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NOTE OF THE FULL GENERALIZED

MODELS OF THE EXTENSIONS OF A LOGIC

A b s t r a c t. In this short note we show that the full generalized

models of any extension of a logic can be determined from the

full generalized models of the base logic in a simple way. The

result is a consequence of two central theorems of the theory of

full generalized models of sentential logics. As applications we

investigate when the full generalized models of an extension can

also be full generalized models of the base logic, and we prove that

each Suszko filter of a logic determines a Suszko filter of each of

its extensions, also in a simple way.

We use the terminology and notations that are standard in abstract

algebraic logic, as given for instance in [7].

We identify a sentential logic S with a structural (i.e., substitution

invariant) consequence relation `S on the set of formulas of some algebraic
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similarity type. For an algebra A of the same type, the set (closure system)

of all the S-filters of A is denoted by FiSA. For any X ⊆ A we put

(FiSA)X := {G ∈ FiSA : X ⊆ G} and FgA
S (X) :=

⋂
(FiSA)X . Thus,

FgA
S is the associated closure operator of S-filter-generation.

For an algebra A, its set (lattice) of congruences is denoted by CoA,

and given a class K of algebras, CoKA is the set of congruences θ of A such

that A/θ ∈ K; this set is ordered under set inclusion.

The central tool in this note is the Tarski operator, a construction per-

formed on generalized matrices, which is best understood in the context of

the Leibniz operator, a simpler construction performed on logical matrices.

Given an algebra A, a congruence θ ∈ CoA is compatible with a set

F ⊆ A when for every a, b ∈ A, if 〈a, b〉 ∈ θ and a ∈ F , then b ∈ F .

The largest of all congruences of A compatible with F always exists and

is known as the Leibniz congruence of F ; it is denoted by ΩAF . Then, θ

is compatible with F if and only if θ ⊆ ΩAF . Notice that these notions

depend only on the algebraic structure of A. A matrix 〈A, F 〉 is reduced

when ΩAF = IdA. The Leibniz operator is the map F 7→ ΩAF ; its

significance for the algebraic study of a logic S appears when its source

is restricted to the F ∈ FiSA. The properties of this restricted operator

have been exploited in the last decades in several directions, originating a

classification of logics called the Leibniz hierarchy [6, 7].

A generalized matrix, or g-matrix for short, is a pair 〈A,C 〉, where A

is an algebra and C is a closure system over A. The Tarski congruence of

the generalized matrix is

∼
Ω〈A,C 〉 =

∼
ΩAC :=

⋂
F∈C

ΩAF. (1)

A g-matrix is reduced when
∼
ΩAC = IdA. The Tarski operator is the

map C 7→ ∼
ΩAC . These notions have parallel properties to those of the

Leibniz-related ones. Again, their significance for a logic S resides in their

properties for the g-matrices that are models of the logic in the following

sense: A g-matrix 〈A,C 〉 is a generalized model (g-model for short) of a

logic S when C ⊆ FiSA.

A truly general definition of the notion of the algebraic counterpart of

a logic S is the class AlgS of the algebraic reducts of the reduced g-models

of S (see [7, Section 5.4] for alternative definitions and a discussion). This

class turns out to coincide with other classes traditionally associated with a
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logic, under natural restrictions: for instance, for protoalgebraic logics [4, 6]

it coincides with the class Alg∗S of algebraic reducts of the reduced matrix

models of S, and for algebraizable logics [5] it coincides with their equivalent

algebraic semantics.

Among the g-models of a logic there are some of special importance to

abstract algebraic logic. The basic full g-models of S are the g-models of

the form 〈A,FiSA〉, that is, the “largest” g-models on the corresponding

algebra. In some sense, these are the closest “images” of the logic (viewed

as the closure system of its theories) on the algebra A. One of the lines

of research of abstract algebraic logic is the investigation of the properties

of a logic that are inherited by its basic full g-models; examples are fini-

tarity, the presence of theorems, the deduction-detachment theorem, etc.

