REPORTS ON MATHEMATICAL LOGIC 51 (2016), 91–103 doi:10.4467/20842589RM.16.007.5284

George VOUTSADAKIS

CATEGORICAL ABSTRACT ALGEBRAIC LOGIC WEAKLY REFERENTIAL π-INSTITUTIONS

A b s t r a c t. Wójcicki introduced in the late 1970s the concept of a referential semantics for propositional logics. Referential semantics incorporate features of the Kripke possible world semantics for modal logics into the realm of algebraic and matrix semantics of arbitrary sentential logics. A well-known theorem of Wójcicki asserts that a logic has a referential semantics if and only if it is selfextensional. A second theorem of Wójcicki asserts that a logic has a weakly referential semantics if and only if it is weakly selfextensional. We formulate and prove an analog of this theorem in the categorical setting. We show that a π -institution has a weakly referential semantics if and only if it is weakly self-extensional.

Received 27 November 2015

To Don Pigozzi this work is dedicated on the occasion of his 80th Birthday. 2010 AMS Subject Classification: 03G27

Keywords and phrases: Referential Logics, Selfextensional Logics, Referential Semantics, Referential π -institutions, Selfextensional π -institutions.

1. Introduction

Let $\mathcal{L} = \langle \Lambda, \rho \rangle$ be a logical signature/algebraic type, i.e., a set of logical connectives/operation symbols Λ with attached finite arities given by the function $\rho : \Lambda \to \omega$. Let, also, V be a countably infinite set of propositional variables and T a set of reference/base points. Wójcicki [5] defines a **referential algebra** A to be an \mathcal{L} -algebra with universe $A \subseteq \{0, 1\}^T$. Such an algebra determines the consequence operation C^A on $\operatorname{Fm}_{\mathcal{L}}(V)$ by setting, for all $X \cup \{\alpha\} \subseteq \operatorname{Fm}_{\mathcal{L}}(V), \alpha \in C^A(X)$ iff, for all $h : \operatorname{Fm}_{\mathcal{L}}(V) \to A$ and all $t \in T$,

 $h(\beta)(t) = 1$, for all $\beta \in X$, implies $h(\alpha)(t) = 1$.

Moreover, Wójcicki calls a propositional logic $S = \langle \mathcal{L}, C \rangle$, where $C = C^{A}$, for a referential algebra A, a **referential** (or **referentially truth-functional**) **propositional logic**.

Wójcicki shows in [5] that, given a class K of referential algebras, there exists a single referential algebra A, such that $C^{\mathsf{K}} \coloneqq \bigcap_{\mathsf{K}\in\mathsf{K}} C^{\mathsf{K}} = C^{\mathsf{A}}$. Thence follows that a propositional logic is referential if and only if it is defined by a class of referential algebras.

Given a propositional logic $S = \langle \mathcal{L}, C \rangle$, the **Frege** or **interderivability relation** of S (see, e.g., Definition 2.37 of [3]), denoted $\Lambda(S)$, is the equivalence relation on $\operatorname{Fm}_{\mathcal{L}}(V)$, defined, for all $\alpha, \beta \in \operatorname{Fm}_{\mathcal{L}}(V)$, by

$$\langle \alpha, \beta \rangle \in \Lambda(\mathcal{S})$$
 iff $C(\alpha) = C(\beta)$.

The **Tarski congruence** $\widetilde{\Omega}(S)$ of S (see [3]) is the largest congruence relation on $\mathbf{Fm}_{\mathcal{L}}(V)$ that is compatible with all theories of S. The Tarski congruence is a special case of the **Suszko congruence** $\widetilde{\Omega}^{S}(T)$ associated with a given theory T of S, which is defined as the largest congruence on $\mathbf{Fm}_{\mathcal{L}}(V)$ that is compatible with all theories of S that contain the given theory T (see [2]). In fact, by definition, $\widetilde{\Omega}(S) = \widetilde{\Omega}^{S}(C(\emptyset))$, i.e., the Tarski congruence of S is the Suszko congruence associated with the set of theorems of the logic S. Font and Jansana (see p.17 of [3]), extending Blok and Pigozzi's [1] well-known characterization of the *Leibniz congruence* $\Omega(T)$ associated with a theory T of a sentential logic, have shown that, for all $\alpha, \beta \in \operatorname{Fm}_{\mathcal{L}}(V)$,

$$\langle \alpha, \beta \rangle \in \widetilde{\Omega}(\mathcal{S})$$
 iff for all $\varphi(p, \vec{q}) \in \operatorname{Fm}_{\mathcal{L}}(V)$,
 $C(\varphi(\alpha, \vec{q})) = C(\varphi(\beta, \vec{q})).$

Whereas $\widetilde{\Omega}(\mathcal{S}) \subseteq \Lambda(\mathcal{S})$, for every propositional logic \mathcal{S} , the reverse inclusion does not hold in general. A propositional logic is called **selfextensional** in [5] if $\Lambda(\mathcal{S}) \subseteq \widetilde{\Omega}(\mathcal{S})$. In fact, Wójcicki shows in what has become a fundamental theorem in the theory of referential semantics, Theorem 2 of [5], that a propositional logic is referential if and only if it is self-extensional.

Wójcicki in [6] revisited the equivalence between referentiality and selfextensionality, proving a "weak version" by replacing the entirety of theories (equivalently, the closure operator C) by the set of theorems. More precisely, Wójcicki considers in [6] (see the Theorem in [6]) propositional logics $S = \langle \mathcal{L}, C \rangle$, where $C(\emptyset) = C^{\mathbf{A}}(\emptyset)$, for a referential algebra \mathbf{A} . We call such logics weakly referential logics.

