let K be SIRCOM or BCIA and A ∈ K. Then K is rela-

tively congruence modular. If A is K-subdirectly irreducible [resp. finitely

K-subdirectly irreducible; K-simple] then it is subdirectly irreducible [resp.

finitely subdirectly irreducible; simple]. Thus, every algebra in K is a sub-

direct product of (absolutely) subdirectly irreducible algebras in K.

Proof. Any relatively 0-regular quasivariety K for which the conclu-
sion of Corollary 10 is true has the properties asserted in the statement of
the present corollary: see [8].

Therefore, sircomonoids and BCI-algebras have modular lattices of
closed ideals. For BCI-algebras, this was proved directly in [42, Theorem 7].
Henceforth we abbreviate ‘[finitely] subdirectly irreducible’ as [F]SI.

3.2. Subdirect Irreducibility. Let K be SIRCOM or BCIA. If A ∈ K is
SI with least nonidentity congruence ξ then, although ξ and ΘA

K (ξ) need
not coincide, they have the same 0-class, and this is the smallest nonzero
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closed ideal of A. Conversely, if A has a least nonzero closed ideal J then
A is SI; in this case we call J the monolith of A.

Let I be a pocrim or BCK-algebra. Recall that if I is SI then its order
reduct 〈I;≤〉 has at most one atom, while if 〈I;≤〉 has a unique atom then
I is SI. Also, I is FSI iff 0 is meet irreducible in 〈I;≤〉 (This is well known;
[40, Proposition 6.5] contains a more general result.) Recall that an abelian
group is FSI iff all of its subgroups are directly indecomposable, in which
case its nonzero finitely generated subgroups are isomorphic either to Z or
to Zpn , where 0 < p, n ∈ ω and p is prime. Up to isomorphism, the SI
abelian groups are just the groups Zpn , where 0 < n ∈ ω ∪ {∞} and p is
prime, while the simple abelian groups are just the groups Zp, where p is
prime.

Proposition 12. Let A be a sircomonoid or BCI-algebra and let I
and G be its largest pocrim (or BCK-) subalgebra and its homomorphic

image on {0 .− a : a ∈ A}, respectively. Assume that A �= G.

(i) A is FSI iff for each nonzero g ∈ G, there exists a nonzero i ∈ I such

that i .− g = −g (equivalently, in a sircomonoid, g ⊕ (−g) > 0 for all

nonzero g ∈ G) and I is FSI.

(ii) A is SI iff A is FSI and I is SI. In this case A and I have the same

closed ideal as monolith.

(iii) If A is simple then A = I.

Proof. (i) By relative 0-regularity, A and I are FSI iff {0} is meet
irreducible in their lattices of closed ideals. If K,L are closed ideals of I
then, by the RCEP (Corollary 7), CigA(K)∩ CigA(L) ∩ I = K ∩L. Since
I �= {0}, if A is FSI then so is I. In this case if 0 �= g ∈ G then some
j ∈ I ∩ CigA({g}) is not 0, and j .− (ng) .− (n(−g)) = 0 for some positive
n ∈ ω. Choose the least such n and let i = j .− ((n− 1)g) .− ((n− 1)(−g)).
Then 0 �= i ∈ I and i .− g = −g. Conversely, if I is FSI but K∩L = {0} for
nonzero closed ideals K,L of A then K∩I or L∩I is {0}, say K∩I = {0}.
Let 0 �= k ∈ K and g = 0 .− k. Then 0 �= g,−g ∈ G ∩ K and if 0 �= i ∈ I

then i /∈ K, whence i .− g �= −g.

(ii) Let A be SI with monolith J . Since I �= {0}, we have J ⊆ I

and J is clearly a closed ideal of I. If K is a nonzero closed ideal of I
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then J ⊆ CigA(K) ∩ I = K, by the RCEP, so I is SI with monolith J .
Conversely, if A is FSI and I is SI with monolith J and K is a nonzero
closed ideal of A then K contains I ∩ K, which is a nonzero closed ideal
both of A and of I, hence K ⊇ J . Thus, A is SI with monolith J .

(iii) follows immediately from G ∼= A/I.

The following construction shows that one can say little in general,
beyond Lemma 3, about the order reduct of a SI sircomonoid (and still
less for BCI-algebras) and that we can say nothing in general about their
abelian group images.

Let G = 〈G; +,−, 0〉 be any abelian group and P = 〈Pg : g ∈ G〉 a
family of mutually disjoint posets. For each g ∈ G, let Pg be the universe
of Pg. Assume that each g ∈ G is the least element of Pg and that P0 has
a unique atom e and is the order reduct of a BCK-algebra I with 0 = 0I.
Let A =

⋃
g∈G Pg and let ≤ be the union of the partial orders of the posets

Pg, g ∈ G.

Proposition 13. 〈A;≤〉 is the order reduct of a SI BCI-algebra A
(hence I is the largest BCK-subalgebra of A) such that G is the unique

group expansion of As homomorphic image on {0 .− a : a ∈ A} and CIdA
is isomorphic to the ordinal sum of CIdI and the subgroup lattice of G.

If in addition each poset Pg is bounded and I is a pocrim then we may

choose A to be a sircomonoid with all the same properties.

