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A b s t r a c t. Wójcicki introduced in the late 1970s the concept of

a referential semantics for propositional logics. Referential seman-

tics incorporate features of the Kripke possible world semantics

for modal logics into the realm of algebraic and matrix semantics

of arbitrary sentential logics. A well-known theorem of Wójcicki

asserts that a logic has a referential semantics if and only if it is

selfextensional. A second theorem of Wójcicki asserts that a logic

has a weakly referential semantics if and only if it is weakly self-

extensional. We formulate and prove an analog of this theorem in

the categorical setting. We show that a π-institution has a weakly

referential semantics if and only if it is weakly self-extensional.
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.1 Introduction

Let L = ⟨Λ, ρ⟩ be a logical signature/algebraic type, i.e., a set of logical

connectives/operation symbols Λ with attached finite arities given by the

function ρ ∶ Λ→ ω. Let, also, V be a countably infinite set of propositional

variables and T a set of reference/base points. Wójcicki [5] defines a refer-

ential algebra A to be an L-algebra with universe A ⊆ {0,1}T . Such an

algebra determines the consequence operation CA on FmL(V ) by setting,

for all X ∪ {α} ⊆ FmL(V ), α ∈ CA(X) iff, for all h ∶ FmL(V ) → A and all

t ∈ T ,

h(β)(t) = 1, for all β ∈X, implies h(α)(t) = 1.

Moreover, Wójcicki calls a propositional logic S = ⟨L,C⟩, where C = CA, for

a referential algebra A, a referential (or referentially truth-functional)

propositional logic.

Wójcicki shows in [5] that, given a class K of referential algebras, there

exists a single referential algebra A, such that CK ∶= ⋂K∈KC
K = CA.

Thence follows that a propositional logic is referential if and only if it is

defined by a class of referential algebras.

Given a propositional logic S = ⟨L,C⟩, the Frege or interderivabil-

ity relation of S (see, e.g., Definition 2.37 of [3]), denoted Λ(S), is the

equivalence relation on FmL(V ), defined, for all α,β ∈ FmL(V ), by

⟨α,β⟩ ∈ Λ(S) iff C(α) = C(β).

The Tarski congruence Ω̃(S) of S (see [3]) is the largest congruence

relation on FmL(V ) that is compatible with all theories of S. The Tarski

congruence is a special case of the Suszko congruence Ω̃S(T ) associated

with a given theory T of S, which is defined as the largest congruence

on FmL(V ) that is compatible with all theories of S that contain the

given theory T (see [2]). In fact, by definition, Ω̃(S) = Ω̃S(C(∅)), i.e., the

Tarski congruence of S is the Suszko congruence associated with the set

of theorems of the logic S. Font and Jansana (see p.17 of [3]), extending

Blok and Pigozzi’s [1] well-known characterization of the Leibniz congruence

Ω(T ) associated with a theory T of a sentential logic, have shown that, for

all α,β ∈ FmL(V ),

⟨α,β⟩ ∈ Ω̃(S) iff for all ϕ(p, q⃗) ∈ FmL(V ),
C(ϕ(α, q⃗)) = C(ϕ(β, q⃗)).
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Whereas Ω̃(S) ⊆ Λ(S), for every propositional logic S, the reverse inclusion

does not hold in general. A propositional logic is called selfextensional

in [5] if Λ(S) ⊆ Ω̃(S). In fact, Wójcicki shows in what has become a

fundamental theorem in the theory of referential semantics, Theorem 2 of

[5], that a propositional logic is referential if and only if it is self-extensional.

Wójcicki in [6] revisited the equivalence between referentiality and self-

extensionality, proving a “weak version” by replacing the entirety of the-

ories (equivalently, the closure operator C) by the set of theorems. More

precisely, Wójcicki considers in [6] (see the Theorem in [6]) propositional

logics S = ⟨L,C⟩, where C(∅) = CA(∅), for a referential algebra A. We

call such logics weakly referential logics.

Given a propositional logic S = ⟨L,C⟩, the Leibniz congruence Ω(T )
of a theory T of S (see [1]) is the largest congruence relation on FmL(V )
that is compatible with T . Blok and Pigozzi’s well-known characterization

of the Leibniz congruence Ω(T ) (see p. 11 of [1]) asserts that, for all

α,β ∈ FmL(V ),

⟨α,β⟩ ∈ Ω(T ) iff for all ϕ(p, q⃗) ∈ FmL(V ),
ϕ(α, q⃗) ∈ T iff ϕ(β, q⃗) ∈ T.

