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A GENERAL EXTENSION THEOREM

FOR DIRECTED-COMPLETE

PARTIAL ORDERS

A b s t r a c t. The typical indirect proof of an abstract exten-

sion theorem, by the Kuratowski-Zorn lemma, is based on a one-

step extension argument. While Bell has observed this in case of

the axiom of choice, for subfunctions of a given relation, we now

consider such extension patterns on arbitrary directed-complete

partial orders. By postulating the existence of so-called total

elements rather than maximal ones, we can single out an im-

mediate consequence of the Kuratowski-Zorn lemma from which

quite a few abstract extension theorems can be deduced more

directly, apart from certain definitions by cases. Applications in-

clude Baer’s criterion for a module to be injective. Last but not

least, our general extension theorem is equivalent to a suitable

form of the Kuratowski-Zorn lemma over constructive set theory.

Received 27 June 2017

Keywords and phrases: Extension theorems; Kuratowski-Zornlemma; transfinite methods.

AMS subject classification: 03E25, 03F65.



80 PETER SCHUSTER AND DANIEL WESSEL

.1 Introduction

An invocation of the Kuratowski-Zorn lemma (KZL) [11, 19] often takes

place within an indirect proof of a universal statement. Supposing towards

a contradiction that there be any counterexample, the maximal counterex-

ample provided by KZL helps—by what Bell calls “one-step extension argu-

ment” [5]—to the desired contradiction. Crucially though, this one-step ar-

gument does not depend on maximality, and in fact a more general method

is hovering in the background, which a priori is not limited to hypothetical

counterexamples only. An alternative approach thus seems desirable which

at once is more affirmative inasmuch as it really focuses on the one-step

argument, but still is in the spirit of KZL. To this end, we distill a general

extension theorem (GET) for directed-complete partial orders, the intended

meaning being that the poset under consideration consists of partial exten-

sions of which one is to be proved total. The principal hypothesis of GET

encodes the one-step argument which can also be found in proofs of spe-

cific extension theorems such as the ones going back to Hahn and Banach:

that every partial extension can be extended by any potential element of

its domain—which, of course, is impossible for any maximal extension. As

compared with the typical indirect proof by KZL of such an extension the-

orem, GET allows for a fairly direct proof relative to a certain type of

definition by cases. This is possible because GET already postulates the

existence of a total extension rather than a maximal one.

In this note we proceed as follows. First, in Section 2, we explain the

concept of an extension pattern on a partially ordered class, and we provide

several elementary examples. Then, in Section 3, we phrase our general

extension principle GET and prove it equivalent over constructive set theory

CZF both to a certain variant of the Hausdorff Maximal Principle as well

as to a form of KZL which is suitable for CZF. In Section 4 we focus

on a specific application from module theory, obtaining a proof of Baer’s

criterion by means of GET. Finally, we obtain from GET a classically

equivalent induction principle in Section 5.
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.On method and foundations

We work in constructive set theory CZF [3, 4] which is based on intuition-

istic logic. Due to the choice of this setting, sometimes certain assumptions

have to be made explicit which otherwise would be trivial in classical set

theory ZF. For instance, a set S is discrete if

∀x, y ∈ S (x = y ∨ x 6= y ).

A subset T of a set S is detachable if

∀x ∈ S (x ∈ T ∨ x /∈ T ).

These are instances of the restricted principle of excluded middle (REM)

ϕ ∨ ¬ϕ

where ϕ is a bounded formula, i.e., one in which all quantifiers occur only

in one of the forms ∃x ∈ y or ∀x ∈ y. We make use of class notation

and terminology [4], notably when it comes to phrasing KZL over CZF.

A class is said to be predicative [4] if it can be defined by a bounded

formula. Every class occurring in this note will be predicative, and we

denote classes by script letters. Given a class E , a partial order of E is

a subclass 6 of E × E that satisfies the usual axioms of a partial order:

reflexivity, transitivity, antisymmetry. For instance, if S is a set, then the

class P(S) of all subsets of S is partially ordered by the subset relation.

