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A b s t r a c t. It is quite well-known from Kurt Gödel’s (1931)

ground-breaking Incompleteness Theorem that rudimentary rela-

tions (i.e., those definable by bounded formulae) are primitive re-

cursive, and that primitive recursive functions are representable in

sufficiently strong arithmetical theories. It is also known, though

perhaps not as well-known as the former one, that some primitive

recursive relations are not rudimentary. We present a simple and

elementary proof of this fact in the first part of the paper. In the

second part, we review some possible notions of representability

of functions studied in the literature, and give a new proof of the

equivalence of the weak representability with the (strong) repre-

sentability of functions in sufficiently strong arithmetical theories.
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.1 Introduction and Preliminaries

Primitive recursive functions are what were called “rekursiv” by Kurt Gödel

in his seminal 1931 paper [5] where he proved the celebrated incompleteness

theorem. The main features of the primitive recursive functions used by

Gödel were the following:

1. They are computable (i.e., for each primitive recursive function there

exists an algorithm that computes it). However, we now know that they

do not make up the whole (intuitively) computable functions (from tuples

of natural numbers to natural numbers, Nk→N). So, “rekursiv” functions

are now called “primitive recursive” functions, which constitute a sub-class

of recursive functions that, by Alonzo Church’s Thesis, are believed to

constitute the whole computable functions.

2. They are representable in (sufficiently expressive and sufficiently

strong) formal arithmetical theories. It is now known that, more generally,

(only) recursive functions are representable in all the recursively enumer-

able, sufficiently strong and sufficiently expressive theories (see Section 3).

3. Theories whose set of axioms are primitive recursive and extend

a base theory (such as Robinson’s Arithmetic Q), are incomplete. It was

later found out that this holds more generally for recursively enumerable

extensions of Q. Also, by William Craig’s Trick, every such theory is equiv-

alent with another theory whose set of axioms is rudimentary (i.e., definable

by a bounded formula).

Even though one can set up the whole theory of computable functions

(aka recursion theory) and the incompleteness theorems without introduc-

ing the notion of primitive recursive functions (and relations), the theory

of primitive recursive functions is a main topic in the literature on recur-

sive function theory and the incompleteness theorems. For the sake of

completeness we review some basic notions of this theory.

Definition 1.1 (Primitive Recursive Functions and Relations). The

class of primitive recursive (pr) functions (Nk→N) is the smallest class that

contains the initial functions (the constant zero, the successor s(x)=x+1,

and the projection functions) and is closed under primitive recursion and

composition of functions. A relation R⊆Nk is called pr, if its characteristic

function (χR(~n)=1 if ~n∈R, and χR(~n)=0 if ~n 6∈R) is pr.
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By Hermann Grassmann’s recursive definition of the addition and mul-

tiplication, i.e. x+0=x, x+s(y)=s(x+y), x·0=0 and x·s(y)=(x·y)+x, it can

be shown that these functions are pr; so is the anti-sign function (s̃g(0)=1,

and s̃g(x)=0 if x>0). The equality (=) and inequality (6) can be shown to

be pr relations. The following identities show that the class of pr relations

is closed under Boolean operations and bounded quantifications:

χR{ = s̃g(χR); χR∩S =χR ·χS .{
χ∀x6yR(~z,x)(~z, 0)=χR(~z, 0),

χ∀x6yR(~z,x)(~z, s(y))=χ∀x6yR(~z,x)(~z, y) · χR(~z, y+1).

Definition 1.2 (Rudimentary Relations). A formula in the language of

arithmetic 〈0, 1,+,×,6〉 is called bounded, if it has been constructed from

atomic formulas (of the form u= v or u6 v, for terms u, v) by means of

Boolean connectives, and bounded quantifications (of the form e.g. ∀x6 t,
where ∀x6 tA(x, t) abbreviates the formula ∀x

[
x6 t → A(x, t)

]
for term

t and variable x which is not free in t). The class of bounded formulas

is denoted by ∆0. A relation R ⊆ Nk is called rudimentary or bounded

definable, or simply ∆0, if it can be defined by a ∆0-formula, i.e., there

exists a ∆0-formula ϕ(~x) such that R = {~m | N |= ϕ(~m)}.