Given a propositional logic $S = \langle \mathcal{L}, C \rangle$, the **Leibniz congruence** $\Omega(T)$ of a theory T of S (see [1]) is the largest congruence relation on $\mathbf{Fm}_{\mathcal{L}}(V)$ that is compatible with T. Blok and Pigozzi's well-known characterization of the Leibniz congruence $\Omega(T)$ (see p. 11 of [1]) asserts that, for all $\alpha, \beta \in \mathrm{Fm}_{\mathcal{L}}(V)$,

$$\begin{aligned} \langle \alpha, \beta \rangle \in \Omega(T) & \text{iff for all } \varphi(p, \vec{q}) \in \operatorname{Fm}_{\mathcal{L}}(V), \\ \varphi(\alpha, \vec{q}) \in T & \text{iff } \varphi(\beta, \vec{q}) \in T. \end{aligned}$$

A propositional logic $S = \langle \mathcal{L}, C \rangle$ is called **weakly selfextensional** in [6] if, for all $\alpha, \beta \in \operatorname{Fm}_{\mathcal{L}}(V)$,

$$\alpha, \beta \in C(\emptyset)$$
 implies $\langle \alpha, \beta \rangle \in \Omega(C(\emptyset))$.

In the Theorem of [6], Wójcicki shows that a propositional logic is weakly referential if and only if it is weakly self-extensional.

2. π -Institutions and Closure Systems

Let **Sign** be a category and SEN : **Sign** \rightarrow **Set** a **Set**-valued functor. The **clone of all natural transformations on** SEN (see Section 2 of [8]) is the category U with collection of objects {SEN^{α} : α an ordinal} and collection of morphisms τ : SEN^{α} \rightarrow SEN^{β} β -sequences of natural transformations τ : SEN^{α} \rightarrow SEN. Composition of $\langle \tau_i : i < \beta \rangle$: SEN^{α} \rightarrow SEN^{β} β with $\langle \sigma_j : j < \gamma \rangle$: SEN^{β} \rightarrow SEN^{γ}

$$\operatorname{SEN}^{\alpha} \xrightarrow{\langle \tau_i : i < \beta \rangle} \operatorname{SEN}^{\beta} \xrightarrow{\langle \sigma_j : j < \gamma \rangle} \operatorname{SEN}^{\gamma}$$

is defined by

$$\langle \sigma_j : j < \gamma \rangle \circ \langle \tau_i : i < \beta \rangle = \langle \sigma_j (\langle \tau_i : i < \beta \rangle) : j < \gamma \rangle.$$

A subcategory of this category with objects all objects of the form SEN^k , $k < \omega$, and such that:

• it contains all projection morphisms $p^{k,i} : \text{SEN}^k \to \text{SEN}, i < k, k < \omega$, with $p_{\Sigma}^{k,i} : \text{SEN}(\Sigma)^k \to \text{SEN}$ given by

$$p_{\Sigma}^{k,i}(\vec{\phi}) = \phi_i, \text{ for all } \vec{\phi} \in \text{SEN}(\Sigma)^k$$

• for every family $\{\tau_i : \operatorname{SEN}^k \to \operatorname{SEN} : i < l\}$ of natural transformations in N, $\langle \tau_i : i < l \rangle : \operatorname{SEN}^k \to \operatorname{SEN}^l$ is also in N,

is referred to as a category of natural transformations on SEN.

Consider an **algebraic system** $F = \langle Sign, SEN, N \rangle$, i.e., a triple consisting of

- a category **Sign**, called the **category of signatures**;
- a functor SEN : Sign → Set, called the sentence functor;
- a category of natural transformations N on SEN.

A π -institution based on F is a pair $\mathcal{I} = \langle F, C \rangle$, where $C = \{C_{\Sigma}\}_{\Sigma \in |\mathbf{Sign}|}$ is a closure system on SEN, i.e., a $|\mathbf{Sign}|$ -indexed collection of closure operators $C_{\Sigma} : \mathcal{P}SEN(\Sigma) \to \mathcal{P}SEN(\Sigma)$, such that, for all $\Sigma_1, \Sigma_2 \in |\mathbf{Sign}|$, all $f \in \mathbf{Sign}(\Sigma_1, \Sigma_2)$ and all $\Phi \subseteq SEN(\Sigma_1)$,

$$\operatorname{SEN}(f)(C_{\Sigma_1}(\Phi)) \subseteq C_{\Sigma_2}(\operatorname{SEN}(f)(\Phi)).$$

This condition is sometimes referred to as **structurality**. In this context, F is also referred to as the **base algebraic system**. Given a π -institution \mathcal{I} , a **theory family** $T = \{T_{\Sigma}\}_{\Sigma \in |\mathbf{Sign}|}$ is a $|\mathbf{Sign}|$ -indexed collection of subsets $T_{\Sigma} \subseteq \mathrm{SEN}(\Sigma)$, closed under C_{Σ} , i.e., such that $C_{\Sigma}(T_{\Sigma}) = T_{\Sigma}$, for all $\Sigma \in |\mathbf{Sign}|$. The collection of all theory families of \mathcal{I} is denoted by ThFam(\mathcal{I}). Ordered by signature-wise inclusion, it forms a complete lattice **ThFam**(\mathcal{I}) = (ThFam(\mathcal{I}), \leq).