Proof. Consider first the case where I is a pocrim and each poset Pg

has a greatest element tg. We define ⊕ on A as follows. We require that
0 act as an identity element for ⊕ on A and that ⊕ extend the monoid
operation of I. If g, h ∈ G are not both 0, and 0 �= a ∈ Pg and 0 �= b ∈ Ph,
we define a ⊕ b = tg+h. Then 〈A;⊕, 0;≤〉 is a commutative residuated
pomonoid with minimal zero; its residuation .− may be characterized as
follows. For a ∈ A, a .− 0 = a and if a ≤ b ∈ A then a .− b = 0. I is a
subalgebra of the equivalent sircomonoid of 〈A;⊕, 0;≤〉. For 0 �= g ∈ G

and a, b ∈ Pg with a �≤ b, we have a .− b = e. Finally, for distinct g, h ∈ G

and a ∈ Pg and 0 �= b ∈ Ph, we have a .− b = g − h. If I is merely a BCK-
algebra, the above characterization of .− defines a binary operation on A,
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making 〈A; .−, 0〉 a BCI-algebra (even if the posets Pg are not bounded
above). Since e .− h = −h for all nonzero h ∈ G and I is SI, A is SI with
monolith CigI({e}), by Proposition 12(i),(ii).13 Moreover, every closed
ideal K of A either contains or is contained in I. For if a ∈ K \ I and
i ∈ I then i .− a = 0 .− a ∈ G ∩ K, so i ∈ K. Then by the RCEP, the
fact that A/I ∼= G and the (relative) Correspondence Theorem, CIdA is
isomorphic to the ordinal sum of CIdI and CIdG (which is the subgroup
lattice of G).

3.3. Commutator Theory. Let K be a relatively congruence mod-
ular quasivariety and A ∈ K and ρ, σ ∈ ConK A. For µ ∈ Con A, let
Z(ρ, σ; µ) signify that for all 〈a, b〉 ∈ ρ and all 〈c, d〉 ∈ σ and all binary
polynomial operations f(x, y) and g(x, y) of A the following holds: if µ

contains 〈f(a, c), g(a, c)〉, 〈f(a, d), g(a, d)〉 and 〈f(b, c), g(b, c)〉 then µ con-
tains 〈f(b, d), g(b, d)〉 also. For µ ∈ ConA, let C(ρ, σ; µ) signify that when-
ever t is a term operation of A, if t(�a1,�b1) µ t(�a1,�b2) and �a1 ρ�a2 and �b1 σ�b2

(componentwise) then t(�a2,�b1) µ t(�a2,�b2).

The (absolute) commutator [ρ, σ] of ρ and σ is the least congruence
µ of A such that C(ρ, σ; µ) and C(σ, ρ; µ) [12, Definition 3.2]. The K-
commutator [ρ, σ]K of ρ and σ is the least K-congruence µ of A such that
Z(ρ, σ; µ); it coincides with [σ, ρ]K and, like [ρ, σ], is contained in ρ∩σ and is
isotone in both arguments [25, Theorem 2.13]. If µ is a K-congruence of A
then Z(ρ, σ; µ) implies C(ρ, σ; µ) [25, Lemma 2.4], whence [ρ, σ] ⊆ [ρ, σ]K.

Lemma 14. [8] Let K be an L-quasivariety and 0 an L-term that

is constant over K, and assume that K is both relatively 0-regular and

relatively congruence modular. Let A ∈ K and ρ, σ, µ ∈ ConK A. Then

Z(ρ, σ; µ) iff C(ρ, σ; µ). Thus, [ρ, σ]K = ΘA
K ([ρ, σ]).

Proof. Let dj, j < m ∈ ω, be binary L-terms such that (7) is true.
Assume that C(ρ, σ; µ). Let 〈a, b〉 ∈ ρ and 〈c, d〉 ∈ σ. Let �e, �f ∈ A,

13 The special case (disregarding subdirect irreducibility) of this construction where

Pg is a singleton for all nonzero g ∈ G was noted for BCI-algebras in [18]. In this case .−
is determined by its restrictions to I and to G and subdirect irreducibility of I ensures

that of A, even if 〈I ;≤〉 has no atom.
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f(x, y) = r(x, y,�e) and g(x, y) = s(x, y, �f), where r(x, y, �z), s(x, y, �w) are L-
terms. Suppose all of 〈f(a, c), g(a, c)〉, 〈f(a, d), g(a, d)〉, 〈f(b, c), g(b, c)〉 are
contained in µ. Let t(x, y, �z, �w) = dj(r(x, y, �z), s(x, y, �w)), where j < m.

By (7), µ identifies each of t(a, d,�e, �f), t(a, c, �e, �f ) with 0 and therefore
with the other; similarly µ identifies t(b, c, �e, �f) with 0. Since C(ρ, σ; µ),
it follows that µ identifies t(b, d,�e, �f) with t(b, c, �e, �f) and therefore with
0, i.e., 〈dj(f(b, d), g(b, d)), 0〉 ∈ µ. Now j < m was arbitrary and µ is a
K-congruence so, by (7), µ identifies f(b, d) with g(b, d). This shows that
Z(ρ, σ; µ). Since the converse holds more generally, this establishes the
first claim, from which the second follows by standard argument.

Corollary 15. Let K be SIRCOM or BCIA and A ∈ K with ρ, σ ∈
ConK A. Then 0/[ρ, σ]K = 0/[ρ, σ].