Thus, all the ∆0 relations are pr; see also e.g. [2, 7, 17]. The question

as to whether the converse holds, i.e., whether every pr relation is ∆0,

has been mentioned in very few places; some of which, unfortunately, are

wrong (cf. e.g. [7, Exercise 8.6]) or misleading (cf. e.g. [17, Section 6.3,

Remark 1])—see [18] for more details. It may seem that the graphs of

(very) fast-growing functions could be non-rudimentary, but, in fact, it has

been shown in [1] (see also [4]) that this is not true.

We read in the Abstract of [4], “The question of whether a given primi-

tive recursive relation is rudimentary is in some cases difficult and related to

several well-known open questions in theoretical computer science”. Also,

on page 130 of [4] we read, “However, it is difficult to exhibit a natural

arithmetical relation which can be proved not to be rudimentary” (empha-

sis in the original). Later, on page 132 we read, “Hence, the main way

of exhibiting a primitive recursive relation which is not rudimentary is to

choose it in C3
∗ \C2

∗. Although it is true that infinitely many [such] relations

exist, we know no natural example”. Here, by “natural” the authors mean

a relation (⊆ Nk) that the number-theorists use and work with.
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On page 85 of [2] after proving that “Every ∆0 relation is primitive

recursive” as a Lemma, we read, “Remark: The converse of the above

lemma is false, as can be shown by a diagonal argument. For those familiar

with complexity theory, we can clarify things as follows. As noted in the

Side Remark above, all ∆0 relations can be recognized in linear space on

a Turing machine. On the other hand, it follows from the Ritchie-Cobham

Theorem that all relations recognizable in space bounded by a primitive re-

cursive function of the input length are primitive recursive. In particular,

space O(n2) relations are primitive recursive, and a straightforward diago-

nal argument shows that there are relations recognizable in n2 space which

are not recognizable in linear space, and hence are not ∆0 relations.” The

mentioned side-remark (that “All ∆0 relations can be recognized in linear

space on a Turing machine, when input numbers are represented in binary

notation”) is not proved in [2]. This was proved first by John Myhill [14].

So, there are some pr relations that are not ∆0. In Section 2 we show

that a specific pr relation is not ∆0, by a detailed proof with little back-

ground in complexity theory or formal arithmetics. This relation may not

look natural for number-theorists, but is sufficiently natural for logicians.

Remark 1.3 (The Bounds on Quantifiers in Defining Formulas). If

a relation is defined by a formula whose all quantifiers are bounded by

polynomials, then that relation is ∆0 (and thus pr). If the quantifiers of

such a formula are bounded by pr functions (which are not necessarily

polynomials), then that relation is surely pr (recall that the pr functions

are closed under substitutions); but it may not be ∆0, as will be clear below

(see the proof of Theorem 2.8 and the defining formula of Sat∆0(x, y) which

is a non-rudimentary pr relation).

In the second part, Section 3, we will study some possible notions of

representability of functions in arithmetical theories and will compare their

strength with each other; we will provide a new proof for an old theorem

which appears in a very few places with a much longer proof. The theorem

says that every weakly representable function is (strongly) representable;

this is usually proved by showing that (A) every weakly representable func-

tion is recursive, and (B) every recursive function is (strongly) representable.

Our proof is direct and much more elementary.
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.2 Rudimentarity vs. Primitive Recursivity

Let us be given a fixed Gödel coding α 7→ pαq, which is primitive recursive

(as is usually presented in the literature). Our example of a pr relation

that is not ∆0, uses an idea of Alfred Tarski; that the truth relation of

arithmetical sentences is not arithmetically definable. Likewise, the truth

of ∆0-sentences is not ∆0; but, as will be shown later, it is pr.

Definition 2.1 (∆0-Satisfaction). Let Sat∆0 be the set of all the or-

dered pairs (pθ(~ν)q, a), where θ(~ν) is a ∆0-formula with the shown free

variables and a ∈ N, such that N � θ(~a); i.e., the sentence resulted from

substituting a for every free variable of θ is true (in the standard model of

natural numbers).