Note, also, that, given a base algebraic system F, the collection of all closure systems based on F is closed under signature-wise intersections and, hence, forms a complete lattice under the signature-wise ordering \leq :

$$C^{1} \leq C^{2}$$
 iff for all $\Sigma \in |\mathbf{Sign}|$ and all $\Phi \subseteq \mathrm{SEN}(\Sigma)$,
 $C_{\Sigma}^{1}(\Phi) \subseteq C_{\Sigma}^{2}(\Phi).$

3. Referential π -Institutions

We assume a base algebraic system $\mathbf{F} = \langle \mathbf{Sign}, \mathrm{SEN}, N \rangle$. Consider also an N-algebraic system $\mathbf{A} = \langle \mathbf{Sign}', \mathrm{SEN}', N' \rangle$, i.e., one such that there exists a surjective functor $': N \to N'$, preserving all projection natural transformations and, as a consequence, all arities of the natural transformations involved. We denote by $\sigma': \mathrm{SEN}'^k \to \mathrm{SEN}'$ the natural transformation in N' that is the image of $\sigma: \mathrm{SEN}^k \to \mathrm{SEN}$ in N under '.

More specifically, we want to focus on *N*-algebraic systems $\mathbf{A} = \langle \mathbf{Sign}', \mathbf{SEN}'_s, N' \rangle$, where \mathbf{SEN}'_s is a simple subfunctor (having the same domain) of the inverse powerset functor $\mathcal{P}\mathbf{SEN}' : \mathbf{Sign}' \to \mathbf{Set}$ of a contravariant functor $\mathbf{SEN}' : \mathbf{Sign}' \to \mathbf{Set}^{\mathsf{op}}$. For $\Sigma \in |\mathbf{Sign}'|$, the elements of $\mathbf{SEN}'(\Sigma)$ in this context are referred to as Σ -reference or Σ -base points (see, e.g., [9]). An *N*-morphism $\langle F, \alpha \rangle : \mathbf{SEN} \to \mathbf{SEN}'_s$ will be viewed as a valuation of sentences of \mathbf{SEN} in the following way: For all $\Sigma \in |\mathbf{Sign}|$ and all $\varphi \in \mathbf{SEN}(\Sigma)$, $\varphi \in \mathbf{SEN}(\Sigma)$ is **true at** $p \in \mathbf{SEN}'(F(\Sigma))$ **under** $\langle F, \alpha \rangle$ iff $p \in \alpha_{\Sigma}(\varphi)$.

An *N*-algebraic system of this special form is called a **referential** *N*-algebraic system. By slightly abusing terminology, we use the same term to refer to an (interpreted) referential *N*-algebraic system, which is a pair $\mathcal{A} = \langle \mathbf{A}, \langle F, \alpha \rangle \rangle$, with $\langle F, \alpha \rangle : \mathbf{F} \to \mathbf{A}$ an algebraic system morphism, also referred to as an *N*-morphism. We sometimes drop the subscript *s* when referring to the subfunctor to make notation less cumbersome, provided that this is unlikely to cause any confusion.

Let $\mathbf{F} = \langle \mathbf{Sign}, \mathrm{SEN}, N \rangle$ be a base algebraic system and $\mathcal{A} = \langle \mathbf{A}, \langle F, \alpha \rangle \rangle$ an interpreted referential *N*-algebraic system. Then \mathcal{A} determines a closure system $C^{\mathcal{A}}$ on SEN (or on \mathbf{F}) according to the following definition:

For all $\Sigma \in |\mathbf{Sign}|$ and all $\Phi \cup \{\varphi\} \subseteq \mathrm{SEN}(\Sigma), \ \varphi \in C_{\Sigma}^{\mathcal{A}}(\Phi)$ iff, for all $\Sigma' \in |\mathbf{Sign}|, f \in \mathbf{Sign}(\Sigma, \Sigma'),$

$$\bigcap_{\phi \in \Phi} \alpha_{\Sigma'}(\operatorname{SEN}(f)(\phi)) \subseteq \alpha_{\Sigma'}(\operatorname{SEN}(f)(\varphi))$$

(ϕ and φ , here, are intentionally different).

Proposition 1 (Proposition 1 of [11]). Suppose $\mathbf{F} = \langle \mathbf{Sign}, \mathrm{SEN}, N \rangle$ is a base algebraic system and $\mathcal{A} = \langle \mathbf{A}, \langle F, \alpha \rangle \rangle$ an interpreted referential *N*-algebraic system. Then $C^{\mathcal{A}}$ is a closure system on \mathbf{F} . Since $C^{\mathcal{A}}$ is a closure system on \mathbf{F} , the pair $\mathcal{I}^{\mathcal{A}} = \langle \mathbf{F}, C^{\mathcal{A}} \rangle$ is a π -institution. We call an institution having this form a **referential** π -institution. Such π -institutions correspond in the theory of categorical abstract algebraic logic (CAAL) to the referential propositional logics of Wójcicki [5].

Let $\mathbf{F} = \langle \mathbf{Sign}, \mathrm{SEN}, N \rangle$ be a base algebraic system and $\mathcal{I} = \langle \mathbf{F}, C \rangle$ a π -institution based on \mathbf{F} . We define the **Frege equivalence system** $\Lambda(\mathcal{I})$ of \mathcal{I} (see p. 37 of [7]), also known as the **interderivability equivalence** system, by setting, for all $\Sigma \in |\mathbf{Sign}|$ and all $\varphi, \psi \in \mathrm{SEN}(\Sigma)$,

$$\langle \varphi, \psi \rangle \in \Lambda_{\Sigma}(\mathcal{I})$$
 if and only if $C_{\Sigma}(\varphi) = C_{\Sigma}(\psi)$.