Proof. Since K is relatively 0-regular and relatively congruence modu-
lar (Corollary 11), this follows from the previous lemma and Corollary 9.14

Let K be SIRCOM or BCIA. For A ∈ K and ρ, σ ∈ ConK A with 0/ρ = J

and 0/σ = M , we may denote the common value of 0/[ρ, σ] and 0/[ρ, σ]K
by [J,M ]. (This is unambiguous, by the relative 0-regularity of K.) Note
that Z(ρ, σ; µ) holds if A/µ is termwise equivalent to an abelian group,
since in that case the polynomials f(x, y) and g(x, y) have (modulo µ) the
form nx + my + p for some n,m ∈ Z and p ∈ A. It follows that [J,M ] ⊆ I

for all closed ideals J,M of any A ∈ K, where I = [0).

Theorem 16. Let K be SIRCOM or BCIA and A ∈ K. Let J,M be

closed ideals of A and let L = {j .− (j .− m) .− (−(0 .− m)) : j ∈ J ; m ∈
M} and I = [0). Then L = [J,M ] = J ∩ M ∩ I. Thus, [A,A] = I and

ConK A satisfies the identity (C2)K: [x, y]K ≈ x∩y∩ [1, 1]K, where 1 = A2.

Moreover, [1, 1]K = [1, 1].

Proof. Take j ∈ J = 0/ρ and m ∈ M = 0/σ, where ρ, σ ∈ ConK A
and let t(x1, x2, y) = x1

.− (x1
.− x2) .− (y .− (y .− x2)). Then, we have

14 In fact Corollary 15 is true of any relatively 0-regular quasivariety for which the

statement of Corollary 10 is also true [8].
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C(ρ, σ; [ρ, σ]K). Now in A, t(0,m, 0) = 0 = t(0,m,m), so

〈j .− (j .− m) .− (−(0 .− m)), 0〉 = 〈t(j,m, 0), t(j,m,m)〉 ∈ [ρ, σ]K,

i.e., j .− (j .− m) .− (−(0 .− m)) ∈ [J,M ]. Thus, L ⊆ [J,M ] ⊆ J ∩ M ∩ I.
Conversely, if a ∈ J ∩ M ∩ I then 0 .− a = 0, whence

a = a .− 0 .− 0 = a .− (a .− a) .− (−(0 .− a)) ∈ L.

Let 〈c, d〉 ∈ [1, 1]K. Then c .− d, d .− c ∈ [A,A] = I, so −(0 .− c) ≤ d .−
(d .− c). If s(x1, x2, y) = x1

.− (y .− (y .− x2)) then s(−(0 .− c), c, 0) = 0 =
s(−(0 .− c), c, d) so 〈c, d〉 = 〈s(c, 0, 0), s(d, 0, d)〉 ∈ [1, 1].

In particular, the abelian sircomonoids or BCI-algebras A (i.e., those
with [A,A] = {0}) are affine15 , since A/[A,A] is termwise equivalent to
an abelian group.16 An algebra A in a quasivariety K is called K-prime
(or relatively prime) if [ρ, σ]K is a nonidentity K-congruence of A whenever
both ρ and σ are. We call A prime if it is V({A})-prime (i.e., if the forego-
ing condition holds with all Ks dropped). By the previous theorem, a FSI
sircomonoid or BCI-algebra is affine or relatively prime. For congruence
modular varieties V, the commutator identity (C2) is a consequence of the
CEP alone17 [27, Theorem 2.2] and is equivalent to the requirement that
all SI members of V be affine or prime [26, Proposition 4.2].

3.4. Subvarieties. For a class M of similar algebras, we use H(M),
I(M), S(M) and PU(M) to denote, respectively, the classes of homomor-
phic images, of isomorphic images, of subalgebras and of ultraproducts

15 An algebra A is affine if there is an abelian group 〈A; +,−, 0〉 with the same universe

as A and a ternary term operation t of A such that for any a, b, c ∈ A, t(a, b, c) = a−b+c

and if C = 〈A; t〉 then any n-ary term operation of A is a homomorphism from Cn to C.
16 Recall that the fundamental theorem of abelian algebras says that in a congruence

modular variety, such algebras are always affine [16]. In a relatively modular quasivariety,

however, an abelian algebra need not be affine [25, pp. 478–480]. The abelian members

of SIRCOM and BCIA are characterized by their satisfaction of x .− (x .− y) ≈ y; the

latter have been called p-semisimple BCI-algebras in the literature.
17 The (absolute) CEP fails even for pocrims and BCK-algebras, however [4]. Also,

BCK-algebras need not be (absolutely) congruence modular [45] and it can be shown

that the same is true of pocrims.
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of members of M. If M is contained in a congruence modular variety
then the prime algebras in V(M) are in HSPU(M) [15]. It follows that
if V(M) is a variety of sircomonoids or BCI-algebras then any SI algebra
in V(M) is an abelian group (or reduct of such) or in HSPU(M). Moreover,
HSPU(M) = SHPU(M), by the CEP.

