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REMARKS ON SPLITTINGS IN THE VARIETY OF

RESIDUATED LATTICES

This is an extended abstract of a talk presented at the Workshop on

Algebra & Substructural Logic held at JAIST, 10–17 November 1999. The

full version of the paper is forthcoming in Algebra Universalis.

1. Introduction

A residuated lattice is an algebra A = 〈A;∨,∧, ·,→, 0, 1〉, such that:

(1) 〈A;∨,∧, 0, 1〉 is a bounded lattice with the greatest element 1 and

smallest 0;

(2) 〈A; ·, 1〉 is a commutative monoid;

(3) A satisfies: x · y ≤ z iff x ≤ y → z.

The class R of residuated lattices is a variety. It is arithmetical, has

CEP, and is genereated by its finite members (cf. [4], also [3]). It is also

congruence 1-regular, i.e., for any congruence θ, the coset of 1 determines

θ uniquely. Cosets of 1 are called congruence filters. A finite subdirectly

irreducible (si) residuated lattice A always has a unique coatom c. By

finiteness, cn+1 = cn, for some positive integer n. We will denote such a
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cn by ⋆. The congruence filter corresponding to the monolith of A is {a ∈

A : a ≥ ⋆}. For more details on residuated lattices and their connections

with logics without contraction see [7]. For a broader perspective onto the

latter, see [5] and [6].

For a given (quasi)variety W , let Lq(W), Lv(W), stand, respectively,

for the lattice of subquasivarieties and subvarieties of W .

A pair (Q1,Q2) of sub(quasi)varieties of a given (quasi)variety W is

said to split Lv(W) (Lq(W)) iff Q1 6⊆ Q2 and for any S, sub(quasi)variety

of W , either Q1 ⊆ S or S ⊆ Q2. In other words, Q2 is the largest

sub(quasi)variety of W not containing Q1.

If (V1,V2) is a splitting pair of subvarieties of a variety V , i.e., when

(V1,V2) splits Lv(V) of subvarieties of V , then V1 is generated by a si

algebra, called splitting algebra. It follows from general algebraic results

that every finite si algebra in R splits Lq(R). However, we will show that

only one such algebra is splitting in V , i.e., splits Lv(R).

If V is congruence-distributive and generated by its finite members,

then every splitting algebra in V is finite and uniquely determined by the

splitting pair (cf. [2]). Thus, the only candidates for splitting algebras are

finite subdirect irreducibles.

Fact 1. The two-element boolean algebra 2 splits Lv(R).

We will now slightly modify the technique introduced by Jankov in [1],

to suit our purposes.

Let A be a finite si residuated lattice. Fix a set X of |A| distinct

variables, and index them by the elements of A, so that xa, xb be distinct

iff a 6= b. Let ¬ be the term operation defined as ¬z = z → 0, and

⋄ ∈ {∨,∧, ·,→}. The diagram of A is defined, as usual, by ∆A =
∧

{x¬a ↔

¬xa : a ∈ A} ∧
∧

{xa⋄b ↔ xa ⋄ xb : a, b ∈ A}, Then, the Jankov term of

order n for A is defined as Y
(n)
A

= ∆n
A

→ x⋆, where ⋆ ∈ A is the smallest

member of the monolithic filter on A.

By a valuation on an algebra B we mean any homomomorphism from

the absolutely free algebra of the appropriate type into B.
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Lemma 1. Let B ∈ R. Then, A ⊆ B iff there is a valuation v, such

that B |=v ∆A = 1 & x⋆ 6= 1.

We know already that the two-element boolean algebra splits Lv(R).

Our aim is to show no other algebra has this property. The technique we

use will be guided by the following lemma, which characterises non-splitting

algebras in R.

Lemma 2. The following are equivalent:

(i) A is not a splitting algebra in R,

(ii) (∀i ∈ ω)(∃B ∈ R) : A 6∈ V(B) and B 6|= Y
(i)
A

= 1.

2. Expansions of residuated lattices

This section is entirely devoted to presenting a construction that em-

beds a given finite si residuated lattice A into another one, called an ex-

pansion of A, in a certain special way that will prove useful later on.