Note that CZF does not postulate the axiom of power set! However, recall

that CZF has exponentiation, i.e., if S and T are sets, then so is the class of

all functions f : S → T . Due to exponentiation, in most of the applications

we have in mind the classes in question actually do form sets. Furthermore,

if S is a set, then the class of all finite subsets of S forms a set as well. Here,

a set S is finite if there is n > 0 and a surjective function { 1, . . . , n } → S.

In the following, whenever we write that a certain principle is “classically

implied” by another, then we mean that REM is adopted in order to prove

the implication in question. Last but not least, we point out that CZF

with unrestricted excluded middle proves the same theorems as ZF does

[4, Corollary 4.2.8].
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.2 Extension

Typically, when attempting to prove an extension theorem, e.g., in case

of the Hahn-Banach theorem, an application of KZL takes the following

form. Given a map f : Y → Z and Y ⊆ X, we are asked for an extension

of f , i.e., another map g : X → Z for which f(x) = g(x) for all x ∈ Y .

When structural properties need to be preserved, this rarely is a trivial

task, but a way out is provided by KZL. So one considers the collection E

of intermediate extensions of f , and proceeds by showing E to be closed

under unions of directed subsets. Due to KZL, the directed-complete par-

tially ordered set E then has a maximal element, and a “one-step extension

argument” [5] helps to the desired conclusion that the maximal element in-

deed has domain X. This one-step argument is captured by what Bell calls

the extension principle for a family E of partial functions on a set X:

∀x ∈ X ∀f ∈ E ∃g ∈ E ( f ⊆ g ∧ x ∈ dom(g) ).

Under this extension principle, if f is a maximal element of E, then in fact

dom(f) = X, which is to say that f is total.

Example 2.1. Let R be a relation with dom(R) = X, and let E be

the set of subfunctions of R. If the domain dom(f) is a detachable subset

of X whenever f ∈ E, then a simple definition by cases allows for an

extension principle for E [5]. For let f ∈ E and x ∈ X. If x ∈ dom(f),

then an extension g of f by x is trivially given by g = f ; and in case of

x /∈ dom(f) we may set g = f ∪ { (x, y) } for any y such that (x, y) ∈ R.

On the other hand, KZL applies to E and thus gives a subfunction of R

with the same domain. This is how AC (appropriately formulated and with

classical reasoning) may be deduced from KZL with the aid of an extension

principle.

If EP denotes the assertion that for every relationR there is an extension

principle for the set of subfunctions of R, then KZL+EP entails AC in CZF.

As is well known [3, 4, 8, 9], AC implies REM. While KZL is “constructively

neutral” [5], it is EP which implies REM [5].

The situation one encounters may change, but the overall strategy with

KZL remains quite the same, if only there is a one-step argument at hand.1

1 While to our knowledge a one-step argument was made explicit first by Szpilrajn

[17], more recent explicit occurrences include [12], of course on top of [5].



A GENERAL EXTENSION THEOREM FOR DCPO’S 83

We are thus led to rephrase Bell’s extension principle in a somewhat more

general fashion.

Definition 2.2. Let (E ,6) be a partially ordered class. An extension

pattern (X ,
) on E is given by a class X together with a class relation


 ⊆ X × E satisfying the extension property

∀x ∈ X ∀e ∈ E ∃e′ ∈ E
(
e 6 e′ ∧ x 
 e′

)
.

An element e of E is said to be total if

∀x ∈ X (x 
 e ).

We use extension data as a name for the elements of X .

The intended meaning of an extension pattern is best explained in anal-

ogy with Bell’s principle for a family of functions. Where the latter keeps

track of the domain of a function, general extension data x ∈ X are related

to elements e ∈ E in a similar manner but by means of an arbitrary relation


.2

Lemma 2.3. Let E be a partially ordered class. If e ∈ E is maximal,

then e is total for every extension pattern (X ,
) on E.

Proof. Let e ∈ E be maximal and let x ∈ X . Then there is e′ ∈ E with

e 6 e′ and x 
 e′. Since e is maximal, we actually have e = e′, hence x 
 e.
Therefore x 
 e for all x ∈ X which means that e is total. �

Example 2.4. Let E be a set of partial functions on a set X. This E

is a poset, naturally ordered by inclusion. Consider every element x of X

as extension data and define 
 by

x 
 e iff x ∈ dom(e).