A quasivariety is called n-finite if every algebra in it that is generated
by at most n elements is finite. Recall that a finitely generated variety
[resp. quasivariety] is a class of the form V(M) [resp. Q(M)] for some finite
set M of finite algebras (which may be assumed a singleton without loss of
generality), and that every such class is locally finite (i.e., it is n-finite for
all n ∈ ω).

We define 〈 .−〉-terms jn(x, y) (n ∈ ω) as follows: j0(x, y) = x;

j2n+1(x, y) = y .− (y .− j2n(x, y)); j2n+2(x, y) = x .− (x .− j2n+1(x, y)).

By (2), SIRCOM satisfies jn+1(x, y) ≤ jn(x, y) for all n. By (4), it also
satisfies

x .− (m + 1)y .− (m + 1)(0 .− y) ≤ x .− my .− m(0 .− y)for all m.

Let K be SIRCOM or BCIA. Denote by Kn and Kn,m the class of all
algebras in K satisfying jn+1(x, y) ≈ jn(x, y) and the class of all algebras
in Kn satisfying x .− (m + 1)y .− (m + 1)(0 .− y) ≈ x .− my .− m(0 .− y),
respectively.

Theorem 17. Let K be SIRCOM or BCIA.

(i) The classes Kn and Kn,m are subvarieties of K.

(ii) Let V be a variety generated by a subclass M of K and F the V-free

algebra on two free generators. If 〈F ;≤〉 satisfies the descending chain

condition then V ⊆ Kn,m for some n,m ∈ ω. Thus:

(iii) Every 2-finite (e.g., every finitely generated) variety generated by a

subclass of K is contained in K and is therefore congruence modular.

(iv) Every subquasivariety of BCIAn,m is a variety. Thus, the quasivari-
ety generated by any finite set of finite BCI-algebras is a congruence

modular variety.
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Proof. (i) It suffices to note that (M2) and jn+1(x, y) ≈ jn(x, y) entail
(M5).

(ii) Since F embeds in a direct product of members of M, F ∈ K, so
the reference to ≤ makes sense. If x and y are the free generators of F, the
DCC forces jn+1(x, y) = jn(x, y) and x .− (m + 1)y .− (m + 1)(0 .− y) =
x .− my .− m(0 .− y) for some n,m ∈ ω, whence V ⊆ Kn,m.

(iii) follows from Corollary 11 and the fact that finiteness implies the
DCC.

(iv) If A ∈ BCIAn,m and B = {b1, . . . , br} ⊆ A then the function
ε : A → A defined by ε(a) = a .− mb1

.− . . . .− mbr
.− m(0 .− b1) .−

. . . .− m(0 .− br) is an endomorphism of A: to verify this, modify the
proof of [5, Lemma 4.3(ii)] in the obvious way. Also, 0/ker ε = CigA(B),
by Lemma 6. In view of (i), the rest of the proof is the same as that of
[5, Theorem 4.4].

A subquasivariety of SIRCOMn,m need not be a variety, even if it is
finitely generated [5, pp. 300–301].

For a finitely generated relatively modular quasivariety K, there is al-
ways a finite bound on the size of its K-subdirectly irreducible algebras
[25, Theorem 3.1]. It is an open problem (see [36], [25]) whether such a
quasivariety is always finitely axiomatized by quasi-identities. A variety V

is residually small if there is a cardinal bound κ(V) on the size of its SI
members; it has a finite residual bound if, moreover, κ(V) may be chosen
finite. A finitely generated congruence modular residually small variety
has a finite residual bound and is finitely axiomatized by identities. If
the congruence lattices of all algebras in a finitely generated congruence
modular variety V satisfy (C2) then V is residually small [31], [12, The-
orem 10.15]. Although SIRCOM and BCIA generate nonmodular varieties
[45], these facts and the above theorem yield:

Corollary 18. A variety generated by a finite sircomonoid has a finite

residual bound and is finitely axiomatized by identities. A quasivariety

generated a finite BCI-algebra is a finitely axiomatized variety with a finite

residual bound.
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Theorem 19. SIRCOM [resp. BCIA] has 2ℵ0 subvarieties not gener-

ated by any class consisting of pocrims [resp. BCK-algebras] and abelian

groups [resp. abelian group reducts].

Proof. For each positive integer n, let Ln = 〈Ln;≤〉 be the (2n + 4)-
element poset depicted in Figure 2 below.

Note that Ln is a subposet of Lm only if n = m. Let I be the unique
pocrim on the doubleton I = {0, 1} (with 0 < 1), and G the unique 2-
element group with identity 0 on G = {0, g}. Assume that I is disjoint from
each Ln. Let An be the SI sircomonoid with universe I ∪ Ln constructed
as in the proof of Proposition 13 from I, G, P0 = 〈I;≤〉 and Pg = Ln. Let
X = {An : n ≥ 1} and for each n, let Xn = {Am : m �= n}. One may check
that An ∈ SIRCOM2,18 so V = V(X) is a congruence modular variety of
sircomonoids with the CEP (see Theorem 17).

t

b0

a0

b1

a1

b2

a2

bn−1

an−1

bn

an

g

. . .

. . .

Figure 2.

For each n, since An is a finite algebra of finite type and SIRCOM

is finitely axiomatized by quasi-identities, there is a universal first order
sentence Φn over 〈⊕, .−, 0〉 such that the algebras of type 〈2, 2, 0〉 satisfying
Φn are exactly the sircomonoids into which An is not embeddable. Thus,
ISPU(Xn) |= Φn, and An /∈ ISPU(Xn).

