REMARKS ON SPLITTINGS IN THE VARIETY OF RESIDUATED LATTICES

This is an extended abstract of a talk presented at the Workshop on Algebra \& Substructural Logic held at JAIST, 10-17 November 1999. The full version of the paper is forthcoming in Algebra Universalis.

1. Introduction

A residuated lattice is an algebra $\mathbf{A}=\langle A ; \vee, \wedge, \cdot, \rightarrow, 0,1\rangle$, such that:
(1) $\langle A ; \vee, \wedge, 0,1\rangle$ is a bounded lattice with the greatest element 1 and smallest 0 ;
(2) $\langle A ; \cdot, 1\rangle$ is a commutative monoid;
(3) A satisfies: $x \cdot y \leq z$ iff $x \leq y \rightarrow z$.

The class \mathcal{R} of residuated lattices is a variety. It is arithmetical, has CEP, and is genereated by its finite members (cf. [4], also [3]). It is also congruence 1-regular, i.e., for any congruence θ, the coset of 1 determines θ uniquely. Cosets of 1 are called congruence filters. A finite subdirectly irreducible (si) residuated lattice \mathbf{A} always has a unique coatom c. By finiteness, $c^{n+1}=c^{n}$, for some positive integer n. We will denote such a
c^{n} by \star. The congruence filter corresponding to the monolith of \mathbf{A} is $\{a \in$ $A: a \geq \star\}$. For more details on residuated lattices and their connections with logics without contraction see [7]. For a broader perspective onto the latter, see [5] and [6].

For a given (quasi)variety \mathcal{W}, let $L^{q}(\mathcal{W}), L^{v}(\mathcal{W})$, stand, respectively, for the lattice of subquasivarieties and subvarieties of \mathcal{W}.

A pair $\left(\mathcal{Q}_{1}, \mathcal{Q}_{2}\right)$ of $\operatorname{sub}(q u a s i)$ varieties of a given (quasi) variety \mathcal{W} is said to split $L^{v}(\mathcal{W})\left(L^{q}(\mathcal{W})\right)$ iff $\mathcal{Q}_{1} \nsubseteq \mathcal{Q}_{2}$ and for any \mathcal{S}, sub(quasi) variety of \mathcal{W}, either $\mathcal{Q}_{1} \subseteq \mathcal{S}$ or $\mathcal{S} \subseteq \mathcal{Q}_{2}$. In other words, \mathcal{Q}_{2} is the largest $\operatorname{sub}(q u a s i)$ variety of \mathcal{W} not containing \mathcal{Q}_{1}.

If $\left(\mathcal{V}_{1}, \mathcal{V}_{2}\right)$ is a splitting pair of subvarieties of a variety \mathcal{V}, i.e., when $\left(\mathcal{V}_{1}, \mathcal{V}_{2}\right)$ splits $L^{v}(\mathcal{V})$ of subvarieties of \mathcal{V}, then \mathcal{V}_{1} is generated by a si algebra, called splitting algebra. It follows from general algebraic results that every finite si algebra in \mathcal{R} splits $L^{q}(\mathcal{R})$. However, we will show that only one such algebra is splitting in \mathcal{V}, i.e., splits $L^{v}(\mathcal{R})$.

If \mathcal{V} is congruence-distributive and generated by its finite members, then every splitting algebra in \mathcal{V} is finite and uniquely determined by the splitting pair (cf. [2]). Thus, the only candidates for splitting algebras are finite subdirect irreducibles.

Fact 1. The two-element boolean algebra 2 splits $L^{v}(\mathcal{R})$.
We will now slightly modify the technique introduced by Jankov in [1], to suit our purposes.

Let A be a finite si residuated lattice. Fix a set X of $|A|$ distinct variables, and index them by the elements of A, so that x_{a}, x_{b} be distinct iff $a \neq b$. Let \neg be the term operation defined as $\neg z=z \rightarrow 0$, and $\diamond \in\{\vee, \wedge, \cdot, \rightarrow\}$. The diagram of \mathbf{A} is defined, as usual, by $\Delta_{\mathbf{A}}=\Lambda\left\{x_{\neg a} \leftrightarrow\right.$ $\left.\neg x_{a}: a \in A\right\} \wedge \bigwedge\left\{x_{a \diamond b} \leftrightarrow x_{a} \diamond x_{b}: a, b \in A\right\}$, Then, the Jankov term of order n for \mathbf{A} is defined as $Y_{\mathbf{A}}^{(n)}=\Delta_{\mathbf{A}}^{n} \rightarrow x_{\star}$, where $\star \in A$ is the smallest member of the monolithic filter on \mathbf{A}.