(see [7, Section 5.2] for details). Moreover, those of these properties that

are preserved under strict surjective homomorphisms between g-matrices

also hold for the so-called full generalized models of a logic; these are the

g-matrices 〈A,C 〉 that are inverse images of basic full g-models of the logic

by strict surjective homomorphisms, that is, such that C = h−1(FiSB) for

some algebra B and some surjective h : A→ B.

The class of all full g-models of a logic S is denoted by FGModS. The

set of full g-models of S over a fixed algebra A is denoted by FGModSA.

One can prove that this set is a complete lattice when ordered under the

set inclusion relation between the corresponding closure systems, so that

the infimum of a family {〈A,Ci〉 : i ∈ I} ⊆ FGModSA is the g-matrix

〈A,
⋂

i∈ICi〉; to abbreviate, we say that FGModSA is “closed under inter-

sections”.

AlgS is also the class of algebraic reducts of the reduced full g-models

of S; since these turn out to be basic, they are exactly the g-matrices of

the form 〈A,FiSA〉 with A ∈ AlgS.

The theory of full g-models was started in the first edition of [9]; further

details can be found in [7, Chapter 5], [10] and [11].

In this note we will only need to know two of their properties. First,

the following interesting characterization ([9, Theorem 2.14]; see also [7,

Proposition 5.94]).

Proposition 1. A generalized matrix 〈A,C 〉 is a full g-model of a logic

S if and only if C =
{
F ∈ FiSA :

∼
ΩAC ⊆ ΩAF

}
.

Notice that, in general, from the definition (1) of the Tarski congruence
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it follows that
∼
ΩAC ⊆ ΩAF for any closure system C and any F ∈ C ;

moreover, since full g-models are g-models, they satisfy that C ⊆ FiSA.

Thus, Proposition 1 tells us that a g-model of S is full if and only if its

closure system is as large as it can be, given its Tarski congruence. This

gives some sense to the term “full”, and highlights that full g-models are

uniquely determined by their own Tarski congruence; that is, the map

〈A,C 〉 7→ ∼
ΩAC is one-to-one over full g-models of a given logic S. But

there is more. One of the central results of the theory is the so-called

“Isomorphism Theorem” ([9, Theorem 2.30]; see also [7, Theorem 5.95]).

Proposition 2. For any logic S and any algebra A, the Tarski operator

induces a dual order isomorphism from FGModSA to CoAlgSA. The dual

isomorphism is given by the map 〈A,C 〉 7→ ∼
ΩAC , and its inverse is the

map θ 7→
〈
A,
{
F ∈ FiSA : θ ⊆ ΩAF

}〉
.

One of the most remarkable aspects of this theorem is its universal

validity (in contrast, for instance, to the fact that the Leibniz operator is

an isomorphism over FiSA only for a weakly algebraizable S).

The determination of the full g-models of a logic, and the quest to char-

acterize them in terms of relevant metalogical properties of the logic, has

been an important direction of research in abstract algebraic logic. To men-

tion just a couple of examples, the full g-models of the implication fragment

of intuitionistic logic are characterized by the deduction-detachment the-

orem [7, Example 5.91], and those of Belnap-Dunn’s four valued logic are

characterized by the ordinary Gentzen-style rules of conjunction, disjunc-

tion, weak contraposition and double negation, but also by conditions of a

semantical flavour that mimic the definition of the logic [7, Example 5.92].

An issue that has not been investigated up to now is whether there is

some relation between the full g-models of a logic and those of its extensions.

If S,S ′ are logics over the same language, S ′ is an extension of S when

`S ⊆ `S′ or, equivalently, when every theory of S ′ is a theory of S; this fact

is denoted by S 6 S ′. This situation at the level of the formula algebra

is reflected at the algebraic level in the fact that S 6 S ′ if and only if

FiS′A ⊆ FiSA for every algebra A.

Our purpose is to show that, surprisingly, a parallel though more com-

plicated situation appears concerning the full g-models of the two logics.

In this case, FGModS′A is not a subset of FGModSA, but each of the

members of the former is given by a subset of a member of the latter, of a
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fixed form, namely the intersection of (the closure system of) this one with

FiS′A.