We begin the construction by fixing a finite si residuated lattice A,

with the coatom c. Now, take the set A0 = {a ∈ A : ca < a}, and let

D be any set disjoint from A, with |D| = |A0|. Thus, by means of any

bijection, we can index the elements of D by the elements of A0, getting

D = {da : a ∈ A0}. Let B = A ∪ D. We will proceed to define a relation

and an operation on B.

Definition 1. For x, y ∈ B, we put x ≤ y if either:

• x, y ∈ A and x ≤A y; or

• x = da ∈ D, y ∈ A and a ≤A y; or

• x ∈ A, y = da ∈ D and x ≤A ca; or

• x = da, y = db ∈ D and a ≤A b.

Notice that we have ca < da < a whenever ca < a.

Then, we pass on to define a binary operation ‘·’ on B. To avoid

overloaded notation, we will abbreviate x ·A y everywhere by xy. Thereby,

we commit ourselves to never abbreviating the new operation x · y, within

the present section.
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Definition 2. For any x, y ∈ B, let:

x · y = y · x =















xy, if x, y ∈ A;

day, if x = da ∈ D, y ∈ A, cay < ay;

ay, if x = da ∈ D, y ∈ A, cay = ay;

cab, if x = da, y = db ∈ D

.

The structure B = 〈B; ·, 1, 0,≤〉 defined above turns out to be almost

a residuated lattice. Namely, we have:

Fact 2. The structure B is a partially ordered, bounded, commu-

tative, integral monoid. Moreover, ‘·’ is monotonic, i.e., if x ≤ y, then

z · x ≤ z · y, for any x, y, z ∈ B.

To state the next observation, it will be convenient to view B as a par-

tial algebra 〈B;∧?,∨?,→?, ·, 0, 1〉, where ∧?,∨?,→? coincide, respectively,

with the meet, join, and residuation, whenever they exist, and are unde-

fined otherwise.

Fact 3. A is a subalgebra of B.

So far, we have been dealing with two ‘sorts’ of elements: members

of A, and members of D. To get rid of this tiresome division, let’s write

d instead of d1 (notice that the element d1 indeed exists, i.e., is in D, for

c1 = c < 1), and state:

Fact 4. For any x, y ∈ A, the following hold:

(i) if cx < x, then d · x = dx, otherwise d · x = x;

(ii) d · x · d · y = cxy;

(iii) d · x ≤ d · y iff d · x ≤ y iff x ≤ y;

Despite Fact 3 above, we cannot expect B to be a fully fledged (i.e.,

not partial) residuated lattice. Indeed, simple examples show that B might

be neither residuated nor a lattice. To deal with this unwelcome situation,

we will resort to a completion technique, reminiscent of what has been used

in [5] or [6], yet quite substantially different.
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Definition 3. A subset X of B is closed, if the following four condi-

tions are satisfied:

• 0A ∈ X;

• ∀x, y ∈ B : x ∈ X and y ≤ x imply y ∈ X;

• ∀x, y ∈ A : x ∈ X and y ∈ X imply x ∨ y ∈ X;

• ∀x, y ∈ A : d · x ∈ X and d · y ∈ X imply d · (x ∨ y) ∈ X.

Since, as it is easy to verify, the intersection of any family of closed sets

in the above sense is itself closed, we can define C : ℘(B) −→ ℘(B) to be

a map sending each X ⊆ B to the smallest closed subset of B containing

X. As usual we denote it by C(X) and call the closure of X. To justify

this terminology, we have the following:

Fact 5. The map C defined above is a closure operation on B.

For a closed X ⊆ B, define x̂ to be
∨

{x ∈ A : x ∈ X}, and ẋ to be
∨

{x ∈ A : d · x ∈ X}. Since, by Fact 3, joins of elements of A exist, and

are again in A, these are legitimate definitions.

Fact 6. If X ⊆ B is closed, then X = (x̂]∪ (d · ẋ]. Moreover, if a ∈ A,

then (a] is closed.

For X,Y ⊆ B, we define X ⇒ Y to be the set {z ∈ B | ∀x ∈ X : z ·x ∈

Y }, and Y ◦ X to be {x · y | x ∈ X, y ∈ Y }.