By a valuation on an algebra B we mean any homomomorphism from the absolutely free algebra of the appropriate type into \mathbf{B}.

Lemma 1. Let $\mathbf{B} \in \mathcal{R}$. Then, $\mathbf{A} \subseteq \mathbf{B}$ iff there is a valuation v, such that $\mathbf{B} \models_{v} \Delta_{\mathbf{A}}=1 \& x_{\star} \neq 1$.

We know already that the two-element boolean algebra splits $L^{v}(\mathcal{R})$. Our aim is to show no other algebra has this property. The technique we use will be guided by the following lemma, which characterises non-splitting algebras in \mathcal{R}.

Lemma 2. The following are equivalent:
(i) \mathbf{A} is not a splitting algebra in \mathcal{R},
(ii) $(\forall i \in \omega)(\exists \mathbf{B} \in \mathcal{R}): \mathbf{A} \notin \mathcal{V}(\mathbf{B})$ and $\mathbf{B} \not \equiv Y_{\mathbf{A}}^{(i)}=1$.

2. Expansions of residuated lattices

This section is entirely devoted to presenting a construction that embeds a given finite si residuated lattice \mathbf{A} into another one, called an expansion of \mathbf{A}, in a certain special way that will prove useful later on.

We begin the construction by fixing a finite si residuated lattice \mathbf{A}, with the coatom c. Now, take the set $A_{0}=\{a \in A: c a<a\}$, and let D be any set disjoint from A, with $|D|=\left|A_{0}\right|$. Thus, by means of any bijection, we can index the elements of D by the elements of A_{0}, getting $D=\left\{d_{a}: a \in A_{0}\right\}$. Let $B=A \cup D$. We will proceed to define a relation and an operation on B.

Definition 1. For $x, y \in B$, we put $x \leq y$ if either:

- $x, y \in A$ and $x \leq^{\mathbf{A}} y$; or
- $x=d_{a} \in D, y \in A$ and $a \leq^{\mathbf{A}} y$; or
- $x \in A, y=d_{a} \in D$ and $x \leq^{\mathbf{A}} c a$; or
- $x=d_{a}, y=d_{b} \in D$ and $a \leq^{\mathbf{A}} b$.

Notice that we have $c a<d_{a}<a$ whenever $c a<a$.
Then, we pass on to define a binary operation ' \cdot ' on B. To avoid overloaded notation, we will abbreviate $x \cdot{ }^{\text {A }} y$ everywhere by $x y$. Thereby, we commit ourselves to never abbreviating the new operation $x \cdot y$, within the present section.

Definition 2. For any $x, y \in B$, let:

$$
x \cdot y=y \cdot x= \begin{cases}x y, & \text { if } x, y \in A \\ d_{a y}, & \text { if } x=d_{a} \in D, y \in A, \text { cay }<a y \\ a y, & \text { if } x=d_{a} \in D, y \in A, \text { cay }=a y \\ c a b, & \text { if } x=d_{a}, y=d_{b} \in D\end{cases}
$$

The structure $\mathbf{B}=\langle B ; \cdot, 1,0, \leq\rangle$ defined above turns out to be almost a residuated lattice. Namely, we have:

Fact 2. The structure \mathbf{B} is a partially ordered, bounded, commutative, integral monoid. Moreover, '.' is monotonic, i.e., if $x \leq y$, then $z \cdot x \leq z \cdot y$, for any $x, y, z \in B$.

To state the next observation, it will be convenient to view \mathbf{B} as a partial algebra $\left\langle B ; \wedge^{?}, \vee^{?}, \rightarrow^{?}, \cdot, 0,1\right\rangle$, where $\wedge^{?}, \vee^{?}, \rightarrow^{?}$ coincide, respectively, with the meet, join, and residuation, whenever they exist, and are undefined otherwise.

Fact 3. \mathbf{A} is a subalgebra of \mathbf{B}.
So far, we have been dealing with two 'sorts' of elements: members of A, and members of D. To get rid of this tiresome division, let's write d instead of d_{1} (notice that the element d_{1} indeed exists, i.e., is in D, for $c 1=c<1$), and state:

Fact 4. For any $x, y \in A$, the following hold:
(i) if $c x<x$, then $d \cdot x=d_{x}$, otherwise $d \cdot x=x$;
(ii) $d \cdot x \cdot d \cdot y=c x y$;
(iii) $d \cdot x \leq d \cdot y$ iff $d \cdot x \leq y$ iff $x \leq y$;

Despite Fact 3 above, we cannot expect \mathbf{B} to be a fully fledged (i.e., not partial) residuated lattice. Indeed, simple examples show that \mathbf{B} might be neither residuated nor a lattice. To deal with this unwelcome situation, we will resort to a completion technique, reminiscent of what has been used in [5] or [6], yet quite substantially different.