Bell’s extension principle says that this is an extension pattern. However,

for this to go through constructively, in general we need dom(e) to be

a detachable subset of X for every e ∈ E. In fact, this is the prime example

of an extension pattern, and once encounters it under various circumstances

once one sets out to capture specific one-step principles in terms of extension

patterns.

2 Our choice of notation follows the one for Sambin’s Basic Pairs [15] by which is

meant a relation 
 between sets X and S.
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Example 2.5 (“Trivial Pattern”). Let E be a partially ordered class.

By stipulating X = ∅ we get an extension pattern, all elements e ∈ E for

which trivially are total. In particular, if E is a partially ordered class with

extension pattern, then the collection of all total elements need not form

a set. Furthermore, total elements need not be maximal.

Example 2.6 (“Maximal Pattern”). Let E be a partially ordered class

with decidable partial order. This E works as a class of extension data for

itself by way of a definition by cases:

x 
 e iff (x > e→ x = e) and e′ =

{
x if x > e

e otherwise

for all x, e ∈ E . We then indeed have the extension property

e 6 e′ and x 
 e′.

In fact, if x > e, then e′ = x and thus x 
 e′; if x � e, then e′ = e and thus

again x 
 e′. With respect to the relation 
, the total elements for this

pattern are precisely the maximal ones.

Example 2.7. Recall that a partially ordered class E is said to be

directed if every pair of elements has an upper bound, i.e.,

∀x ∈ E ∀y ∈ E ∃e ∈ E
(
x 6 e ∧ y 6 e

)
.

Consider this as extension property for the pattern on E which is defined

by again taking E to be a class of extension data for itself and stipulating

x 
 e iff x 6 e.

An element e of E is total for this pattern if and only if e is the greatest

element of E .

.3 Equivalence

Let (E ,6) be a partially ordered class. From now on, by a directed subset

in E we understand an inhabited subset D of E such that every pair of
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elements of D has an upper bound in D. We say that E is a directed-

complete partially ordered class, for short a dcpo, if E is such that every

directed subset D of E has a least upper bound supD ∈ E [4, 2]. Most

dcpo’s under consideration in this context are made of certain subsets of

a fixed set, ordered by inclusion, for which suprema of directed families

simply are unions. A dcpo E is said to be set-generated if there is a subset

G of E such that, for every e ∈ E ,

Ge = { g ∈ G : g 6 e }

is a directed set with

supGe = e.

Remark 3.1. A directed-complete partially ordered set E is set-gene-

rated, of course: take G = E. Conversely, if we admit the axiom of power

set, if G is a generating set for a (class) dcpo E , then the class P(G) of

all subsets of G is a set, and so is the class D(G) of all directed subsets

of G. Then, still with the power set axiom, being the surjective image of

a function

D(G)→ E , D 7→ supD,

we see that a set-generated dcpo E is a set.

One of the suitable forms of KZL over constructive set theory reads as

follows [1].

KZL Every inhabited set-generated dcpo has a maximal element.

An extension pattern is hidden in many an indirect proof of an extension

theorem by KZL, which provides a maximal element that in fact proves

total. With our general extension theorem we extract the essence of this

method.

GET Every inhabited set-generated dcpo with extension pattern has a to-

tal element.

Proposition 3.2. KZL implies GET.

Proof. Lemma 2.3. �
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By contrast, total elements for an extension pattern need not be maxi-

mal, as was seen above with the trivial pattern in Example 2.5. The notions

of totality and maximality hence do not necessarily coincide—unlike max-

imality, totality may depend on the pattern.

More often than not, there is an explicit method available, the applica-

tion of which provides an extension e′ of a given element e of E by arbitrary

extension data x ∈ X . We denote this extension e′ by f(x, e); indeed, we

then have a class function

f : X × E → E

satisfying the condition

∀x ∈ X ∀e ∈ E
(
e 6 f(x, e) ∧ x 
 f(x, e)

)
.

We say that an extension pattern as such is functional. Whether or not

a pattern is functional solely depends on how extension data relate to ele-

ments e ∈ E , i.e., f is not to be considered as an addendum to the definition

of extension pattern, even though we could have demanded it in the first

place.3 It rather is a requirement on how X and 
 capture the one-step

argument.

fGET Every inhabited set-generated dcpo with functional extension pat-

tern has a total element.