Theorem 3. Let S,S ′ be two logics such that S 6 S ′, and let A be any

algebra. Then 〈A,C 〉 is a full g-model of S ′ if and only if there exists a full

g-model 〈A,D〉 of S such that C = D ∩ FiS′A.

Moreover, the D can be so chosen that
∼
ΩAD =

∼
ΩAC .

In symbols, FGModS ′ =
{
〈A,D ∩ FiS′A〉 : 〈A,D〉 ∈ FGModS

}
.

Proof. Assume first that 〈A,C 〉 ∈ FGModS ′. By Proposition 1, this

means that C =
{
F ∈ FiS′A :

∼
ΩAC ⊆ ΩAF

}
. Define

D := {F ∈ FiSA :
∼
ΩAC ⊆ ΩAF}. (2)

Clearly, C ⊆ D ∩ FiS′A, because FiS′A ⊆ FiSA. Conversely, if F ∈
D ∩ FiS′A, it follows directly that F ∈ C . Hence, C = D ∩ FiS′A
as wanted. Moreover, the definition (1) of the Tarski operator implies

that it is anti-monotonic on the closure systems; in this case, since C ⊆
D ,

∼
ΩAD ⊆ ∼

ΩAC . On the other hand, by (2),
∼
ΩAC ⊆ ΩAF for every

F ∈ D ; using (1) to define
∼
ΩAD , this implies that

∼
ΩAC ⊆ ∼

ΩAD . Thus,
∼
ΩAD =

∼
ΩAC , as announced. Now (2) can be rewritten as D = {F ∈

FiSA :
∼
ΩAD ⊆ ΩAF}, and this tells us by Proposition 1 that 〈A,D〉 ∈

FGModS, as wanted. This proves the implication from left to right and the

subsequent observation.

In order to prove the converse, assume that 〈A,D〉 ∈ FGModS and take

C := D ∩ FiS′A. We need only prove that 〈A,C 〉 ∈ FGModS ′, and by

Proposition 1 this amounts to showing that

C = {F ∈ FiS′A :
∼
ΩAC ⊆ ΩAF}. (3)

If F ∈ C , obviously F ∈ FiS′A, and, as observed before as a general

property,
∼
ΩAC ⊆ ΩAF . Conversely, let F ∈ FiS′A be such that

∼
ΩAC ⊆

ΩAF . Since C ⊆ D , by the anti-monotonicity of the Tarski operator,
∼
ΩAD ⊆ ∼

ΩAC , and thus
∼
ΩAD ⊆ ΩAF . Since 〈A,D〉 is a full g-model of S

and F ∈ FiS′A ⊆ FiSA, it follows by Proposition 1 that F ∈ D . So, F ∈
C . This shows (3), and thus completes the proof that 〈A,C 〉 ∈ FGModS ′.

2

This characterization is especially interesting when S ′ is the extension

of S given by some concrete set of axioms or inference rules; in this case,
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the full g-models of S ′ are obtained by taking the full g-models of S and

keeping the S-filters that are closed under those axioms or inference rules.

The formulation of Theorem 3 stresses that the D in the statement

need not be unique. Indeed, in the second part of the proof, given D and

having defined C := D ∩ FiS′A, it is not possible in general to prove that
∼
ΩAD =

∼
ΩAC ; but applying the construction in the first part of the proof

to this C one would find another D ′ such that
∼
ΩAD ′ =

∼
ΩAC . A concrete,

very simple example of this situation is obtained by considering IPC, in-

tuitionistic propositional logic, and CPC, classical propositional logic. Cer-

tainly IPC 6 CPC, and since they are (weakly) algebraizable logics, we

know how their full g-models look like [7, Theorem 6.117]: they have the

form 〈A, (FiSA)F 〉 for an arbitrary F ∈ FiSA, for S ∈ {IPC, CPC}. Now,

take the 3-element Heyting algebra with universe A := {0, a, 1} as A. If

C := {A} ,D :=
{
{a, 1} , A

}
and D ′ := {A}, then 〈A,C 〉 is a full g-model

of CPC and both 〈A,D〉 and 〈A,D ′〉 are full g-models of IPC. Since A is

the only CPC-filter of A, we have that D ∩ FiCPCA = D ′ ∩ FiCPCA = C .