Definition 3. A subset X of B is closed, if the following four conditions are satisfied:

- $0^{\mathbf{A}} \in X$;
- $\forall x, y \in B: x \in X$ and $y \leq x$ imply $y \in X$;
- $\forall x, y \in A: x \in X$ and $y \in X$ imply $x \vee y \in X$;
- $\forall x, y \in A: d \cdot x \in X$ and $d \cdot y \in X$ imply $d \cdot(x \vee y) \in X$.

Since, as it is easy to verify, the intersection of any family of closed sets in the above sense is itself closed, we can define $C: \wp(B) \longrightarrow \wp(B)$ to be a map sending each $X \subseteq B$ to the smallest closed subset of B containing X. As usual we denote it by $C(X)$ and call the closure of X. To justify this terminology, we have the following:

Fact 5. The map C defined above is a closure operation on B.
For a closed $X \subseteq B$, define \hat{x} to be $\bigvee\{x \in A: x \in X\}$, and \dot{x} to be $\bigvee\{x \in A: d \cdot x \in X\}$. Since, by Fact 3 , joins of elements of A exist, and are again in A, these are legitimate definitions.

Fact 6. If $X \subseteq B$ is closed, then $X=(\hat{x}] \cup(d \cdot \dot{x}]$. Moreover, if $a \in A$, then (a] is closed.

For $X, Y \subseteq B$, we define $X \Rightarrow Y$ to be the set $\{z \in B \mid \forall x \in X: z \cdot x \in$ $Y\}$, and $Y \circ X$ to be $\{x \cdot y \mid x \in X, y \in Y\}$.

Fact 7. Let X, Y be closed subsets of B, and let $Q=C(X \circ Y)$. The following hold:
(i) $\hat{q}=c \dot{x} \dot{y} \vee \hat{x} \hat{y}, \dot{q}=\dot{x} \hat{y} \vee \hat{x} \dot{y}$;
(ii) $C(X \circ Y)=(c \dot{x} \dot{y} \vee \hat{x} \hat{y}] \cup(d \cdot(\dot{x} \hat{y} \vee \hat{x} \dot{y})]$;
(iii) $X \Rightarrow Y$ is closed.

Definition 4. Let \mathbf{C} be the algebra $\langle C ; \wedge, \vee, \cdot, \rightarrow, 1,0\rangle$, with the universe C being the set of all closed subsets of B, and the operations defined as follows:

- $X \wedge Y=X \cap Y$,
- $X \vee Y=C(X \cup Y)$,
- $X \cdot Y=C(X \circ Y)$,
- $X \rightarrow Y=X \Rightarrow Y$,
- $1^{\mathbf{C}}=B, 0^{\mathbf{C}}=\left\{0^{\mathbf{A}}\right\}$.

We will refer to the algebra \mathbf{C} defined above, as the expansion of \mathbf{A}.
Fact 8. The expansion \mathbf{C} of \mathbf{A} is a residuated lattice, and \mathbf{A} is a subalgebra of \mathbf{C}.

We will sum up the properties of \mathbf{C} in the lemma below. First, however, yet another definition. Let \mathbf{A} be a finite si residuated lattice with the monolithic congruence filter μ.

Definition 5. The filter μ is of depth n iff n is the smallest natural number for which $c^{n}=c^{n+1}=\star$, where c is the coatom of \mathbf{A}.

Lemma 3. Let A be a finite si residuated lattice with the monolithic congruence filter μ of depth n, and \mathbf{C} be its expansion. Then, the following hold:
(i) $\mathbf{A} \subseteq \mathbf{C}$,
(ii) \mathbf{C} is si,
(iii) ν, the monolithic congruence filter of \mathbf{C}, is of depth $2 n$,
(iv) $\mu=\left.\nu\right|_{\mathbf{A}}$.

It is easy to observe that the construction presented here can be iterated. The next lemma is a consequence of this observation.

Lemma 4. Let A be a finite si residuated lattice with the monolith μ of depth n, and k be any natural number. Then, there is an si residuated lattice \mathbf{B} with the monolith ν, such that:
(i) $\mathbf{A} \subseteq \mathbf{B}$,
(ii) ν is of depth greater than k,
(iii) $\mu=\left.\nu\right|_{\mathbf{A}}$.

3. Lack of splittings

To make use of Lemma 2 we will need another construction. Let A, \mathbf{B} be finite si residuated lattices. We reserve the letter c to stand for the coatom of \mathbf{A}, and q for the coatom of \mathbf{B}.