In the other words, Sat∆0 = {(pθ(~ν)q, a) | N�θ(~a) & θ∈∆0}.

Theorem 2.2 (Non-Rudimentarity of ∆0-Satisfaction). The relation

Sat∆0(x, y) is not definable by any ∆0-formula.

Proof. If a ∆0-formula such as σ(x, y) defined Sat∆0 , then for the

∆0-formula θ(x) = ¬σ(x, x) and m = pθ(x)q, we would have N � θ(m)↔
Sat∆0(pθ(x)q,m)↔σ(m,m)↔¬θ(m), a contradiction! �

In the rest of this section we show that Sat∆0 is a pr relation. This

can already be inferred from the results of [12], see [12, Definition 4.1.3 and

Lemma 4.1.4] and also [16, Theorem 2] and [6, Corollary 5.5]. All of these

use advanced arguments that cannot be mentioned in more elementary

texts like [2, 7, 17]. Our aim here is to provide an elementary proof for

primitive recursivity of Sat∆0 in such a way that it can be used, along with

Theorem 2.2, in textbooks for clarifying the status of pr vs. ∆0 relations.

Remark 2.3 (On Gödel Coding). We can assume that the set of the

Gödel codes of the variables is definable by a ∆0-formula; for example

we can keep even numbers 2, 4, 6, · · · for coding the variables v0, v1, v2, · · ·
respectively, and then code the rest of the language (propositional connec-

tives, quantifiers, parentheses and function and relation symbols) by odd

numbers. As a result of this way of coding, var(x)≡∃y6x (y= 2x+2) is

a ∆0-formula that defines the variables. Other syntactical notions of terms,

formulas, sentences, bounded sentences, proofs, etc. can be shown to be pr

as usual (see e.g. [6, 7, 13, 17]). Let p0, p1, p2, · · · be the sequence of all
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prime numbers (2, 3, 5, · · · ). Let us code the sequence 〈α0, α1, · · · , αk〉 by

the number
∏
i6k p

αi+1
i . Let us note that this way, the code of any such

sequence will be non-greater than pkAk , where A is any number greater than

all αi’s. Also let us recall that the functions i 7→ pi and (k,A) 7→ pkAk are

both pr (see e.g. [7, 13, 17]).

Definition 2.4 (Terms, Bounded Formulas, Valuations, etc.). For a fixed

Gödel coding, let the relation

� var(x) hold, when “x is (the Gödel code of) a variable”.

� trm(x) hold, when “x is (the Gödel code of) a term”.

� atm(x) hold, when “x is (the Gödel code of) an atomic formula”.

� fml∆0(x) hold, when “x is (the Gödel code of) a ∆0-formula”.

� val(x, y, z) hold, when “x is (the Gödel code of) a term with the

free variables 〈ν0, · · · , ν`〉, y is (the Gödel code of) a sequence of numbers

〈a0, · · · , a`〉, and z is the value of the term x when each νi is substituted

with ai, for each i6`”.

Lemma 2.5 (var, trm, fml∆0 and val are pr). The relations var, trm,

atm, fml∆0 and val are pr.

Proof. We noted (in Remark 2.3) that var can even be ∆0 (and so

it is pr) by a modest convention on coding. There is also a ∆0 rela-

tion seq(x) which holds of x when x is (the Gödel code of) a sequence.

Let `en(x) denote the length of x and [x]i, for each i < `en(x), denote

the i-th element of x. Thus, if seq(x) holds, then x codes the sequence

〈[x]0, [x]1, · · · , [x]`en(x)−1〉. Let us recall that x 7→ `en(x) and (i, x) 7→ [x]i
are both pr functions. Let y=`ast(x) abbreviate y=[x]`en(x)−1.

� Let trmseq(x) be the following ∆0 relation:

seq(x) ∧ ∀i<`en(x)
[
[x]i=p0q ∨ [x]i=p1q∨

var([x]i) ∨ ∃j, k<i
(

[x]i=p([x]j+[x]k)q ∨ [x]i= p([x]j×[x]k)q
)]

.