Fact 7. Let X, Y be closed subsets of B, and let Q = C(X ◦Y ). The

following hold:

(i) q̂ = cẋẏ ∨ x̂ŷ, q̇ = ẋŷ ∨ x̂ẏ;

(ii) C(X ◦ Y ) = (cẋẏ ∨ x̂ŷ] ∪ (d · (ẋŷ ∨ x̂ẏ)];

(iii) X ⇒ Y is closed.

Definition 4. Let C be the algebra 〈C;∧,∨, ·,→, 1, 0〉, with the uni-

verse C being the set of all closed subsets of B, and the operations defined

as follows:

• X ∧ Y = X ∩ Y ,

• X ∨ Y = C(X ∪ Y ),
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• X · Y = C(X ◦ Y ),

• X → Y = X ⇒ Y ,

• 1C = B, 0C = {0A}.

We will refer to the algebra C defined above, as the expansion of A.

Fact 8. The expansion C of A is a residuated lattice, and A is a

subalgebra of C.

We will sum up the properties of C in the lemma below. First, however,

yet another definition. Let A be a finite si residuated lattice with the

monolithic congruence filter µ.

Definition 5. The filter µ is of depth n iff n is the smallest natural

number for which cn = cn+1 = ⋆, where c is the coatom of A.

Lemma 3. Let A be a finite si residuated lattice with the monolithic

congruence filter µ of depth n, and C be its expansion. Then, the following

hold:

(i) A ⊆ C,

(ii) C is si,

(iii) ν, the monolithic congruence filter of C, is of depth 2n,

(iv) µ = ν|A.

It is easy to observe that the construction presented here can be iter-

ated. The next lemma is a consequence of this observation.

Lemma 4. Let A be a finite si residuated lattice with the monolith µ

of depth n, and k be any natural number. Then, there is an si residuated

lattice B with the monolith ν, such that:

(i) A ⊆ B,

(ii) ν is of depth greater than k,

(iii) µ = ν|A.
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3. Lack of splittings

To make use of Lemma 2 we will need another construction. Let A,

B be finite si residuated lattices. We reserve the letter c to stand for the

coatom of A, and q for the coatom of B.

Then, we proceed to define A ⊙ B = 〈((A \ {1}) × (B \ {1})) ∪

{〈1, 1〉};∧,∨, ·,→, 〈1, 1〉, 〈0, 0〉〉.

We will write ai, instead of 〈a, i〉, and 11, 00 we will further abbreviate

to 1, 0, whenever it will not cause confusion. In other words, we view the

elements of A ⊙ B as elements of A indexed by elements of B.

The operations on A ⊙ B are defined by:

ai ∧ bj =df (a ∧ b)i∧j,

ai ∨ bj =df (a ∨ b)i∨j,

ai · bj =df (a · b)i·j,

ai → bj =df















(a → b)i→j, if a 6≤ b, i 6≤ j;

(a → b)q, if a 6≤ b, i ≤ j;

11, if a ≤ b, i ≤ j;

ci→j, if a ≤ b, i 6≤ j.

Fact 9. A ⊙ B is an si residuated lattice.

Now, let A, µ, B, n ≤ k ∈ ω be as in Lemma 4, and let m ≥ k be the

depth of ν. B ⊙  Lp+1, where  Lp+1 is the simple  Lukasiewicz algebra with

p + 1 elements, for the first prime number p greater or equal to |B|. As

previously, let c, q stand for the unique coatoms of A,  Lp+1, respectively.

Fact 10. A 6∈ V(B ⊙  Lp+1). Moreover, there is a valuation v such

that B ⊙  Lp+1 |=v ∆A = cq, and B ⊙  Lp+1 6|=v Y
(k)
A

= 1, for any k < p.

We are now ready to state our main result.

Theorem 1. The only algebra that splits Lv(R) is the two-element

boolean algebra 2.

Proof. That 2 splits Lv(R) follows by Fact 2. Let A be a finite si residu-

ated lattice different from 2. Take any k ∈ ω. Let B be the algebra whose
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existence is guaranteed by Lemma 4. Then, by Fact 10, B ⊙  Lp+1 falsifies

Y
(k)
A

= 1, and A 6∈ V(B ⊙  Lp+1). Together, these constitute precisely the

condition (ii) of Lemma 2, by which the conclusion follows.
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