By the remarks following Theorem 16, a SI algebra B in Vn = V(Xn) is
an abelian group or lies in SHPU(Xn). The following information, common

18 In fact, An ∈ SIRCOM2,1.
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to every Am, is expressible by a first order sentence and therefore persists
in an ultraproduct U ∈ PU(Xn): I is a subalgebra, being one of just two
order-disjoint components of the algebra; the other component is bounded;
the algebra is built from its components by the construction in the proof
of Proposition 13. Thus, by Proposition 13, U is SI with monolith I

and has no other proper nonzero closed ideal, so G is its only nontrivial
proper homomorphic image. It follows that B is an abelian group or lies
in ISPU(Xn), whence B is not An. This means that An /∈ Vn.

Consequently, distinct nonempty subsets of X generate distinct subva-
rieties of V, and there are 2ℵ0 such subsets. Note that since an ultraproduct
of pocrims and abelian groups is either a pocrim or an abelian group, none
of these subvarieties is generated by the union of a class of pocrims and a
class of abelian groups. This proves the result for SIRCOM; the argument
for BCIA is similar.

3.5. Direct Decomposition Theorem. Let A be a sircomonoid or
a BCI-algebra and let I and G be its largest pocrim (or BCK-) subalgebra
and its homomorphic image on {0 .− a : a ∈ A}. Throughout this section, +
shall denote the binary operation on all of A defined by a+b = a .− (0 .− b)
(a, b ∈ A). This extends the unique group operation of the abelian group
expansion of G. Observe that A satisfies x + 0 ≈ x and (0 .− x) + x ≈ 0,
as well as (x + y) + z ≤ x + (y + z). Indeed, over A,

((x + y) + z) .− (x + (y + z))

≈ x .− (0 .− y) .− (0 .− z) .− (x .− (0 .− (y .− (0 .− z))))

≈ x .− (x .− (0 .− (y .− (0 .− z)))) .− (0 .− y) .− (0 .− z) (by (1))

≤ 0 .− (y .− (0 .− z)) .− (0 .− y) .− (0 .− z) (by (2))

≤ y .− (y .− (0 .− z)) .− (0 .− z) (by (M4)) ≈ 0 (by (2)).

Nevertheless, 0 may fail to be a left identity and 0 .− x a right inverse for
+, and + is not generally associative nor commutative on A.

Theorem 20. Let A be a sircomonoid or BCI-algebra and I and G
as above. The following conditions are equivalent.
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(i) A satisfies the associative law (x + y) + z ≈ x + (y + z);

(ii) G acts on A by translation, i.e., for any a ∈ A and g, h ∈ G, (a + g) +
h = a + (g + h);

(iii) A ∼= I ×G;

(iv) G is a closed ideal of A;

(v) for each g ∈ G, the map a �→ a .− g (a ∈ A) is a bijection of A;

(vi) for each g ∈ G, the map a �→ a .− g (a ∈ A) is injective;

(vii) for each a ∈ A and g ∈ G, a + g is the largest x ∈ A such that

x .− g ≤ a. [Note that for a sircomonoid A (vii) says that for each

a ∈ A and g ∈ G, a + g = a ⊕ g.]

Proof. First we prove the equivalence of the conditions when A is a
BCI-algebra. (i) ⇒ (ii) is clear.

(ii) ⇒ (iii): By (ii), for every a ∈ A and g ∈ G, we have

(9) a = a .− (−g) .− g.

Indeed, by (M2) and (ii),

a = a + 0 = a + (g + (−g)) = (a + g) + (−g)

= a .− (−g) .− (−(−g)) = a .− (−g) .− g.

In particular, A satisfies

x ≈ x .− (−(0 .− x)) .− (0 .− x),

since 0 .− a ∈ G for any a ∈ A. Now G ∼= A/I satisfies x ≈ −(0 .− x), so
a .− (−(0 .− a)) ∈ I for all a ∈ A. Thus, the map γ : I ×G → A defined by
γ(i, g) = i .− g is surjective.19 Consider i, j ∈ I and g, h ∈ G. We need to
show that i .− g .− (j .− h) = i .− j .− (g .− h). Now

i .− j .− (g .− h) = (i .− j) + (−(g .− h)) (since g .− h ∈ G)

= (i .− j) + ((−g) + h) = ((i .− j) + (−g)) + h

= i .− j .− g .− (−h) = i .− g .− (−h) .− j (by (1))

= i .− g .− (−h) .− (j .− h .− (−h)) (by (9))

≤ i .− g .− (j .− h) (by (4)).

19 The equivalence of (ii) and (iv) and the fact that (iv) implies surjectivity of γ were

established (for BCI-algebras) in [19, Theorems 2, 4].
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Conversely,

i .− g .− (j .− h) = i .− g .− (−h) .− h .− (j .− h) (by (9))

≤ i .− g .− (−h) .− j (by (4))

= i .− j .− g .− (−h) (by (1))

= i .− j .− (g .− h) (by the previous calculation).

Thus, γ : I×G → A is a homomorphism. For i ∈ I and g ∈ G, if i .− g = 0
then i ≤ g so i = g ∈ I ∩ G, i.e., i = g = 0. This shows that γ is injective.