Then, we proceed to define $\mathbf{A} \odot \mathbf{B}=\langle((A \backslash\{1\}) \times(B \backslash\{1\})) \cup$ $\{\langle 1,1\rangle\} ; \wedge, \vee, \cdot, \rightarrow,\langle 1,1\rangle,\langle 0,0\rangle\rangle$.

We will write a_{i}, instead of $\langle a, i\rangle$, and $1_{1}, 0_{0}$ we will further abbreviate to 1,0 , whenever it will not cause confusion. In other words, we view the elements of $A \odot B$ as elements of A indexed by elements of B.

The operations on $A \odot B$ are defined by:

$$
\begin{aligned}
a_{i} \wedge b_{j} & ={ }_{\mathrm{df}}(a \wedge b)_{i \wedge j}, \\
a_{i} \vee b_{j} & ={ }_{\mathrm{df}}(a \vee b)_{i \vee j}, \\
a_{i} \cdot b_{j} & =\mathrm{df}(a \cdot b)_{i \cdot j}, \\
a_{i} \rightarrow b_{j} & ={ }_{\mathrm{df}}\left\{\begin{array}{cl}
(a \rightarrow b)_{i \rightarrow j}, & \text { if } a \not a b, i \not \leq j ; \\
(a \rightarrow b)_{q}, & \text { if } a \not \leq b, i \leq j ; \\
1_{1}, & \text { if } a \leq b, i \leq j ; \\
c_{i \rightarrow j}, & \text { if } a \leq b, i \not \leq j .
\end{array}\right.
\end{aligned}
$$

Fact 9. $\mathbf{A} \odot \mathbf{B}$ is an si residuated lattice.
Now, let $\mathbf{A}, \mu, \mathbf{B}, n \leq k \in \omega$ be as in Lemma 4 , and let $m \geq k$ be the depth of $\nu . \mathbf{B} \odot \mathbf{E}_{p+1}$, where \mathbf{E}_{p+1} is the simple Lukasiewicz algebra with $p+1$ elements, for the first prime number p greater or equal to $|B|$. As previously, let c, q stand for the unique coatoms of $\mathbf{A}, \mathbf{L}_{p+1}$, respectively.

Fact 10. $\mathbf{A} \notin \mathcal{V}\left(\mathbf{B} \odot \mathbf{L}_{p+1}\right)$. Moreover, there is a valuation v such that $\mathbf{B} \odot \mathbf{E}_{p+1} \models_{v} \Delta_{\mathbf{A}}=c_{q}$, and $\mathbf{B} \odot \mathbf{L}_{p+1} \not \models_{v} Y_{\mathbf{A}}^{(k)}=1$, for any $k<p$.

We are now ready to state our main result.
Theorem 1. The only algebra that splits $L^{v}(\mathcal{R})$ is the two-element boolean algebra 2.

Proof. That $\mathbf{2}$ splits $L^{v}(\mathcal{R})$ follows by Fact 2 . Let \mathbf{A} be a finite si residuated lattice different from $\mathbf{2}$. Take any $k \in \omega$. Let B be the algebra whose
existence is guaranteed by Lemma 4 . Then, by Fact $10, \mathbf{B} \odot \mathbf{L}_{p+1}$ falsifies $Y_{\mathbf{A}}^{(k)}=1$, and $\mathbf{A} \notin \mathcal{V}\left(\mathbf{B} \odot \mathbf{L}_{p+1}\right)$. Together, these constitute precisely the condition (ii) of Lemma 2, by which the conclusion follows.

References

[1] Jankov, V.A., The relationship between deducibility in the intuitionistic propositional calculi, Soviet Mathematics 4, pp. 1203-1024.
[2] McKenzie, R., Equational bases and non-modular lattice varieties, Transactions of the American Mathematical Society 156, pp. 1-43.
[3] Kowalski, T. and Ono, H. Variety of residuated lattices is generated by its finite simple members, this volume, pp. 57-75.
[4] Okada, M. and K. Terui, The finite model property for various fragments of intuitionistic linear logic (manuscript, 1999).
[5] Ono, H. and Y. Komori, Logics without the contraction rule, Journal of Symbolic Logic 50 (1985), pp. 169-201.
[6] Ono, H., Semantics for substructural logics, in: Substructural Logics, K. Došen, P. Schroeder-Heister (eds), Clarendon Press, Oxford 1993, pp. 259-291.
[7] Ono, H., Logics without contraction rule and residuated lattices I (manuscript, 1999).

Japan Advanced Institute of Science and Technology
1-1 Asahidai, Tatsunokuchi, Ishikawa 923-12, Japan
\{kowalski,ono\}@jaist.ac.jp