Now, trm(x) can be written as ∃s 6 p
(x+1)2

x trmseq(s) ∧ `ast(s) = x;

noting that the length of the building sequence of x is at most x and all

the elements of that sequence are non-greater than x. So, trm(x) is pr.

� That atm(x) is a pr relation, follows from the following:

atm(x)≡∃u, v<x
[
trm(u) ∧ trm(v) ∧

(
x=p(u=v)q ∨ x=p(u6v)q

)]
.

� Without loss of generality we may assume that the propositional connec-

tives are only ¬ and ∧ and the only quantifier is ∀. Now, the following

∆0-formula defines the building sequence of a bounded formula:
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fml∆0seq(x)≡
seq(x) ∧ ∀i<`en(x)

[
atm([x]i) ∨ ∃j, k<i

(
[x]i=p(¬[x]j)q∨

[x]i=p([x]j∧[x]k)q ∨ ∃v, t<x
[
var(v) ∧ trm(t) ∧ [x]i=p(∀v6 t)[x]jq

])]
.

So, fml∆0(x)≡∃s6p
(x+1)2

x fml∆0seq(s) ∧ `ast(s)=x is a pr relation.

� Let valseq(y, s, t) be the following ∆0 relation:

seq(y) ∧ termseq(s) ∧ seq(t) ∧ `en(t)=`en(s) ∧ ∀i<`en(s)[(
[s]i=p0q ∧ [t]i=0

)
∨
(
[s]i=p1q ∧ [t]i=1

)
∨
(
var([s]i) ∧ [t]i=[y]i

)
∨

∃j, k<i
[(

[s]i=p([s]j+[s]k)q ∧ [t]i=[t]j+[t]k
)

∨
(
[s]i=p([s]j×[s]k)q ∧ [t]i=[t]j ·[t]k

)]]
,

stating that y, t are (the Gödel code of) sequences (of numbers) and s is

(the Gödel code of) a building sequence of a term such that t is the result

of substituting the variables of s with the corresponding elements of y.

� Finally, val(x, y, z) is pr since it is equivalent with

∃s6p
(x+1)2

x ∃t6p
(z+1)2

z valseq(y, s, t) ∧ `ast(s)=x ∧ `ast(t)=z. �

Remark 2.6 (var, trm, fml∆0 and val Could Even Be ∆0). Actually,

by the techniques of [6, Chapter V] one can show that all the relations

var(x), trm(x), atm(x), fml∆0(x) and val(x, y, z) can be ∆0, under a suit-

able Gödel coding. The coding used in [6, Chapter V] has the property

that the code of 〈α0, · · · , αk〉 is bounded by 9k(α0 +1)2 · · · (αk+1)2; see

[6, Lemma 3.7]. This enables us to write defining ∆0-formulas for var(x),

trm(x), atm(x), fml∆0(x) and val(x, y, z). For var(x) see Remark 2.3, and

for trm(x) see [6, Lemma 3.33]; by similar techniques atm(x), fml∆0(x) and

val(x, y, z) can also be defined by some ∆0-formulas.

Remark 2.7 (Sat∆0 In the Border of pr and ∆0). The main idea of

the proofs of Lemma 2.5 and Theorem 2.8 are from [9, Chapter 9].1 In

Theorem 2.8 we will show that Sat∆0(x, y) is a pr relation, which, by

Theorem 2.2, cannot be ∆0 under any Gödel coding. We will see in the

proof of Theorem 2.8 that Sat∆0 is definable by the relations var, trm,

atm, fml∆0 and val. So, we have a boundary result here: the pr relations

var(x), trm(x), atm(x), fml∆0(x) and val(x, y, z) all can be ∆0 under some

1 As a referee of this journal remarked, Richard Kaye wrote in the beginning of [9,

Chapter 9] (on page 104) that “This is the chapter that no one wanted to have to write”,

and Laurence Kirby wrote in a review of [9] that “The trouble is that probably no one

will want to have to read it either” (see [10, page 462]).
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Gödel coding (see Remark 2.6), while the pr relation Sat∆0(x, y) can never

be ∆0 under any Gödel coding.

Theorem 2.8 (Sat∆0 is PR). The relation Sat∆0(x, y) is pr.