The **Tarski congruence system** $\widetilde{\Omega}(\mathcal{I})$ of $\mathcal{I}([3])$ for the universal algebraic notion and [10] for its categorical extension) is the largest *N*-congruence system on SEN that is compatible with every theory family $T \in \text{ThFam}(\mathcal{I})$.

Clearly, it is always the case that $\widetilde{\Omega}(\mathcal{I}) \leq \Lambda(\mathcal{I})$. We call the π -institution \mathcal{I} self-extensional if $\Lambda(\mathcal{I}) \leq \widetilde{\Omega}(\mathcal{I})$. In view of the preceding remark, \mathcal{I} is self-extensional if and only if $\Lambda(\mathcal{I}) = \widetilde{\Omega}(\mathcal{I})$.

A generalization to π -institutions of Wójcicki's Theorem (see Theorem 2 of [5], but, also, Theorem 2.2 of [4] for a complete proof) provides a characterization of referential π -institutions

Theorem 2 (Theorem 8 of [9]). A π -institution $\mathcal{I} = \langle F, C \rangle$ is referential if and only if it is self-extensional.

4. Weakly Referential π -Institutions

We assume a base algebraic system $\mathbf{F} = \langle \mathbf{Sign}, \mathrm{SEN}, N \rangle$. Recall that for any (interpreted) referential *N*-algebraic system $\mathcal{A} = \langle \mathbf{A}, \langle F, \alpha \rangle \rangle$, the pair $\mathcal{I}^{\mathcal{A}} = \langle \mathbf{F}, C^{\mathcal{A}} \rangle$ is a referential π -institution. We call a π -institution $\mathcal{I} = \langle \mathbf{F}, C \rangle$ a weakly referential π -institution if, for all $\Sigma \in |\mathbf{Sign}|$,

$$C_{\Sigma}(\emptyset) = C_{\Sigma}^{\mathcal{A}}(\emptyset),$$

for some referential π -institution $\mathcal{I}^{\mathcal{A}}$. Such π -institutions correspond in the theory of CAAL to the weakly referential propositional logics of Wójcicki [6].

Let $\mathbf{F} = \langle \mathbf{Sign}, \mathrm{SEN}, N \rangle$ be a base algebraic system and $\mathcal{I} = \langle \mathbf{F}, C \rangle$ a π -institution based on \mathbf{F} . Let, also $T \in \mathrm{ThFam}(\mathcal{I})$. The Leibniz congruence system $\Omega(T)$ of T ([1] for the universal algebraic notion and

p. 223 of [8] for its categorical extension) is the largest *N*-congruence system on SEN that is compatible with the theory family *T*. We denote by Thm = $\{\text{Thm}_{\Sigma}\}_{\Sigma \in |\mathbf{Sign}|}$ the **theorem family** of \mathcal{I} , i.e., Thm_{Σ} = $C_{\Sigma}(\emptyset)$, for all $\Sigma \in |\mathbf{Sign}|$.

We call the π -institution \mathcal{I} weakly self-extensional if, for all $\Sigma \in |\mathbf{Sign}|$ and all $\varphi, \psi \in \mathrm{SEN}(\Sigma)$,

$$\varphi, \psi \in \text{Thm}_{\Sigma} \text{ implies } \langle \varphi, \psi \rangle \in \Omega_{\Sigma}(\text{Thm}_{\Sigma}).$$

A generalization to π -institutions of Wójcicki's Theorem (see the Theorem of [6]) provides a characterization of weakly referential π -institutions. This is the main result of the present work, formulated in Theorem 9. The value rests in both furnishing a more detailed proof based on the sketch provided in [6], and, also, in extending the scope of the result to encompass logics formalized as π -institutions. We start with the easy direction.

Proposition 3. If a π -institution $\mathcal{I} = \langle F, C \rangle$ is weakly referential, then it is weakly self-extensional.

Proof. Suppose that \mathcal{I} is weakly referential. Thus, there exists a referential *N*-algebraic system \mathcal{A} , such that $C_{\Sigma}(\emptyset) = C_{\Sigma}^{\mathcal{A}}(\emptyset)$, for all $\Sigma \in |\mathbf{Sign}|$. Let $\Sigma \in |\mathbf{Sign}|$ and $\varphi, \psi \in \mathrm{SEN}(\Sigma)$, such that $\varphi, \psi \in C_{\Sigma}(\emptyset) = C_{\Sigma}^{\mathcal{A}}(\emptyset)$. This implies that $C_{\Sigma}^{\mathcal{A}}(\varphi) = C_{\Sigma}^{\mathcal{A}}(\psi)$, i.e., that $\langle \phi, \psi \rangle \in \Lambda_{\Sigma}(\mathcal{I}^{\mathcal{A}})$. Since $\mathcal{I}^{\mathcal{A}}$ is referential, it is self-extensional by Theorem 2. Thus, we get $\langle \phi, \psi \rangle \in \widetilde{\Omega}_{\Sigma}(\mathcal{I}^{\mathcal{A}})$. Therefore, by the characterization theorem of the Tarski Operator in CAAL, Theorem 4 of [10], for all $\sigma : \mathrm{SEN}^k \to \mathrm{SEN}$ in N, all $\Sigma' \in |\mathbf{Sign}|$, all $f \in \mathbf{Sign}(\Sigma, \Sigma')$ and all $\tilde{\chi} \in \mathrm{SEN}(\Sigma')^k$,

$$C_{\Sigma'}^{\mathcal{A}}(\sigma_{\Sigma'}(\operatorname{SEN}(f)(\varphi),\vec{\chi})) = C_{\Sigma'}^{\mathcal{A}}(\sigma_{\Sigma'}(\operatorname{SEN}(f)(\psi),\vec{\chi})).$$

Thus, we obtain, for all $\sigma : \text{SEN}^k \to \text{SEN}$ in N, all $\Sigma' \in |\text{Sign}|$, all $f \in \text{Sign}(\Sigma, \Sigma')$ and all $\vec{\chi} \in \text{SEN}(\Sigma')^k$,

$$\sigma_{\Sigma'}(\operatorname{SEN}(f)(\varphi), \vec{\chi}) \in \operatorname{Thm}_{\Sigma'} \quad \text{iff} \quad \sigma_{\Sigma'}(\operatorname{SEN}(f)(\psi), \vec{\chi}) \in \operatorname{Thm}_{\Sigma'}.$$

This shows that $\langle \varphi, \psi \rangle \in \Omega_{\Sigma}$ (Thm).