Clearly, the second part of the proof gives D 7→ C , and
∼
ΩAD identifies

only a and 1, while
∼
ΩAC is the total relation on A. On the other hand,

it is easy to check that the first part of the proof gives C 7→ D ′ and that
∼
ΩAC =

∼
ΩAD ′, as expected.

It is thus natural to wonder when is this correspondence unique. The

answer is that this happens if and only if the two logics share the same

algebraic counterpart.

Theorem 4. Let S,S ′ be two logics such that S 6 S ′. The following

conditions are equivalent.

(i) AlgS = AlgS ′.

(ii) For every algebra A, the set FGModSA is order isomorphic to the

set FGModS′A, the isomorphism is given by the map 〈A,D〉 7→
〈A,D ∩ FiS′A〉, and it is such that

∼
ΩAD =

∼
ΩA(D ∩ FiS′A).

Proof. (i)⇒ (ii): We apply the Isomorphism Theorem (Proposition 2)

to each of the logics, first directly to S and then in the reverse direction to

S ′. We obtain two dual order isomorphisms:

FGModSA ∼=D CoAlgSA CoAlgS′A ∼=D FGModS′A

〈A,D〉 7→ ∼
ΩAD θ 7→

〈
A,
{
F ∈ FiS′A : θ ⊆ ΩAF

}〉
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The assumption in (i) implies that CoAlgSA = CoAlgS′A, and therefore we

can compose the two dual order isomorphisms and obtain an (ordinary)

order isomorphism from FGModSA to FGModS′A, given by the map

〈A,D〉 7−→
〈
A,
{
F ∈ FiS′A :

∼
ΩAD ⊆ ΩAF

}〉
.

Since 〈A,D〉 is a full g-model of S, by Proposition 1 we know that D =

{F ∈ FiSA :
∼
ΩAD ⊆ ΩAF}. Therefore, using that FiS′A ⊆ FiSA,

we conclude that the closure system in the rightmost g-matrix is exactly

D ∩FiS′A, as wanted. Finally, Proposition 2 again, applied to D ∩FiS′A,

directly gives that
∼
ΩAD =

∼
ΩA(D ∩ FiS′A).

(ii)⇒ (i): From the assumption that S 6 S ′ it follows that AlgS ′ ⊆ AlgS
and that FiS′A ⊆ FiSA for every A. Now let A ∈ AlgS. This means that

〈A,FiSA〉 ∈ FGModSA and
∼
ΩA(FiSA) = IdA. Now, FiSA ∩ FiS′A =

FiS′A, so that, by the last point in the assumption in (ii),
∼
ΩA(FiS′A) =

∼
ΩA(FiSA) = IdA. But this implies that A ∈ AlgS ′. 2

By inspection of the proof of Theorem 3 we can see that, under the

assumption of (i) in Theorem 4, the first map defined in Theorem 3 is

exactly the inverse of the one given in (ii) of Theorem 4.

It is interesting to notice that the situation described in this theorem

cannot appear when the logic S is truth-equational, for there can be no

proper extension S ′ of a truth-equational logic S such that AlgS = AlgS ′.
The reason lies in the fact that the extensions of a truth-equational logic S
are truth-equational as well, and have the same set τ of defining equations

as S. Therefore, if S is truth-equational, S 6 S ′ and AlgS = AlgS ′, then

the two logics are the τ -assertional logic of the same class of algebras,

and therefore S and S ′ are equal. Proposition 7 below describes another

assumption that leads to the same conclusion.