A propositional logic S = ⟨L,C⟩ is called weakly selfextensional in [6] if,

for all α,β ∈ FmL(V ),

α,β ∈ C(∅) implies ⟨α,β⟩ ∈ Ω(C(∅)).

In the Theorem of [6], Wójcicki shows that a propositional logic is weakly

referential if and only if it is weakly self-extensional.

.2 π-Institutions and Closure Systems

Let Sign be a category and SEN ∶ Sign → Set a Set-valued functor. The

clone of all natural transformations on SEN (see Section 2 of [8]) is the

category U with collection of objects {SENα ∶ α an ordinal} and collection

of morphisms τ ∶ SENα → SENβ β-sequences of natural transformations

τ ∶ SENα → SEN. Composition of ⟨τi ∶ i < β⟩ ∶ SENα → SENβ with ⟨σj ∶ j <
γ⟩ ∶ SENβ → SENγ

SENα ⟨τi ∶ i < β⟩ - SENβ ⟨σj ∶ j < γ⟩- SENγ
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is defined by

⟨σj ∶ j < γ⟩ ○ ⟨τi ∶ i < β⟩ = ⟨σj(⟨τi ∶ i < β⟩) ∶ j < γ⟩.

A subcategory of this category with objects all objects of the form SENk,

k < ω, and such that:

● it contains all projection morphisms pk,i ∶ SENk → SEN, i < k, k < ω,
with pk,iΣ ∶ SEN(Σ)k → SEN given by

pk,iΣ (φ⃗) = φi, for all φ⃗ ∈ SEN(Σ)k,

● for every family {τi ∶ SENk → SEN ∶ i < l} of natural transformations

in N , ⟨τi ∶ i < l⟩ ∶ SENk → SENl is also in N ,

is referred to as a category of natural transformations on SEN.

Consider an algebraic system F = ⟨Sign,SEN,N⟩, i.e., a triple con-

sisting of

● a category Sign, called the category of signatures;

● a functor SEN ∶ Sign→ Set, called the sentence functor;

● a category of natural transformations N on SEN.

A π-institution based on F is a pair I = ⟨F ,C⟩, where C = {CΣ}Σ∈∣Sign∣
is a closure system on SEN, i.e., a ∣Sign∣-indexed collection of closure

operators CΣ ∶ PSEN(Σ)→ PSEN(Σ), such that, for all Σ1,Σ2 ∈ ∣Sign∣, all

f ∈ Sign(Σ1,Σ2) and all Φ ⊆ SEN(Σ1),

SEN(f)(CΣ1(Φ)) ⊆ CΣ2(SEN(f)(Φ)).

This condition is sometimes referred to as structurality. In this context,

F is also referred to as the base algebraic system. Given a π-institution

I, a theory family T = {TΣ}Σ∈∣Sign∣ is a ∣Sign∣-indexed collection of sub-

sets TΣ ⊆ SEN(Σ), closed under CΣ, i.e., such that CΣ(TΣ) = TΣ, for

all Σ ∈ ∣Sign∣. The collection of all theory families of I is denoted by

ThFam(I). Ordered by signature-wise inclusion, it forms a complete lat-

tice ThFam(I) = ⟨ThFam(I),≤⟩.
Note, also, that, given a base algebraic system F , the collection of all

closure systems based on F is closed under signature-wise intersections and,

hence, forms a complete lattice under the signature-wise ordering ≤:

C1 ≤ C2 iff for all Σ ∈ ∣Sign∣ and all Φ ⊆ SEN(Σ),
C1

Σ(Φ) ⊆ C2
Σ(Φ).
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.3 Referential π-Institutions

We assume a base algebraic system F = ⟨Sign,SEN,N⟩. Consider also an

N -algebraic system A = ⟨Sign′,SEN′,N ′⟩, i.e., one such that there exists

a surjective functor ′ ∶ N → N ′, preserving all projection natural transfor-

mations and, as a consequence, all arities of the natural transformations

involved. We denote by σ′ ∶ SEN′k → SEN′ the natural transformation in

N ′ that is the image of σ ∶ SENk → SEN in N under ′.