Let $\mathcal{I} = \langle \mathbf{F}, C \rangle$ be a weakly self-extensional π -institution, with theorem family Thm. Define the family $R = \{R_{\Sigma}\}_{\Sigma \in |\mathbf{Sign}|}$ by setting

$$R_{\Sigma} = \left\{ \frac{\sigma_{\Sigma}(\varphi, \vec{\chi})}{\sigma_{\Sigma}(\psi, \vec{\chi})} : \sigma \text{ in } N, \vec{\chi} \in \text{SEN}(\Sigma)^{k}, \varphi, \psi \in \text{Thm}_{\Sigma} \right\},\$$

where, following a common convention in CAAL, when we write $\frac{\sigma_{\Sigma}(\varphi, \bar{\chi})}{\sigma_{\Sigma}(\psi, \bar{\chi})}$, we mean that φ, ψ may occupy any position in σ and not just the first, as long as they occupy the same position in both the antecedent and the consequent of the rule.

Define on \boldsymbol{F} the operator family $C^{\text{Thm},R} = \{C_{\Sigma}^{\text{Thm},R}\}_{\Sigma \in |\mathbf{Sign}|}$, such that, for all $\Sigma \in |\mathbf{Sign}|, C_{\Sigma}^{\text{Thm},R} : \mathcal{P}\text{SEN}(\Sigma) \to \mathcal{P}\text{SEN}(\Sigma)$ is given, for all $\Phi \cup \{\varphi\} \subseteq \text{SEN}(\Sigma)$, by

$$\varphi \in C_{\Sigma}^{\operatorname{Thm},R}(\Phi)$$
 iff φ is R_{Σ} -provable from $\Phi \cup \operatorname{Thm}_{\Sigma}$.

Then, we can show that $C^{\text{Thm},R}$ is a closure system on F:

Lemma 4. Let $\mathcal{I} = \langle \mathbf{F}, C \rangle$ be a weakly self-extensional π -institution, with theorem family Thm. Then $C^{\text{Thm},R}$ is a closure system on \mathbf{F} .

Proof. By classical proof-theoretic arguments, one shows that $C_{\Sigma}^{\text{Thm},R}$ is a closure operator on SEN(Σ), for all $\Sigma \in |\text{Sign}|$. So it suffices to show that $C^{\text{Thm},R}$ is structural. Suppose that $\Sigma \in |\text{Sign}|$ and $\Phi \cup \{\varphi\} \subseteq \text{SEN}(\Sigma)$, such that $\varphi \in C_{\Sigma}^{\text{Thm},R}(\Phi)$. This means that there exists an R_{Σ} -proof

$$\varphi_0, \varphi_1, \dots, \varphi_n = \varphi$$

of φ from $\Phi \cup \text{Thm}_{\Sigma}$. We must show that, for all $\Sigma' \in |\text{Sign}|, f \in \text{Sign}(\Sigma, \Sigma')$, SEN $(f)(\varphi) \in C_{\Sigma'}^{\text{Thm},R}(\text{SEN}(f)(\Phi))$. Consider the sequence of Σ' -sentences

 $\operatorname{SEN}(f)(\varphi_0), \operatorname{SEN}(f)(\varphi_1), \dots, \operatorname{SEN}(f)(\varphi_n) = \operatorname{SEN}(f)(\varphi).$

It suffices to show that this is a valid $R_{\Sigma'}$ -proof of $\text{SEN}(f)(\varphi)$ from hypotheses $\text{SEN}(f)(\Phi) \cup \text{Thm}_{\Sigma'}$. This is accomplished by induction on $0 \le k \le n$:

- Base: If k = 0, then φ_0 must be a Σ -sentence in $\Phi \cup \text{Thm}_{\Sigma}$. But then, since the theorem family of any π -institution is a theory system, we get that $\text{SEN}(f)(\varphi_0)$ is in $\text{SEN}(f)(\Phi) \cup \text{Thm}_{\Sigma'}$.
- Hypothesis: Suppose, for all $i < k \le n$, SEN $(f)(\varphi_i)$ is either in SEN $(f)(\Phi) \cup$ Thm_{Σ'} or follows from previous sentences in the sequence by a single application of an $R_{\Sigma'}$ -rule.
- Step: If φ_k is in $\Phi \cup \text{Thm}_{\Sigma}$, then, as in the Base, it follows that $\text{SEN}(f)(\varphi_k)$ is in $\text{SEN}(f)(\Phi) \cup \text{Thm}_{\Sigma'}$. Suppose, finally, that φ_k follows from $\varphi_i, i < k$, by a single application of an R_{Σ} -rule, i.e., there exists σ in