(iii) ⇒ (iv): By (iii), G is the 0-class of the congruence kernel of the
canonical epimorphism A → I ∈ BCIA.

(iv) ⇔ (v) is proved in [20, Lemma 1.2] and (v) ⇒ (vi) is trivial.

(vi) ⇒ (vii): Let a ∈ A and g ∈ G. By (1), (4) and (M2),

(a + g) .− g = a .− (−g) .− g = a .− g .− (0 .− g) ≤ a .− 0 = a.

If x ∈ A and x .− g ≤ a then

x .− (a + g) .− g = x .− g .− (a .− (−g)) ≤ a .− (a .− (−g)) ≤ −g ∈ G,

so x .− (a + g) .− g = −g = 0 .− g. By (vi), x .− (a + g) = 0, i.e., x ≤ a + g.

(vii) ⇒ (i): Let a, b, c ∈ A. Then

(a + (b + c)) .− (−(0 .− c)) = a .− (0 .− (b .− (0 .− c))) .− (−(0 .− c))

= a .− (−(0 .− c)) .− (0 .− b .− (−(0 .− c))) (by (1) and (5))

≤ a .− (0 .− b) (by (4)) = a + b.

By (vii), since −(0 .− c) ∈ G, we have

a + (b + c) ≤ (a + b) + (−(0 .− c)) = (a + b) .− (0 .− c) = (a + b) + c.

The reverse inequality is true in any BCI-algebra, so + is associative on A.

Now let A be a sircomonoid. The only condition involving ⊕ is (iii)

so by taking 〈 .−, 0〉-reducts, we deduce from the above that (iii) implies
all of the other conditions and that these other conditions are equivalent.
Conversely, let A satisfy (i), (ii) and (iv)-(vii). We must prove (iii). As
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above, the map γ : I × G → A defined by γ(i, g) = i .− g is a bijective
〈 .−, 0〉-homomorphism. To show that it preserves ⊕, consider i, j ∈ I and
g, h ∈ G. Now i .− g = i .− (−(−g)) = i + (−g) = i ⊕ (−g) (by (vii)) and
j .− h = j ⊕ (−h), so

(i .− g) ⊕ (j .− h) = i ⊕ (−g) ⊕ j ⊕ (−h) = ((i ⊕ j) + (−g)) + (−h)

= (i ⊕ j) .− g .− h = (i ⊕ j) .− (g ⊕ h),

as required.

A relative subvariety of a quasivariety K is a subquasivariety of K that
has the form K ∩ V(M) for some M ⊆ K. Let POCRIM, BCKA, AG and
AGR denote, respectively, the classes of all pocrims, all BCK-algebras, all
abelian groups and all subtraction reducts of abelian groups.

Corollary 21. The quasivariety generated by POCRIM ∪ AG [resp.

by BCKA ∪ AGR] is a relative subvariety of SIRCOM [resp. of BCIA]; it

is axiomatized by (M1) [ resp. (M2)] – (M5) together with (x + y) + z ≈
x + (y + z),20 where x + y = x .− (0 .− y).

Proof. This follows from Theorem 20 because quasivarieties are closed
under direct products and because the above associative law is satisfied in
all pocrims (where both sides are identically x) and in all abelian groups.

An algebra in a quasivariety K is called K-disconnected if it is the direct
product of a K-congruence distributive algebra and an abelian algebra. If K

is SIRCOM or BCIA, it follows that the relative subvarieties of K consisting
of K-disconnected algebras are just those satisfying the associative law for
+. If a congruence modular variety V is the (varietal) join of a congruence
distributive variety D and an abelian variety A then every member of V

is (V-) disconnected; in fact, a stronger result is proved in [16]. Although
V(BCIA) is not congruence modular, the above corollary and Theorem 20
provide an analogous result. From this and the fact that there are 2ℵ0

20 or equivalently, with (x + (0 .− y)) + (0 .− z) ≈ x + ((0 .− y) + (0 .− z)), in view of

conditions (i) and (ii) of Theorem 20.
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varieties of pocrims (in fact, Brouwerian semilattices) [28], [34] and 2ℵ0

varieties of BCK- (in fact, Hilbert) algebras [43], it is not difficult to deduce
that there are 2ℵ0 subvarieties of Q(POCRIM∪AG) not consisting of pocrims
only or of abelian groups only; and similarly for Q(BCKA ∪ AGR).

4. Connection with Linear Logic

There is an intimate connection between BCI-algebras and a deductive
system BCIP extending the implication fragment of linear logic. Here
we infer some properties of BCIP from the preceding algebraic results.
First we explain the connection. For this purpose, we need no special
properties of BCI-algebras beyond the fact that they form a relatively 0-
regular quasivariety. The logic BCIP is algebraizable in the sense of the
Blok-Pigozzi theory [2]21 .

4.1. Assertional Logics Let 0 be a (fixed) term of the language L
that is constant over an L-quasivariety K. The assertional logic of K is the
(Hilbert-style) deductive system S = S(K) = S(K, 0) defined as follows.
For a set T ′ ∪ {u} of L-terms, T ′,�S u iff

{t ≈ 0 : t ∈ T ′} |=K u ≈ 0. (∗)

This notion was introduced by D. Pigozzi [37]. Because K is a quasivariety,
S is indeed a (‘finitary’ and ‘structural’) deductive system in the usual
sense (e.g., of [2]). In particular, (∗) is equivalent to the existence of some
finite T ⊆ T ′ such that

K |= (∧
t∈T t(�x) ≈ 0

) ⇒ u(�x) ≈ 0.