More specifically, we want to focus on N -algebraic systems A = ⟨Sign′,
SEN′s,N

′⟩, where SEN′s is a simple subfunctor (having the same domain)

of the inverse powerset functor
←ÐP SEN′ ∶ Sign′ → Set of a contravariant

functor SEN′ ∶ Sign′ → Setop. For Σ ∈ ∣Sign′∣, the elements of SEN′(Σ)
in this context are referred to as Σ-reference or Σ-base points (see, e.g.,

[9]). An N -morphism ⟨F,α⟩ ∶ SEN → SEN′s will be viewed as a valuation

of sentences of SEN in the following way: For all Σ ∈ ∣Sign∣ and all ϕ ∈
SEN(Σ), ϕ ∈ SEN(Σ) is true at p ∈ SEN′(F (Σ)) under ⟨F,α⟩ iff p ∈
αΣ(ϕ).

An N -algebraic system of this special form is called a referential N -

algebraic system. By slightly abusing terminology, we use the same term

to refer to an (interpreted) referential N -algebraic system, which is

a pair A = ⟨A, ⟨F,α⟩⟩, with ⟨F,α⟩ ∶ F →A an algebraic system morphism,

also referred to as an N -morphism. We sometimes drop the subscript s

when referring to the subfunctor to make notation less cumbersome, pro-

vided that this is unlikely to cause any confusion.

Let F = ⟨Sign,SEN,N⟩ be a base algebraic system and A = ⟨A, ⟨F,α⟩⟩
an interpreted referential N -algebraic system. Then A determines a closure

system CA on SEN (or on F ) according to the following definition:

For all Σ ∈ ∣Sign∣ and all Φ ∪ {ϕ} ⊆ SEN(Σ), ϕ ∈ CAΣ (Φ) iff, for all

Σ′ ∈ ∣Sign∣, f ∈ Sign(Σ,Σ′),

⋂
φ∈Φ

αΣ′(SEN(f)(φ)) ⊆ αΣ′(SEN(f)(ϕ))

(φ and ϕ, here, are intentionally different).

Proposition 1 (Proposition 1 of [11]). Suppose F = ⟨Sign,SEN,N⟩
is a base algebraic system and A = ⟨A, ⟨F,α⟩⟩ an interpreted referential

N -algebraic system. Then CA is a closure system on F .
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Since CA is a closure system on F , the pair IA = ⟨F ,CA⟩ is a π-in-

stitution. We call an institution having this form a referential π-insti-

tution. Such π-institutions correspond in the theory of categorical abstract

algebraic logic (CAAL) to the referential propositional logics of Wójcicki [5].

Let F = ⟨Sign,SEN,N⟩ be a base algebraic system and I = ⟨F ,C⟩ a

π-institution based on F . We define the Frege equivalence system Λ(I)
of I (see p. 37 of [7]), also known as the interderivability equivalence

system, by setting, for all Σ ∈ ∣Sign∣ and all ϕ,ψ ∈ SEN(Σ),

⟨ϕ,ψ⟩ ∈ ΛΣ(I) if and only if CΣ(ϕ) = CΣ(ψ).

The Tarski congruence system Ω̃(I) of I ([3] for the universal algebraic

notion and [10] for its categorical extension) is the largest N -congruence

system on SEN that is compatible with every theory family T ∈ ThFam(I).
Clearly, it is always the case that Ω̃(I) ≤ Λ(I). We call the π-institution

I self-extensional if Λ(I) ≤ Ω̃(I). In view of the preceding remark, I is

self-extensional if and only if Λ(I) = Ω̃(I).
A generalization to π-institutions of Wójcicki’s Theorem (see Theorem

2 of [5], but, also, Theorem 2.2 of [4] for a complete proof) provides a

characterization of referential π-institutions

Theorem 2 (Theorem 8 of [9]). A π-institution I = ⟨F ,C⟩ is referential
if and only if it is self-extensional.

.4 Weakly Referential π-Institutions

We assume a base algebraic system F = ⟨Sign,SEN,N⟩. Recall that for

any (interpreted) referential N -algebraic system A = ⟨A, ⟨F,α⟩⟩, the pair

IA = ⟨F ,CA⟩ is a referential π-institution. We call a π-institution I =
⟨F ,C⟩ a weakly referential π-institution if, for all Σ ∈ ∣Sign∣,

CΣ(∅) = CAΣ (∅),

for some referential π-institution IA. Such π-institutions correspond in the

theory of CAAL to the weakly referential propositional logics of Wójcicki [6].