N and $\vec{\chi} \in \text{SEN}(\Sigma)^p$, such that $\varphi_i = \sigma_{\Sigma}(\varphi, \vec{\chi})$ and $\varphi_k = \sigma_{\Sigma}(\psi, \vec{\chi})$, for some $\varphi, \psi \in \text{Thm}_{\Sigma}$. But, then, for the same σ in N and $\text{SEN}(f)(\vec{\chi}) \in$ $\text{SEN}(\Sigma')^p$, we have that $\text{SEN}(f)(\varphi), \text{SEN}(f)(\psi) \in \text{Thm}_{\Sigma'}$ and

$$SEN(f)(\varphi_i) = \sigma_{\Sigma'}(SEN(f)(\varphi), SEN(f)^p(\vec{\chi})),$$

$$SEN(f)(\varphi_k) = \sigma_{\Sigma'}(SEN(f)(\psi), SEN(f)^p(\vec{\chi})).$$

Thus,
$$\operatorname{SEN}(f)(\varphi_k)$$
 follows from $\operatorname{SEN}(f)(\varphi_i)$ by an application of the $R_{\Sigma'}$ -rule $\frac{\sigma_{\Sigma'}(\operatorname{SEN}(f)(\varphi), \operatorname{SEN}(f)(\vec{\chi}))}{\sigma_{\Sigma'}(\operatorname{SEN}(f)(\psi), \operatorname{SEN}(f)(\vec{\chi}))}$.

This concludes the proof of structurality of $C^{\text{Thm},R}$.

Thus, $\mathcal{I}^{\text{Thm},R} = \langle \mathbf{F}, C^{\text{Thm},R} \rangle$ is a π -institution. Let us denote by $\text{Thm}^R = \{\text{Thm}_{\Sigma}^R\}_{\Sigma \in |\mathbf{Sign}|}$ the theorem system of $\mathcal{I}^{\text{Thm},R}$. It turns out that the theorem system Thm^R coincides with the theorem system Thm of \mathcal{I} :

Lemma 5. Let $\mathcal{I} = \langle \mathbf{F}, C \rangle$ be a weakly self-extensional π -institution, with theorem family Thm. Then Thm = Thm^R.

Proof. Clearly, by the definition of $C^{\text{Thm},R}$, Thm \leq Thm^{*R*}.

For the converse, suppose that $\Sigma \in |\mathbf{Sign}|$ and $\varphi \in \mathrm{Thm}_{\Sigma}^{R}$. Thus, $\varphi \in C_{\Sigma}^{\mathrm{Thm},R}(\emptyset)$. This means that there exists an R_{Σ} -proof

$$\varphi_0, \varphi_1, \dots, \varphi_n = \varphi$$

of ϕ from Thm_{Σ}. We show by induction on $k \leq n$ that $\varphi_k \in \text{Thm}_{\Sigma}$.

Base: If k = 0, then φ_0 must be in Thm_{Σ} by hypothesis.

Hypothesis: Suppose that, for all $i < k \le n$, $\varphi_i \in \text{Thm}_{\Sigma}$.

Step: If $\varphi_k \in \text{Thm}_{\Sigma}$, then there is nothing to prove. Otherwise, φ_k follows from φ_i , i < k, by an application of an R_{Σ} -rule. Thus, for some σ in N, some $\vec{\chi} \in \text{SEN}(\Sigma)^p$ and some $\varphi, \psi \in \text{Thm}_{\Sigma}$,

$$\varphi_i = \sigma_{\Sigma}(\varphi, \vec{\chi}), \quad \varphi_k = \sigma_{\Sigma}(\psi, \vec{\chi}).$$

By weak selfectensionality of \mathcal{I} , we get $\langle \varphi, \psi \rangle \in \Omega_{\Sigma}(\text{Thm})$. Thus, since $\Omega(\text{Thm})$ is a congruence system, $\langle \varphi_i, \varphi_k \rangle \in \Omega_{\Sigma}(\text{Thm})$. Since, by the Induction Hypothesis, $\varphi_i \in \text{Thm}_{\Sigma}$, by the compatibility of the Leibniz congruence system, we get $\varphi_k \in \text{Thm}_{\Sigma}$.

This shows that $\varphi \in \text{Thm}_{\Sigma}$. Therefore $\text{Thm}^R \leq \text{Thm}$.

The next result shows that $\mathcal{I}^{\text{Thm},R}$ is a self-extensional π -institution. Intuitively speaking, this feature is instilled to the π -institution by virtue of its definition.

Lemma 6. Let $\mathcal{I} = \langle F, C \rangle$ be a weakly self-extensional π -institution, with theorem family Thm. Then $\mathcal{I}^{\text{Thm},R}$ is a selfectensional π -institution.

Proof. Suppose $\Sigma \in |\mathbf{Sign}|$ and $\varphi, \psi \in \mathrm{SEN}(\Sigma)$ are such that

$$C_{\Sigma}^{\mathrm{Thm},R}(\varphi) = C_{\Sigma}^{\mathrm{Thm},R}(\psi).$$

Then $\varphi \in C_{\Sigma}^{\text{Thm},R}(\psi)$. Let $\sigma : \text{SEN}^k \to \text{SEN}$ in $N, \Sigma' \in |\text{Sign}|, f \in \text{Sign}(\Sigma, \Sigma')$ and $\vec{\chi} \in \text{SEN}(\Sigma')^k$ be fixed but arbitrary. Our goal is to show that $\sigma_{\Sigma'}(\text{SEN}(f)(\varphi), \vec{\chi}) \in C_{\Sigma'}^{\text{Thm},R}(\sigma_{\Sigma'}(\text{SEN}(f)(\psi), \vec{\chi}))$. By symmetry, it then follows

$$C_{\Sigma'}^{\text{Thm},R}(\sigma_{\Sigma'}(\text{SEN}(f)(\varphi),\vec{\chi})) = C_{\Sigma'}^{\text{Thm},R}(\sigma_{\Sigma'}(\text{SEN}(f)(\psi),\vec{\chi})),$$

i.e., that $\mathcal{I}^{\mathrm{Thm},R}$ is self-extensional.