In what follows, it is therefore a harmless notational convenience to assume,
whenever an entailment T � u is under discussion, that T ∪ {u} is a finite

21 This theory has wider application than we require here and this section can be read

without prior knowledge of it. Where terminology from [2] appears, it may be considered

locally defined by the context of its first occurrence (which is always in quotation marks)

or disregarded without obscuring the results.
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set of terms, all of the form s(�x), where �x is an understood finite sequence
of variables including all that occur in T ∪ {u}.

By its definition, the consequence relation �S of S is interpretable
in the equational consequence relation |=K of K. Under our assumptions,
K is relatively 0-regular exactly when it is the ‘equivalent quasivariety
semantics’ of S,22 in which case S is ‘algebraizable’ [6, Theorem 5.2], [2].23

Suppose K is relatively 0-regular. Recall that there exist binary L-
terms dj (j < m ∈ ω), such that K satisfies (

∧
j<m dj(x, y) ≈ 0) ⇔ x ≈ y.

Thus, there is an interpretation of |=K in �S that is ‘inverse’ to the definition
of S:

K |= (∧
i<n si(�x) ≈ ti(�x)

) ⇒ s(�x) ≈ t(�x)
iff for all k < m, {dj(si, ti) : i < n, j < m} �S dk(s, t)

Let A ∈ K. If ξ ∈ ConK A then 0A/ξ is closed under the consequence
relation of S(K). This means that for any set T ∪ {u} of L-terms for which
T �S(K) u, if �a ∈ A and tA(�a) ∈ 0A/ξ for all t ∈ T then uA(�a) ∈ 0A/ξ.
Subsets of A with this closure property are called S(K)-filters of A. In fact
the S(K)-filters of A are just the sets 0A/ξ, ξ ∈ ConK A [6, Theorem 5.2].24

As we observed earlier, these form an algebraic lattice when ordered by
inclusion; we denote by FgA

K (Y ) the least S(K)-filter of A containing Y ⊆
A.

The assertional logics of relative subvarieties of a relatively 0-regular
quasivariety K are (algebraizable) axiomatic extensions of S(K), i.e., they
may be axiomatized by the union of an axiomatization of S(K) and a set
of rules of the form Ø � u; conversely all axiomatic simple extensions of
S(K) arise in this way (and are algebraizable). Here an extension of a logic
S is called simple if it has the same language as S.

A deductive system S over L is said to have a local deduction detach-
ment theorem (LDDT) if there is a family E = {Ei(p, q) : i ∈ Y } of finite

22 Within our framework and for our purposes, this fact may serve as a local definition.
23 Algebraizability of S(K) doesn’t force K to be relatively 0-regular but this needn’t

concern us here.
24 Here one cannot drop the assumption that K is relatively 0-regular, although it can

be weakened: see [6, Proposition 6.1, Example 6.1], [8].
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sets Ei = Ei(p, q) = {eij(p, q) : j ≤ ni ∈ ω} of binary L-terms eij such that
for any set T ∪ {r, s} of L-terms, the following is true:

T, r �S s iff there exists i ∈ Y such that for all j < ni, T �S eij(r, s).

In this case, E is called a local deduction detachment system for S. If
in addition, we may choose |Y | = 1, say E = {E}, we call E a deduction
detachment set for S and say that S has a deduction detachment theorem
(DDT).

The assertional logic S = S(K) of a relatively 0-regular quasivariety K

has a LDDT if and only if K has the RCEP [1]. In this case, E (as above)
is a local deduction detachment system for S = S(K) just when, for every
A ∈ K and a, b ∈ A, we have

b ∈ FgA
K ({a}) iff there exists i ∈ Y such that for all j < ni, eA

ij (a, b) = 0A

(see [6, Proposition 8.1]).

4.2. The logic BCIP. Since BCIA is relatively 0-regular, it is the
equivalent quasivariety semantics of its (algebraizable) assertional logic
S(BCIA), and x .− y and y .− x play the roles of the dj(x, y), j < m,
above. In order that S(BCIA) have a more familiar logical appearance, let
us replace BCIA by a quasivariety BCIA→ with language 〈→〉 to which it
is termwise definitionally equivalent: in the axiomatization we replace all
expressions of the form s .− t by t → s and all occurrences of 0 by x → x,
for a variable x not occurring in the axiom. (M3) becomes x → x ≈ y → y

so, over BCIA→, x → x defines a constant term c. Henceforth, by S(BCIA)
we really mean S(BCIA→, c) and by a BCI-algebra a member of BCIA→,
but we shall not labour this distinction by enforcing these further nota-
tional changes. By (∗), the following theorems and rules are derivable in
S(BCIA):

(B) � (p → q) → ((r → p) → (r → q)),
(C) � (p → (q → r)) → (q → (p → r)),
(I) � p → p,
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(P) � (p → p) → (q → q),
(MP) p, p → q � q,
(G) p, q � p → q,
(H) p � p → (q → q).