Let F = ⟨Sign,SEN,N⟩ be a base algebraic system and I = ⟨F ,C⟩ a

π-institution based on F . Let, also T ∈ ThFam(I). The Leibniz con-

gruence system Ω(T ) of T ([1] for the universal algebraic notion and
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p. 223 of [8] for its categorical extension) is the largest N -congruence sys-

tem on SEN that is compatible with the theory family T . We denote by

Thm = {ThmΣ}Σ∈∣Sign∣ the theorem family of I, i.e., ThmΣ = CΣ(∅), for

all Σ ∈ ∣Sign∣.
We call the π-institution I weakly self-extensional if, for all Σ ∈

∣Sign∣ and all ϕ,ψ ∈ SEN(Σ),

ϕ,ψ ∈ ThmΣ implies ⟨ϕ,ψ⟩ ∈ ΩΣ(ThmΣ).

A generalization to π-institutions of Wójcicki’s Theorem (see the The-

orem of [6]) provides a characterization of weakly referential π-institutions.

This is the main result of the present work, formulated in Theorem 9. The

value rests in both furnishing a more detailed proof based on the sketch

provided in [6], and, also, in extending the scope of the result to encompass

logics formalized as π-institutions. We start with the easy direction.

Proposition 3. If a π-institution I = ⟨F ,C⟩ is weakly referential, then

it is weakly self-extensional.

Proof. Suppose that I is weakly referential. Thus, there exists a

referential N -algebraic system A, such that CΣ(∅) = CAΣ (∅), for all Σ ∈
∣Sign∣. Let Σ ∈ ∣Sign∣ and ϕ,ψ ∈ SEN(Σ), such that ϕ,ψ ∈ CΣ(∅) =
CAΣ (∅). This implies that CAΣ (ϕ) = CAΣ (ψ), i.e., that ⟨φ,ψ⟩ ∈ ΛΣ(IA).
Since IA is referential, it is self-extensional by Theorem 2. Thus, we get

⟨φ,ψ⟩ ∈ Ω̃Σ(IA). Therefore, by the characterization theorem of the Tarski

Operator in CAAL, Theorem 4 of [10], for all σ ∶ SENk → SEN in N , all

Σ′ ∈ ∣Sign∣, all f ∈ Sign(Σ,Σ′) and all χ⃗ ∈ SEN(Σ′)k,

CAΣ′(σΣ′(SEN(f)(ϕ), χ⃗)) = CAΣ′(σΣ′(SEN(f)(ψ), χ⃗)).

Thus, we obtain, for all σ ∶ SENk → SEN in N , all Σ′ ∈ ∣Sign∣, all f ∈
Sign(Σ,Σ′) and all χ⃗ ∈ SEN(Σ′)k,

σΣ′(SEN(f)(ϕ), χ⃗) ∈ ThmΣ′ iff σΣ′(SEN(f)(ψ), χ⃗) ∈ ThmΣ′ .

This shows that ⟨ϕ,ψ⟩ ∈ ΩΣ(Thm). ◻

Let I = ⟨F ,C⟩ be a weakly self-extensional π-institution, with theorem

family Thm. Define the family R = {RΣ}Σ∈∣Sign∣ by setting

RΣ = {σΣ(ϕ, χ⃗)
σΣ(ψ, χ⃗)

∶ σ in N, χ⃗ ∈ SEN(Σ)k, ϕ,ψ ∈ ThmΣ} ,
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where, following a common convention in CAAL, when we write
σΣ(ϕ,χ⃗)
σΣ(ψ,χ⃗)

,

we mean that ϕ,ψ may occupy any position in σ and not just the first,

as long as they occupy the same position in both the antecedent and the

consequent of the rule.

Define on F the operator family CThm,R = {CThm,R
Σ }Σ∈∣Sign∣, such that,

for all Σ ∈ ∣Sign∣, CThm,R
Σ ∶ PSEN(Σ)→ PSEN(Σ) is given, for all Φ∪{ϕ} ⊆

SEN(Σ), by

ϕ ∈ CThm,R
Σ (Φ) iff ϕ is RΣ-provable from Φ ∪ThmΣ.

Then, we can show that CThm,R is a closure system on F :

Lemma 4. Let I = ⟨F ,C⟩ be a weakly self-extensional π-institution,

with theorem family Thm. Then CThm,R is a closure system on F .