Proof. Define the relation sat∆0seq(s, t) by “s is a building sequence of

a ∆0-formula, and t is a sequence of triples 〈i, z, w〉 in which i<`en(s) and

w61 is a truth value (1 for truth and 0 for falsity) of the formula [s]i when

the variables v0, v1, · · · are interpreted by [z]0, [z]1, · · · respectively”. Let

z[r/k] denote the sequence resulted from z by substituting its k-th element

with r. The function z, r, k 7→ z[r/k] is pr, and when val(u, z, x) holds,

then we can have val(u, z, x) for some x6p1+zu
u , since the value of a term

u when its free variables are substituted by the elements of z is non-greater

than p1+zu
u . The following formula defines the relation sat∆0seq(s, t):

fml∆0seq(s) ∧ seq(t) ∧ ∀l<`en(t)

∃i, z, w6 t
[
[t]l=〈i, z, w〉 ∧ i<`en(s) ∧ w61∧([

∃u, v6s
(
trm(u) ∧ trm(v) ∧ [s]i=p(u=v)q∧

[w = 1↔ ∃x6p
(1+zu+v)2

u+v val(u, z, x) ∧ val(v, z, x)]
)]
∨[

∃u, v6s
(
trm(u) ∧ trm(v) ∧ [s]i=p(u6v)q∧

[w = 1↔ ∃x, y6p
(1+zu+v)2

u+v val(u, z, x) ∧ val(v, z, y) ∧ x6y]
)]
∨[

∃j<i
(
[s]i=p(¬[s]j)q ∧ ∃p<l∃w′61([t]p=〈j, z, w′〉 ∧

[w=1↔ w′=0])
)]
∨[

∃j, k<i
(
[s]i=p([s]j ∧ [s]k)q ∧ ∃p, q<l∃w′, w′′61

([t]p=〈j, z, w′〉 ∧ [t]q=〈k, z, w′′〉 ∧ [w=1↔ w′=1 ∧ w′′=1])
)]
∨[

∃j<i∃u, v<s
(
trm(u) ∧ var(v) ∧ [s]i=p(∀v6u)[s]jq∧

∃x6pz
u+1
u [val(u, z, x)∧

∀r6x∃p<l∃w′61([t]p=〈j, z[r/pvq], w′〉)]∧
[w=1↔ ∀r6x∃p<l∃w′61([t]p=〈j, z[r/pvq], 1〉]

)])]
.

Therefore, sat∆0seq(s, t) is a pr relation, and so is Sat∆0(x, y) which

can be written as

∃s6p
(x+1)2

x ∃t6p2p
(x+1)2

x ·3p
p
(y+1)2

x
x ·5

x2[
sat∆0seq(s, t) ∧ `ast(s)=x ∧ `ast(t)=〈`en(s)−1, y, 1〉

]
.

Let us note that we took ¬,∧ as the only propositional connectives and

∀ as the only quantifier; and we coded 〈i, z, w〉 as 2i · 3z · 5w which imply

the desirable pr bounds as indicated. �
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.3 Representability in Arithmetical Theories

For (total) functions we can have four different definitions for representabil-

ity (originated from [20]) in arithmetical theories whose languages contain

terms n for indicating (each) n∈N.

Definition 3.1 (Weakly Representable Functions). A function f : N→
N is weakly representable in a theory T , if for some formula ϕ(x, y) we have

the following for every n,m ∈ N:

(1) if f(n)=m, then T ` ϕ(n,m); and

(2) if f(n) 6=m, then T 0 ϕ(n,m).

Definition 3.2 (Representable Functions). A function f : N → N is

representable in a theory T , if for some formula ψ(x, y) we have the following

for every n,m ∈ N:

(1) if f(n)=m, then T ` ψ(n,m); and

(2) if f(n) 6=m, then T ` ¬ψ(n,m).

Definition 3.3 (Strongly Representable Functions). A function f : N→
N is strongly representable in a theory T , if for some formula θ(x, y) we have

the following for every n,m ∈ N:

(1) if f(n)=m, then T ` θ(n,m); and

(2) T ` ∀y, z
(
θ(n, y)∧θ(n, z)→y=z

)
.