Suppose first that $\varphi \in \text{Thm}_{\Sigma}$. Then, $\psi \in \text{Thm}_{\Sigma}$ also. Hence $\text{SEN}(f)(\varphi)$ and $\text{SEN}(f)(\psi)$ are in $\text{Thm}_{\Sigma'}$. Therefore, $\sigma_{\Sigma'}(\text{SEN}(f)(\varphi), \vec{\chi})$ follows by an application of a rule in $R_{\Sigma'}$ from $\sigma_{\Sigma'}(\text{SEN}(f)(\psi), \vec{\chi})$. This proves that $\sigma_{\Sigma'}(\text{SEN}(f)(\varphi), \vec{\chi}) \in C_{\Sigma'}^{\text{Thm}, R}(\sigma_{\Sigma'}(\text{SEN}(f)(\psi), \vec{\chi}))$.

Now we turn to the case where $\varphi \notin \text{Thm}_{\Sigma}$. Since $\varphi \in C_{\Sigma}^{\text{Thm},R}(\psi)$, there exists an R_{Σ} -proof

$$\varphi_0, \varphi_1, \dots, \varphi_n = \varphi$$

of φ from premises $\{\psi\} \cup \text{Thm}_{\Sigma}$. Consider the sequence

$$\varphi'_0, \varphi'_1, \ldots, \varphi'_n,$$

defined by induction on $k \leq n$ as follows:

- If $\varphi_k = \psi$, then $\varphi'_k = \sigma_{\Sigma'}(\text{SEN}(f)(\psi), \vec{\chi})$.
- If $\varphi_k \in \text{Thm}_{\Sigma}$, then $\varphi'_k = \text{SEN}(f)(\varphi_k)$.
- If φ_k follows from φ_i , i < k, by an application of the R_{Σ} -rule $\frac{\tau_{\Sigma}(\zeta, \vec{\eta})}{\tau_{\Sigma}(\zeta, \vec{\eta})}$, we set:

$$- \varphi'_{k} = \operatorname{SEN}(f)(\phi_{k}), \text{ if } \varphi'_{i} = \operatorname{SEN}(f)(\varphi_{i});$$

$$- \varphi'_{k} = \sigma_{\Sigma'}(\operatorname{SEN}(f)(\varphi_{k}), \vec{\chi}), \text{ if } \varphi'_{i} = \sigma_{\Sigma'}(\operatorname{SEN}(f)(\varphi_{i}), \vec{\chi}).$$

Our goal is to show that this is a valid $R_{\Sigma'}$ -proof of $\sigma_{\Sigma'}(\text{SEN}(f)(\varphi), \vec{\chi})$ from premises $\{\sigma_{\Sigma'}(\text{SEN}(f)(\psi), \vec{\chi})\} \cup \text{Thm}_{\Sigma'}$. We do this by employing induction on $k \leq n$ to show that the sequence

$$\varphi'_0, \varphi'_1, \ldots, \varphi'_k$$

is an $R_{\Sigma'}$ -proof of φ'_k from premises $\{\sigma_{\Sigma'}(\text{SEN}(f)(\psi), \vec{\chi})\} \cup \text{Thm}_{\Sigma'}$.

Base: If k = 0, we have two cases:

- If $\varphi_0 = \psi$, then $\varphi'_0 = \sigma_{\Sigma'}(\text{SEN}(f)(\psi), \vec{\chi})$ follows by hypothesis.
- If $\varphi_0 \in \text{Thm}_{\Sigma}$, then $\varphi'_0 = \text{SEN}(f)(\varphi_0) \in \text{Thm}_{\Sigma'}$ also follows by hypothesis.

Hypothesis: Assume that, for all $i < k \le n$,

 $\varphi'_0, \varphi'_1, \ldots, \varphi'_i$

is a valid $R_{\Sigma'}$ -proof of φ'_i from premises $\{\sigma_{\Sigma'}(\operatorname{SEN}(f)(\psi), \vec{\chi})\} \cup \operatorname{Thm}_{\Sigma'}$.

Step: If $\varphi_k = \psi$ or $\varphi_k \in \text{Thm}_{\Sigma}$, then we replicate the reasoning in the Base.

Suppose that φ_k follows from φ_i , i < k, by an application of the R_{Σ} -rule $\frac{\tau_{\Sigma}(\zeta, \tilde{\eta})}{\tau_{\Sigma}(\xi, \tilde{\eta})}$, where $\zeta, \eta \in \text{Thm}_{\Sigma}$.

- If $\varphi'_i = \text{SEN}(f)(\varphi_i)$, then $\varphi'_k = \text{SEN}(f)(\varphi_k)$. Since $\zeta, \xi \in \text{Thm}_{\Sigma}$, SEN $(f)(\zeta)$, SEN $(f)(\xi) \in \text{Thm}_{\Sigma'}$. Thus, this step in the proof is justified by the fact that

$$\frac{\varphi'_i}{\varphi'_k} = \frac{\text{SEN}(f)(\varphi_i)}{\text{SEN}(f)(\varphi_k)} = \frac{\tau_{\Sigma'}(\text{SEN}(f)(\zeta), \text{SEN}(f)^p(\vec{\eta}))}{\tau_{\Sigma'}(\text{SEN}(f)(\xi), \text{SEN}(f)^p(\vec{\eta}))}$$

is a valid $R_{\Sigma'}$ -rule.