Clearly, GET implies fGET. It is straightforward to show that these

principles are classically equivalent. In fact, by means of fGET, every set-

generated dcpo has a total element for the maximal pattern from Example

2.6, which pattern indeed is functional, provided the partial order is decid-

able. The total element in question then is a maximal one.

As it turns out, with a more refined argument we are able to show

that GET and fGET are equivalent even over constructive set theory. To

this end, we make use of the following variant of the Hausdorff Maximal

Principle for directed (rather than linearly ordered) subsets of a partially

ordered set.

3 It is interesting to note that fGET applies such as to convert every extension pattern

into a functional one. However, in order to code additional information into extension

data requires a certain definition by cases. Below we give an argument that shows GET

and fGET constructively equivalent.
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MDP Every inhabited partially ordered set has a maximal directed subset.

Proposition 3.3. fGET implies MDP.

Proof. Let (E,6) be an inhabited partially ordered set. Consider the

partially ordered class E of all directed subsets of E, ordered by inclusion

(notice that this E refers to a bounded formula). We claim that E is an

inhabited set-generated dcpo. A generating set for E is given by the set G

of all finite directed subsets of E. Indeed, if D ∈ E , then

{D0 ∈ G : D0 ⊆ D }

is a set and it is directed: if D0 and D1 are finite directed subsets of

D, then (being finite) they have a greatest element x ∈ D0 and y ∈ D1,

respectively. Then, since D is directed, there is z ∈ D such that x, y 6 z

and we have D0 ∪D1 ∪ { z } ∈ G as well as D0 ∪D1 ∪ { z } ⊆ D. Moreover,

D =
⋃
{D0 ∈ G : D0 ⊆ D }, since G contains every singleton subset of E,

in particular. Next, if D is a directed subset of E , then
⋃
D ∈ E , whence E

is directed-complete.

Now we describe an extension pattern on E with corresponding relation

being the one from Example 2.6. For the class of extension data we take E
itself and stipulate, for C,D ∈ E ,

C 
 D ≡ (C ⊇ D → C = D ).

Furthermore, there is a class function

f : E × E → P(E), f(C,D) = D ∪ { z ∈ C : C ⊇ D } .

In order to have an extension pattern, we need to verify ran(f) ⊆ E as well

as that for all C,D ∈ E we have

D ⊆ f(C,D) and C 
 f(C,D).

As regards the range of f , we need to show that f(C,D) is directed. If

x, y ∈ f(C,D), then we can distinguish several cases. We may have both

x, y ∈ D in which case nothing needs to be checked, since D is directed.

But if, say, x ∈ { z ∈ C : C ⊇ D }, then C ⊇ D. This implies x, y ∈ C, and

C is directed. Next, by the very definition of f we have D ⊆ f(C,D). So

it remains to show C 
 f(C,D). To this end, suppose that C ⊇ f(C,D).
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Since f(C,D) ⊇ D, we get C ⊇ D and it follows from the definition of f

that f(C,D) = C, as required. By way of fGET, there is an element D ∈ E
which is total for the pattern just defined. This D is a maximal directed

subset of E. �

Proposition 3.4. MDP implies KZL.

Proof. Let E be an inhabited set-generated dcpo and let G be a gener-

ating subset of E . This G is inhabited since E is, and we restrict the partial

order on E to G. According to MDP, there is a maximal directed subset

D of G. Since E is a dcpo, this D has a least upper bound supD ∈ E . We

claim that supD is a maximal element of E . Indeed, if e ∈ E is such that

supD 6 e, then we have an inclusion of sets

D ⊆ { g ∈ G : g 6 e } .

This is because of D ⊆ G and since for every g ∈ D we have

g 6 supD 6 e.

Now take into account that { g ∈ G : g 6 e } is directed by our very as-

sumption on G being a generating set for E . Therefore, by maximality of

D among directed subsets of G, we get

D = { g ∈ G : g 6 e } ,

whence

supD = sup { g ∈ G : g 6 e } = e,

as required. �

Remark 3.5. All the classes considered in this note are supposed to

be predicative. This makes possible the above restriction of the order on E
to the subset G by bounded separation [3, 4], and thus to obtain a partially

ordered set.