One general situation where the above results apply is that of the pairs

of an arbitrary logic S and its strong version S+, a notion introduced

and studied in [1, 3]. It may be defined, among several ways, as the logic

determined by the class of all matrices whose filter is the smallest S-filter on

the corresponding algebra. The quoted publications show that the logic S+

is an extension of S with a privileged status among all its extensions, and

Theorem 3 tells us how to find its full g-models from those of S. Moreover,

it often happens, although this is not a general fact, that AlgS = AlgS+;

in these cases, the stronger Theorem 4 applies and the correspondence
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between the full g-models of S and those of S+ is optimal. Several notable,

large classes of examples of this situation are reviewed in [3], for instance

those where S is the logic that preserves degrees of truth with respect to

an arbitrary variety of commutative integral residuated lattices, and S+ is

the logic that preserves truth with respect to the same variety. Notice that

in those cases the logic S is not truth-equational while the logic S+ is so.

Now we draw some consequences of the main results. The first one is

mainly of a methodological interest.

Proposition 5. Let S and S ′ be two logics such that S 6 S ′ and let A

be any algebra. The following conditions are equivalent.

(i) 〈A,FiS′A〉 is a full g-model of S.

(ii) Every full g-model of S ′ over A is a full g-model of S.

Proof. (i)⇒ (ii): By Theorem 3, every full g-model of S ′ on A has the

form 〈A,D ∩FiS′A〉 for some full g-model 〈A,D〉 of S. By (i) and the fact

that FGModSA is closed under intersections we obtain that 〈A,D∩FiS′A〉
is also a full g-model of S. Trivially, (ii)⇒ (i), because 〈A,FiS′A〉 is always

a full g-model of S ′. 2

Observe that a proof of the (weaker) fact that condition (i) holds for

all algebras if and only if condition (ii) holds for all algebras can be easily

obtained from the most elementary definitions and general properties of

the notion of a full g-model; moreover, it is also easy to see that these

global properties hold if and only if they hold in the algebras in the class

AlgS. Thus, the main interest of Proposition 5 is its limitation to a single,

arbitrary algebra.

As a consequence of Proposition 5, if S ′ is an extension of S and every

basic full g-model of S ′ is a full g-model of S, then the same holds for all

full g-models of S ′. One may wonder how common this property is. The

following partial result provides a very large class of examples.

Proposition 6. Let S and S ′ be two logics such that S 6 S ′. Assume

moreover that S is truth-equational and that S ′ is an axiomatic extension

of S. Then all full g-models of S ′ are full g-models of S.

Proof. By Proposition 5 we need just check that for an arbitrary A,

the g-matrix 〈A,FiS′A〉 is a full g-model of S. Take F◦ :=
⋂
FiS′A ∈
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FiS′A ⊆ FiSA. We claim that FiS′A = (FiSA)F◦ . By construction we

have that FiS′A ⊆ (FiSA)F◦ . Conversely, assume that F ∈ FiSA with

F◦ ⊆ F . Since F◦ is an S ′-filter, h(ϕ) ∈ F◦ ⊆ F for all formulas ϕ in the set

of axioms defining S ′ out of S and every evaluation h into A. Therefore,

F is also an S ′-filter, i.e., F ∈ FiS′A. This proves the claim. Now, the

assumption that S is truth-equational implies [7, Theorem 6.104] that any

g-matrix of the form 〈A, (FiSA)F◦〉 with F◦ ∈ FiSA is a full g-model of

S. Therefore, 〈A,FiS′A〉 is a full g-model of S, as wanted. 2

Notice that if S is truth-equational, then all its extensions are truth-

equational as well. Therefore, this result encompasses a large class of pairs

of logics, one being an axiomatic extension of the other, and the two being

truth-equational; in particular, this includes the cases where the two are al-

gebraizable, such as that of IPC and CPC used before as a counterexample

of another point, and many others.

The property is however not universal. In fact, we can show that in the

domain of application of Theorem 4 (which, as already commented, is very

large) the property never holds (save for the trivial case S = S ′).

Proposition 7. Let S and S ′ be two logics such that S 6 S ′ and

AlgS = AlgS ′. If the full g-models of S ′ are full g-models of S, then S = S ′.