Definition 3.4 (Provably Total Functions). A function f : N → N is

provably total in a theory T , if for some formula η(x, y) we have the following

for every n,m ∈ N:

(1) if f(n)=m, then T ` η(n,m); and

(2) T ` ∀x∃y
(
η(x, y)∧∀z

[
η(x, z)→y=z

])
.

Indeed, these definitions get stronger from top to bottom: If T is consis-

tent and can prove i 6=j for every distinct i, j∈N, then every provably total

function is strongly representable, and every strongly representable function

is representable, and every representable function is weakly representable

in T with the same formula. It is a folklore result that representability

implies strong representability (cf. [15, Proposition I.3.3]):

Lemma 3.5 (Representability =⇒ Strong Representability).If T proves

∀y(y 6<0), ∀y(y<n ∨ y=n ∨ n<y) and ∀y(y<n+ 1↔ y=0 ∨ · · · ∨ y=n),

for all n∈N, then the representability of a function in T implies its strong

representability in it.
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Proof. If f is representable by ψ(x, y) in T , then let θ(x, y) = ψ(x, y)∧
∀z <y¬ψ(x, z). We show that T ` θ(n, f(n)) and T ` θ(n, y) → y = f(n)

hold for any n∈N as follows. Reason in T : If z<f(n), then if f(n)=0 we

have a contradiction, otherwise (if f(n) 6=0) we have z= i for some i<f(n).

Of course for any such i we have ¬ψ(n, i); thus ¬ψ(n, z). If θ(n, y) and

y 6=f(n), then either y<f(n) or f(n)<y. In the former case we have y= i

for some i < f(n) if f(n) 6= 0, otherwise y < 0 is a contradiction; and so

by ¬ψ(n, i) we have ¬ψ(n, y), which is a contradiction with θ(n, y). In the

latter case, ∀z<y¬ψ(n, z) implies ¬ψ(n, f(n)); a contradiction again. �

The question if the strong representability implies the provable totality was

mentioned open in the first edition (1964) of the classical book [13]. In 1965,

Verena (Huber-)Dyson showed that the strong representability implies the

provable totality [3], and as a result this was Exercise 3.35 in the second

edition (1979) of that book, and Exercise 3.32 in the third edition (1987),

attributed to V. H. Dyson. Then in the fourth (1997), the fifth (2009)

and the sixth (2015) editions, this has been proved in Proposition 3.12,

attributed to V. H. Dyson again.

Theorem 3.6 (Strong Representability =⇒ Provable Totality). If a fun-

ction is strongly representable in a theory, then it is provably total in that

theory.

Proof. Let us note that we do not put any condition on the theory T ;

let f be strongly representable by θ in T . Let ∃!uA(u) be an abbreviation

for the formula ∃u
(
A(u) ∧ ∀v[A(v)→ v=u]

)
. Put

η(x, y) =
[
∃!z θ(x, z) ∧ θ(x, y)

]
∨
[
¬∃!z θ(x, z) ∧ y=0

]
.

For any n ∈ N we have T ` ∃!y θ(n, y); thus from T ` θ(n, f(n)) we get

T ` η(n, f(n)). Now, we show that T ` ∀x∃!y η(x, y). Reason inside T :

If ∃!z θ(x, z), then that unique z which satisfies θ(x, z) also satisfies η(x, z)

and ∀u
[
η(x, u) → u= z

]
, whence ∃!y η(x, y). If ¬∃!z θ(x, z), then y= 0 is

the unique y that satisfies η(x, y). �

The above proof of (Huber-)Dyson appears also in [8, page 63], [11,

Proposition 3.8] and [19, Proposition 9.4.2]. The following theorem is usu-

ally proved by showing that every weakly representable function is recursive

and that every recursive function is (strongly) representable; see e.g. [15,

Corollary I.7.8] or [17, Theorem 4.5]. Here we present a simpler proof.
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Theorem 3.7 (Weak Representability =⇒ Representability). For a the-

ory T , suppose the formula ProofT (z, x) states that “z is (the Gödel code

of) the proof of a formula (with Gödel code) x in T”, and suppose that T

has the following properties:

(a) T ` i 6= j, T ` n 6 m and T ` ∀y(m 6 y → n 6 y), for all natural

numbers i, j, n,m with i 6=j and n6m;

(b) T ` ∀y(y6n ∨ n6y), for all n∈N;

(c) T ` ∀y(y6n↔
∨∨n
i=0 y= i), for all n∈N;

(d) if k is the Gödel code of a proof of φ in T , then T ` ProofT (k, pφq);
(e) if k is not the Gödel code of a proof of φ in T , then T ` ¬ProofT (k, pφq).
Then weak representability of a function implies its representability in T .

Proof. Suppose the function f is weakly representable by ϕ in T . For

the (bounded provability) predicate %(z, x) = ∃u6z ProofT (u, x), let

ψ(x, y) = ∃z
[
%(z, pϕ(x, y)q) ∧ ∀y′6z [y′ 6=y → ¬%(z, pϕ(x, y′)q)]

]
.

For showing the representability of f by ψ in T we prove that:

(1) T ` ψ(n, f(n)) for all n∈N, and

(2) T ` ¬ψ(n,m) for all n,m∈N with m 6=f(n).

(1): Fix an n ∈ N and let k ∈ N be a Gödel code for the proof of T `
ϕ(n, f(n)); so, we have f(n)6k. By (d) above we have

T ` ProofT (k, pϕ(n, f(n))q),

and so

T ` %(k, pϕ(n, f(n))q)

by (a) above. Now, for any i∈N with i 6=f(n) we have that T 0 ϕ(n, i), and

so by (e) above, for any l ∈ N, we have T ` ¬ProofT (l, pϕ(n, i)q). Thus,

by (c) above, T ` ¬%(l, pϕ(n, i)q). Reason in T : for any y′ with y′ 6 k
and y′ 6= f(n), by (c) above, we have y′ = j for some j 6 k with j 6= f(n).

For any such j we have ¬%(k, pϕ(n, j)q); and so, by (c) above, the sentence

∀y′6k [y′ 6=y → ¬%(k, pϕ(n, y′)q)] holds. Thus, ψ(n, f(n)).

(2): Fix some n,m∈N with m 6=f(n). Let us note that

¬ψ(x, y)≡∀z
[
%(z, pϕ(x, y)q)→ ∃y′6z [y′ 6=y ∧ %(z, pϕ(x, y′)q)]

]
.

For proving T ` ¬ψ(n,m) we show that

T ` ∀z
[
%(z, pϕ(n,m)q)→ f(n)6z ∧ f(n) 6=m ∧ %(z, pϕ(n, f(n))q)

]
.

Let k ∈ N be a Gödel code for the proof of T ` ϕ(n, f(n)); so, f(n)6 k.

Also, from T 0 ϕ(n,m), by (e) above, we have T ` ¬%(l, ϕ(pn,m)q),
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for any l ∈ N. Reason in T : for any z, by (b) above, we have either

(2.i) z6k or (2.ii) k6 z. (2.i): If z6k then z = i for some i6k, by (c)

above. Now, %(i, pϕ(n,m)q) → f(n) 6 i ∧ f(n) 6= m ∧ %(i, pϕ(n, f(n))q)
follows from ¬%(i, pϕ(n,m)q); thus ¬ψ(n,m) holds. (2.ii): If k 6 z,

then f(n) 6 z, by (a) above, which also implies f(n) 6= m. On the other

hand, ProofT (k, pϕ(n, f(n))q) holds and so ∃u6z ProofT (u, pϕ(n, f(n))q),
or equivalently %(z, pϕ(n, f(n))q). Thus, ¬ψ(n,m) holds by the already

proved statement f(n)6z ∧ f(n) 6=m ∧ %(z, pϕ(n, f(n))q). �

Let us note that the (very weak) finitely axiomatizable Robinson’s Arith-

metic Q satisfies all the conditions (a,b,c,d,e) in Theorem 3.7.
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Publications 1929–1936 (Eds. S. Feferman et al.), Oxford University Press (1986),

pp. 135–152.
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