Remark 3.6. Under the assumption of the axiom of power set—which

would not have to be assumed, e.g., if classical logic were adopted due to

the presence of exponentiation [3, 4]—all of the above proofs go through

without further ado if set-generated (class) dcpo’s are replaced by dcpo’s

which are sets. A similar remark applies to our treatment of induction

principles in Section 5 below.

Corollary 3.7. KZL, GET, fGET and MDP are equivalent over CZF.
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.4 Application

We place ourselves in CZF + REM in order to make possible a certain

argument by cases. Let R be a ring. In the following, ideals of R and R-

modules are understood to be left ideals and left R-modules, respectively.

Recall that an R-module M is injective if every R-homomorphism A→M

can be extended along injective R-homomorphisms i : A→ B.

A B

M

i

∀
∃

By means of Baer’s criterion, injectivity of a module M can be tested by

considering R-homomorphisms I →M on ideals I of R only.

Baer’s Criterion. Let R be a ring. An R-module M is injective already if

every R-homomorphism I → M , defined on an ideal I of R, extends onto

R.

Proposition 4.1. GET implies Baer’s criterion.

Proof. Let M be an R-module with the property that every R-homo-

morphism I →M , defined on an ideal I of R, extends onto R. Let ϕ : A→
M and let A → B be an injective R-homomorphism; we assume that the

latter is the inclusion mapping and A therefore is a submodule of B. As

in the proof by Zorn’s Lemma (see, e.g., [12, 18]), we consider the set E of

partial extensions of ϕ, ordered by inclusion.

A A′ B

M

ϕ
ϕ′

Of course, E is readily shown to be directed-complete. The one-step

extension principle, which helps to show that a maximal intermediary ex-

tension of ϕ is total, now encodes in an extension pattern for GET as

follows. We have a set X of extension data an element of which is a triple

(ψ, x, ν) ∈ E ×B ×HomR(R,M),
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subject to the condition

ν
∣∣
I(ψ,x)

= ν(ψ, x), (∗)

where

I(ψ, x) = (dom(ψ) : x) = { r ∈ R : rx ∈ dom(ψ) }

and

ν(ψ, x) : I(ψ, x)→M, r 7→ ψ(rx).

The relation 
 ⊆ X × E is then defined by

(ψ, x, ν) 
 ψ′ iff ψ 6= ψ′ or x ∈ dom(ψ′).

In case of (ψ, x, ν) 1 ψ′, we have ψ = ψ′ and x /∈ dom(ψ′), and the one-step

extension χ of ψ′ by (ψ, x, ν) can be constructed as follows (e.g., [18]):

χ : dom(ψ′) +Rx→M, y + rx 7→ ψ′(y) + ν(r).

Then, if ψ is total for this pattern, we can directly verify that it is defined

everywhere on the R-module B. For if x ∈ B, we merely need to consider

the R-homomorphism ν(ψ, x) defined on the ideal I(ψ, x). Due to the

assumption on M , this ν(ψ, x) is extended by some ν ∈ HomR(R,M). We

then have (ψ, x, ν) ∈ X and (ψ, x, ν) 
 ψ by totality, from which we infer

x ∈ dom(ψ). �

The extension pattern with which we have deduced Baer’s criterion was

defined so as to be functional. Alternatively, we could simply have set

X = B and x 
 ψ iff x ∈ dom(ψ)

for all x ∈ B and ψ ∈ E, with E as before. If we then had proceeded as

before, we would have had to choose ν in order to perform the extension

step. The above use of more complex data—here, triples (ψ, x, ν) rather

than only elements x—offers a way around this inasmuch as the choice of

ν is anticipated.

.5 Induction

Back to CZF. A subclass F of a dcpo E is closed if the supremum of every

directed subset of F again belongs to F , in which case F is a dcpo itself.
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If E has a functional extension pattern (X ,
, f) and F moreover is such

that f(x, e) ∈ F whenever x ∈ X and e ∈ F , then the extension pattern

restricts and F has a total element by fGET. The relative version of our

extension theorem then reads as follows.

rfGET Let E be an inhabited set-generated dcpo with functional extension

pattern (X ,
, f) and let F be a closed subclass of E such that

∀x ∈ X ∀e ∈ E ( e ∈ F → f(x, e) ∈ F ). (†)

If F is inhabited and set-generated, then F has a total element.