Proof. Let A be any algebra. We know that 〈A,FiSA〉 is a full

g-model of S and that 〈A,FiS′A〉 is a full g-model of S ′. By the assump-

tion, 〈A,FiS′A〉 is also a full g-model of S. By Theorem 4,
∼
ΩA(FiSA) =

∼
ΩA(FiSA ∩ FiS′A). Since FiSA ∩ FiS′A = FiS′A, we conclude that
∼
ΩA(FiSA) =

∼
ΩA(FiS′A). Thus, we have two full g-models of S on the

same algebra with the same Tarski congruence. By the Isomorphism The-

orem (Proposition 2), they must be equal, i.e., FiSA = FiS′A. Since A is

arbitrary, this implies that S = S ′. 2

There are other examples where the conclusion of Proposition 6 does not

hold and are not covered by Proposition 7. To mention just one, consider

Positive Modal Logic PML as analyzed in [2, Section 4] and its strong

version PML+, which turns out to be the extension of PML with the Rule

of Necessitation x ` �x. It is proved that AlgPML 6= AlgPML+. The

logic PML is fully selfextensional, which means that all its full g-models

have the property of congruence (see [7, Chapter 7]). Now, if all the full

g-models of PML+ were full g-models of PML, then they would satisfy
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the property of congruence, and as a consequence PML+ would be fully

selfextensional as well. But this is not the case; in fact, PML+ is not even

selfextensional, a much weaker property.

The second application regards the Suszko filters of a logic. This notion

has been introduced in [1, 2], where it is studied in depth, as an instance

of more general notions concerning compatibility operators, and for its rel-

evance in several characterizations of some classes of the Leibniz hierarchy.

Here, all we need to know about it is the following characterization [2,

Theorem 5.13] in terms of the full g-models of the logic of a particular

kind.

Proposition 8. Let S be a logic, and F ∈ FiSA. Then F is a Suszko

S-filter if and only if the g-matrix 〈A, (FiSA)F 〉 is a full g-model of S.

Notice that not all full g-models of a logic need to be given by a closure

system that is a principal filter in the lattice FiSA; actually, this property

characterizes protoalgebraic logics [7, Theorem 6.39]. In general, a logic

will have as many Suszko filters as full g-models of this kind. A logic is

truth-equational if and only if all its filters are Suszko filters, i.e., if and only

if all its filters define a full g-model in the above way [7, Theorem 6.104].

The characterization of the full g-models of the extensions of a logic in

Theorem 3 allows us to obtain the next result, relating the Suszko filters

of a logic with those of its extensions.

Theorem 9. Let S,S ′ be two logics such that S 6 S ′ and let A be

any algebra. For each F ∈ FiSA define G := FgA
S′(F ). If F is a Suszko

S-filter, then G is a Suszko S ′-filter. If moreover AlgS = AlgS ′, then
∼
ΩA

(
(FiSA)F ) =

∼
ΩA

(
(FiS′A)G).

Proof. By Proposition 8 the g-matrix 〈A, (FiSA)F 〉 is a full g-model

of S. If we put C := FiS′A ∩ (FiSA)F , then by Theorem 3 the g-matrix

〈A,C 〉 is a full g-model of S ′. But, since FiS′A ⊆ FiSA, it is clear

that C = {H ∈ FiS′A : F ⊆ H}, so that G = FgA
S′(F ) =

⋂
C , and

then actually C = {H ∈ FiS′A : G ⊆ H} = (FiS′A)G. Now, we have

that the g-matrix 〈A, (FiS′A)G〉 is a full g-model of S ′. By Proposi-

tion 8 applied to S ′, we conclude that G is a Suszko S ′-filter. Finally,

if we add the assumption that AlgS = AlgS ′, then we can apply Theo-

rem 4, obtaining that
∼
ΩA

(
(FiSA)F

)
=

∼
ΩA

(
(FiSA)F∩FiS′A

)
. Therefore,

∼
ΩA

(
(FiSA)F

)
=

∼
ΩA

(
(FiS′A)G

)
. 2
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Recall that for protoalgebraic logics the notion of a Suszko filter coin-

cides with the older one of a Leibniz filter [8]; thus, in this case we would

obtain the analogue of Theorem 9 for Leibniz filters of a protoalgebraic

logic.
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