The rule (G) is sometimes called the Gödel Rule. Kabziński [23] pointed out
that (B), (C), (I), (MP) and (G) axiomatize S(BCIA). The logic S(BCIA)
has a decidable set of theorems [24]. The purely implicational deductive
system axiomatized by (B), (C), (I) and (MP) is just the implication frag-
ment of Girard’s linear logic and is known as BCI; it was originally consid-
ered in its own right by Meredith. It is known that BCI is not algebraiz-
able25 [2, Theorem 5.9]. Thus, as observed by Kabziński [23], S(BCIA) is a
proper extension of BCI and BCI-algebras do not constitute an algebraic
semantics for BCI.

Consider a simple extension S of BCI. We shall say that S is pointedly
algebraizable if S = S(K, c) for a quasivariety K and term c such that
K |= x → x ≈ y → y ≈ c.26 The next result clarifies the status of S(BCIA)
among such extensions.

Proposition 22. S(BCIA) is the least pointedly algebraizable simple

extension of BCI and is a purely axiomatic extension of BCI. In the

presence of (B), (C), (I) and (MP), it is axiomatized by any one of (P),

(G) or (H).

Proof. Let S = S(K) be a pointedly algebraizable simple extension
of BCI. By pointed algebraizability, K |= (x ≈ c and y ≈ c) ⇒ x →
y ≈ c. Then (G) is an S-derivable rule, by (∗), so S extends S(BCIA)
(by Kabzinski’s axiomatization), proving the first assertion. We know that
(H) is an S(BCIA)-derivable rule. Now p → p � (p → p) → (q → q)
is an instance of (H) so, using (I), we infer that (P) is derivable in the

25 BCI is ‘equivalential’ in the sense of [38]. From this fact and [2, Theorem 4.7], it

follows that the extension of BCI by p � p → (p → p) is algebraizable.
26 This does force S to be algebraizable: see the next proof. Not every algebraizable

simple extension of BCI is pointedly algebraizable. BCI’s extension by the ‘mingle’

axiom � p → (p → p) is such an exception; it is a subsystem of the relevance logic RM.
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extension of BCI by (H). Finally, in the extension S′ of BCI by (P), one
may derive � q → ((p → p) → q) (apply (C) and (MP) to (P)) and
therefore p � (p → p) → p. Then by [2, Theorems 4.7, 2.17] and (P),
S′ = S(K′, c) for some relatively c-regular 〈→〉-quasivariety K′ over which
c is definable as x → x. As above, it follows that (G) is derivable in S′.
Thus, any one of (P), (G) or (H) extends BCI to S(BCIA)27 and this is an
axiomatic extension, in view of (P).

Because of this result, we denote S(BCIA) as BCIP henceforth. The
BCIP-filters of BCI-algebras A are just their closed ideals, so the oper-
ators FgA

BCIA and CigA
BCIA coincide on subsets of A. Corollary 10 may be

rephrased as:

Proposition 23. The quasivariety of BCI-algebras and the variety

generated by it have the same assertional logic, viz., BCIP.

We use the following abbreviations: p →0 q means q; for n ∈ ω, p →n+1

q abbreviates p → (p →n q). The discussion following Corollary 7 yields:

Proposition 24. BCIP has a local deduction detachment theorem

with local deduction detachment system E = {Enm : n,m ∈ ω}, where

Enm = {p →n ((p → (p → p)) →m q)}. In other words, T, r �BCIP s iff for

some n,m ∈ ω, T �BCIP r →n ((r → (r → r)) →m s).

This contrasts with the well known fact that BCI does not have a
local deduction detachment theorem. It also unifies the results [1] that
the assertional logics of BCK-algebras and of abelian groups each have
a LDDT. The assertional logic BCK of BCKA is the (proper) axiomatic
extension of BCI (or of BCIP) by the axiom (called the rule of weakening)

(K) � p → (q → p).

In order that the assertional logic of a 0-regular quasivariety K have a (full)
deduction detachment theorem, K must be relatively congruence distribu-
tive [1], [3]. If A belongs to a relative subvariety K of BCIA and G is A’s

27 It follows that we could have adopted a simpler definition: a simple extension of

BCI is pointedly algebraizable if and only if it has (P) as a theorem.
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retract on {0 .− a : a ∈ A} then G is termwise equivalent to an abelian
group and therefore generates a subvariety of K that is not congruence
distributive, unless G is trivial. Thus, a relative subvariety of BCIA whose
assertional logic has a DDT must consist of BCK-algebras and these rel-
ative subvarieties of BCKA have been characterized [5, Theorem 4.2]. In
logical terms, this amounts to:

Proposition 25. The axiomatic extensions of BCIP with a deduc-

tion detachment theorem are just the axiomatic extensions of BCK in

which, for some n ∈ ω, the expression (p →n+1 q) → (p →n q) is a theo-

rem.

Our discussion can be enlarged to include the (algebraizable) asser-
tional logic of sircomonoids, which also extends a non-algebraizable frag-
ment of linear logic; ⊕ represents the logical ‘fusion of premisses’ connec-
tive.28 If the order reduct of a BCI-algebra A is a semilattice or bounded
above or below, however, then A is a BCK-algebra. Consequently, any
logic that extends both BCIP and a fragment of linear logic with ∧ or ∨
already extends BCK.
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