This is an equivalent form of fGET, of course, because every dcpo may

be considered a closed subclass of itself.

Conversely, a subclass O of E is said to be open if it cannot contain the

supremum of a directed subset D of E unless it meets this D in at least one

element, i.e., if

supD ∈ O → D G O

for every directed subset D of E . Here, we write D G O if the intersection

D ∩O is inhabited.4 Classically speaking, it is easy to see that the notions

of closed and open subset of a dcpo are complementary to each other.

Dualising the relative version of GET results in a principle for induction

on functional extension patterns.

ifGET Let E be a set-generated dcpo with functional extension pattern

(X ,
, f) and let O be an open subclass of E such that

∀x ∈ X ∀e ∈ E ( f(x, e) ∈ O → e ∈ O ). (‡)

If O contains all total elements, then E = O.

Respective forms hold also for extension patterns (X ,
) which need

not be functional. In order to state them in an analogous way, let us write

f(x, e) for the subclass of E consisting of all x-extensions of a given element

e ∈ E , i.e.,

f(x, e) =
{
e′ ∈ E : e 6 e′ ∧ x 
 e′

}
.

In case of a functional pattern, we have f(x, e) ∈ f(x, e), of course. But

the latter moreover includes every total element which might be above e.

The relative version of GET for closed subclasses is immediate.
4 We have adopted this notation from Giovanni Sambin.
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rGET Let E be an inhabited set-generated dcpo with extension pattern

(X ,
) and let F be a closed subclass of E such that

∀x ∈ X ∀e ∈ E ( e ∈ F → f(x, e) ⊆ F ). (†′)

If F is inhabited and set-generated, then F has a total element.

iGET Let E be a set-generated dcpo with extension pattern (X ,
) and

let O be an open subclass of E such that

∀x ∈ X ∀e ∈ E (f(x, e) G O → e ∈ O ). (‡′)

If O contains all total elements, then E = O.

We proceed by showing how these principles relate to each other.

Proposition 5.1.

1. iGET implies GET.

2. ifGET implies fGET.

3. rGET classically implies iGET.

4. rfGET classically implies ifGET.

Proof.

1. Given an extension pattern (X ,
) on E , we consider the subclass

O =
{
e ∈ E : ∃e′ ∈ E ( e 6 e′ ∧ ∀x ∈ X (x 
 e′ ) )

}
of totally extendable elements. This O contains all total elements.

Since O is downwards monotone, i.e.,

∀e, e′ ∈ E ( e 6 e′ ∧ e′ ∈ O → e ∈ O )

it is open (recall that directed subsets are to be inhabited) and it

satisfies (‡′). Thus E = O, whence every element of E is totally

extendable.

2. Employ a similar argument as for the preceding item.
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3. Given an extension pattern (X ,
) on a set-generated dcpo E , let O
be an open subclass of E containing all total elements and such that

(‡′) holds. Working classically, suppose that there is e ∈ E such that

e /∈ O. Consider F = E − O. This F is an inhabited (set-generated,

and even a set by Remark 3.1) closed subclass of E for which (†′)
holds. Therefore, F has a total element, however all of which should

belong to O.

4. Employ a similar argument as for the preceding item. �

We do not know whether there are constructive proofs for the above

classical implications, nor if it can be shown that iGET implies ifGET over

CZF. Anyway, keep in mind that GET and rGET, as well as fGET and

rfGET, are mere reformulations of each other, respectively.

Along with Corollary 3.7 and Proposition 5.1, we see that all principles

considered in this note are classically equivalent:

Corollary 5.2. KZL, GET, rGET, iGET, fGET, rfGET, ifGET and

MDP are equivalent over CZF + REM.