- If $\varphi'_i = \sigma_{\Sigma'}(\text{SEN}(f)(\varphi_i), \vec{\chi})$, then $\varphi'_k = \sigma_{\Sigma'}(\text{SEN}(f)(\varphi_k), \vec{\chi})$. Once more, since $\zeta, \xi \in \text{Thm}_{\Sigma}$, we get $\text{SEN}(f)(\zeta), \text{SEN}(f)(\xi) \in \text{Thm}_{\Sigma'}$. Thus, this step in the proof is justified by the fact that

$$\frac{\sigma_{\Sigma'}(\operatorname{SEN}(f)(\varphi_i),\vec{\chi})}{\sigma_{\Sigma'}(\operatorname{SEN}(f)(\varphi_k),\vec{\chi})} = \frac{\sigma_{\Sigma'}(\tau_{\Sigma'}(\operatorname{SEN}(f)(\zeta),\operatorname{SEN}(f)^p(\vec{\eta})),\vec{\chi})}{\sigma_{\Sigma'}(\tau_{\Sigma'}(\operatorname{SEN}(f)(\zeta),\operatorname{SEN}(f)^p(\vec{\eta})),\vec{\chi})}$$

is a valid $R_{\Sigma'}$ -rule.

By symmetry, interchanging the roles of φ, ψ in the preceding reasoning, we get that, for all $\sigma : \operatorname{SEN}^k \to \operatorname{SEN}$ in N, all $\Sigma' \in |\operatorname{Sign}|$, all $f \in \operatorname{Sign}(\Sigma, \Sigma')$ and all $\vec{\chi} \in \operatorname{SEN}(\Sigma')^k$,

$$C_{\Sigma'}^{\text{Thm},R}(\text{SEN}(f)(\varphi),\vec{\chi}) = C_{\Sigma'}^{\text{Thm},R}(\text{SEN}(f)(\psi),\vec{\chi}).$$

By the CAAL characterization theorem of the Tarski congruence system of a π -institution (Theorem 4 of [10]), we get that $\langle \varphi, \psi \rangle \in \widetilde{\Omega}_{\Sigma}(\mathcal{I}^{\text{Thm},R})$. This proves that $\mathcal{I}^{\text{Thm},R}$ is a selfectensional π -institution.

Corollary 7. Let $\mathcal{I} = \langle F, C \rangle$ be a weakly self-extensional π -institution, with theorem family Thm. Then $\mathcal{I}^{\text{Thm},R}$ is a referential π -institution.

Proof. By Lemma 6 and Theorem 2 (Theorem 8 of [9]).

Proposition 8. If a π -institution $\mathcal{I} = \langle F, C \rangle$ is weakly self-extensional, then it is weakly referential.

Proof. Let \mathcal{I} be weakly self-extensional. Denote by Thm its theorem family. Construct the π -institution $\mathcal{I}^{\text{Thm},R}$ and denote by Thm^R its theorem family. By Corollary 7, $\mathcal{I}^{\text{Thm},R}$ is referential and, by Lemma 5, Thm = Thm^R. Therefore, \mathcal{I} is weakly referential.

Theorem 9. A π -institution $\mathcal{I} = \langle F, C \rangle$ is weakly referential if and only if it is weakly self-extensional.

Proof. The left-to-right implication is Proposition 3. The right-to-left implication is Proposition 8. \Box

References

- W. J. Blok and D. Pigozzi, Algebraizable Logics, Memoirs of the American Mathematical Society, Vol. 77, No. 396 (1989)
- [2] J. Czelakowski, The Suszko Operator Part I, Studia Logica 74:1-2 (2003), 181-231.
- [3] J. M. Font and R. Jansana, A General Algebraic Semantics for Sentential Logics, Lecture Notes in Logic, Vol. 332, No. 7 (1996), Springer-Verlag, Berlin Heidelberg, 1996.
- [4] R. Jansana and A. Palmigiano, Referential Semantics: Duality and Applications, Reports on Mathematical Logic 41 (2006), 63–93.

- [5] R. Wójcicki, Referential Matrix Semantics for Propositional Calculi, Bulletin of the Section of Logic 8:4 (1979), 170–176.
- [6] R. Wójcicki, More About Referential Matrices, Bulletin of the Section of Logic 9:2 (1980), 93–95.
- [7] G. Voutsadakis, Categorical Abstract Algebraic Logic: Full Models, Frege Systems and Metalogical Properties, *Reports on Mathematical Logic* 41 (2006), 31–62.
- [8] G. Voutsadakis, Categorical Abstract Algebraic Logic: Prealgebraicity and Protoalgebraicity, *Studia Logica* 85:2 (2007), 215–249.
- [9] G. Voutsadakis, Categorical Abstract Algebraic Logic: Referential Algebraic Semantics, *Studia Logica* 101:4 (2013), 849–899.
- [10] G. Voutsadakis, Categorical Abstract Algebraic Logic: Tarski Congruence Systems, Logical Morphisms and Logical Quotients, *Journal of Pure and Applied Mathematics: Advances and Applications* 13:1 (2015), 27–73.
- [11] G. Voutsadakis, Categorical Abstract Algebraic Logic: Referential π-Institutions, Bulletin of the Section of Logic 44:1/2 (2015), 33–51.

School of Mathematics and Computer Science Lake Superior State University Sault Sainte Marie, MI 49783 USA

gvoutsad@lssu.edu