Let us briefly compare our induction principles on extension patterns

with Raoult’s principle of Open Induction [14]. A subclass P of a partially

ordered class (E ,6) is said to be progressive if

∀e ∈ E (∀e′ ∈ E ( e′ > e→ e′ ∈ P ) → e ∈ P ),

where e′ > e is understood to be the conjunction of e 6 e′ and e 6= e′. Here

is a version of Open Induction for set-generated dcpo’s.

OI Let E be a set-generated dcpo. If P is an open and progressive subclass

of E , then P = E .

For instance, let (X ,
) be an extension pattern on E , and let O ⊆ E be

open, contain every total element, and satisfy (‡′). Suppose that totality is

a decidable property on E insofar as that for every element e ∈ E , either e

is total or else there is certain data x ∈ X for which x 1 e. Now, if e ∈ E is

such that e′ ∈ O whenever e′ > e, we also have e ∈ O. For either is e total,

by which e ∈ O is immediate, or there is x ∈ X with x 1 e. In case of the

latter, by extension there is e′ ∈ E such that e < e′ and x 
 e′. It follows

that f(x, e) G O. As O is supposed to satisfy (‡′), we get e ∈ O. This
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shows how OI implies iGET under the above proviso that one can tell for

each e ∈ E whether e is total or has a witness to the opposite. Compare

[10, 13, 16].

.Acknowledgements

We thank the anonymous referee for valuable remarks that helped to im-

prove the present note. We are further indebted to the anonymous referee

of an earlier version of this paper, for pointing out to us a useful argument

towards Proposition 3.3.

The research that has led to this paper was carried out within the

projects “Abstract Mathematics for Actual Computation: Hilbert’s Pro-

gram in the 21st Century” (ID 48138) and “A New Dawn of Intuitionism:

Mathematical and Philosophical Advances” (ID 60842) funded by the John

Templeton Foundation5; the project “Categorical localisation: methods

and foundations” (CATLOC) funded by the University of Verona within

the programme “Ricerca di Base 2015”; as well as within the project “Di-

partimenti di Eccellenza 2018-2022” of the Italian Ministry of Education,

Universities and Research (MIUR). Further research was undertaken when

Schuster was visiting the Munich Center for Mathematical Philosophy upon

kind invitation by Hannes Leitgeb and with a research fellowship “Erneuter

Aufenthalt” by the Alexander-von-Humboldt Foundation. The final version

of this note was prepared when both authors were visiting the Hausdorff

Research Institute for Mathematics during the Trimester Program “Types,

Sets and Constructions”.

.References

[1] P. Aczel, Zorn’s Lemma in CZF, unpublished, 2002.

[2] P. Aczel, Aspects of general topology in constructive set theory, Annals of Pure

and Applied Logic 137:1–3 (2006), 3–29.

[3] P. Aczel and M. Rathjen, Notes on constructive set theory. Technical report, Institut

Mittag-Leffler, 2000/01. Report No. 40.

5 The opinions expressed in this publication are those of the authors and do not

necessarily reflect the views of the John Templeton Foundation.



A GENERAL EXTENSION THEOREM FOR DCPO’S 95

[4] P. Aczel and M. Rathjen, Constructive set theory, book draft, 2010.

[5] J.L. Bell, Zorn’s lemma and complete Boolean algebras in intuitionistic type theo-

ries, The Journal of Symbolic Logic 62:4 (1997), 1265–1279.

[6] U. Berger, A computational interpretation of open induction, In: F. Titsworth,

editor, Proceedings of the 19th Annual IEEE Symposium on Logic in Computer

Science, IEEE Computer Society, 2004, pp. 326–334.

[7] T. Coquand, Constructive topology and combinatorics, In: Constructivity in Com-

puter Science (Summer Symposium San Antonio, TX, June 19–22, 1991 Proceed-

ing), vol. 613 of Lecture Notes in Computer Science, Springer, Berlin and Heidelberg,

1992, pp. 159–164.

[8] R. Diaconescu, Axiom of choice and complementation, Proceedings of the American

Mathematical Society 51:1 (1975), 176–178.

[9] N.D. Goodman and J. Myhill, Choice implies excluded middle, Mathematical Logic

Quarterly 24:461 (1978), 25–30.

[10] M. Hendtlass and P. Schuster, A direct proof of Wiener’s theorem, In: S.B. Cooper,
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