Proof. By classical proof-theoretic arguments, one shows that CThm,R
Σ

is a closure operator on SEN(Σ), for all Σ ∈ ∣Sign∣. So it suffices to show

that CThm,R is structural. Suppose that Σ ∈ ∣Sign∣ and Φ∪ {ϕ} ⊆ SEN(Σ),
such that ϕ ∈ CThm,R

Σ (Φ). This means that there exists an RΣ-proof

ϕ0, ϕ1, . . . , ϕn = ϕ

of ϕ from Φ∪ThmΣ. We must show that, for all Σ′ ∈ ∣Sign∣, f ∈ Sign(Σ,Σ′),
SEN(f)(ϕ) ∈ CThm,R

Σ′ (SEN(f)(Φ)). Consider the sequence of Σ′-sentences

SEN(f)(ϕ0),SEN(f)(ϕ1), . . . ,SEN(f)(ϕn) = SEN(f)(ϕ).

It suffices to show that this is a valid RΣ′-proof of SEN(f)(ϕ) from hypothe-

ses SEN(f)(Φ) ∪ThmΣ′ . This is accomplished by induction on 0 ≤ k ≤ n:

Base: If k = 0, then ϕ0 must be a Σ-sentence in Φ ∪ThmΣ. But then, since

the theorem family of any π-institution is a theory system, we get

that SEN(f)(ϕ0) is in SEN(f)(Φ) ∪ThmΣ′ .

Hypothesis: Suppose, for all i < k ≤ n, SEN(f)(ϕi) is either in SEN(f)(Φ)∪
ThmΣ′ or follows from previous sentences in the sequence by a single

application of an RΣ′-rule.

Step: If ϕk is in Φ∪ThmΣ, then, as in the Base, it follows that SEN(f)(ϕk)
is in SEN(f)(Φ) ∪ ThmΣ′ . Suppose, finally, that ϕk follows from

ϕi, i < k, by a single application of an RΣ-rule, i.e., there exists σ in
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N and χ⃗ ∈ SEN(Σ)p, such that ϕi = σΣ(ϕ, χ⃗) and ϕk = σΣ(ψ, χ⃗), for

some ϕ,ψ ∈ ThmΣ. But, then, for the same σ in N and SEN(f)(χ⃗) ∈
SEN(Σ′)p, we have that SEN(f)(ϕ),SEN(f)(ψ) ∈ ThmΣ′ and

SEN(f)(ϕi) = σΣ′(SEN(f)(ϕ),SEN(f)p(χ⃗)),
SEN(f)(ϕk) = σΣ′(SEN(f)(ψ),SEN(f)p(χ⃗)).

Thus, SEN(f)(ϕk) follows from SEN(f)(ϕi) by an application of the

RΣ′-rule
σΣ′(SEN(f)(ϕ),SEN(f)(χ⃗))
σΣ′(SEN(f)(ψ),SEN(f)(χ⃗)) .

This concludes the proof of structurality of CThm,R. ◻

Thus, IThm,R = ⟨F ,CThm,R⟩ is a π-institution. Let us denote by ThmR =
{ThmR

Σ}Σ∈∣Sign∣ the theorem system of IThm,R. It turns out that the theo-

rem system ThmR coincides with the theorem system Thm of I:

Lemma 5. Let I = ⟨F ,C⟩ be a weakly self-extensional π-institution,

with theorem family Thm. Then Thm = ThmR.

Proof. Clearly, by the definition of CThm,R, Thm ≤ ThmR.

For the converse, suppose that Σ ∈ ∣Sign∣ and ϕ ∈ ThmR
Σ. Thus, ϕ ∈

CThm,R
Σ (∅). This means that there exists an RΣ-proof

ϕ0, ϕ1, . . . , ϕn = ϕ

of φ from ThmΣ. We show by induction on k ≤ n that ϕk ∈ ThmΣ.

Base: If k = 0, then ϕ0 must be in ThmΣ by hypothesis.

Hypothesis: Suppose that, for all i < k ≤ n, ϕi ∈ ThmΣ.

Step: If ϕk ∈ ThmΣ, then there is nothing to prove. Otherwise, ϕk follows

from ϕi, i < k, by an application of an RΣ-rule. Thus, for some σ in

N , some χ⃗ ∈ SEN(Σ)p and some ϕ,ψ ∈ ThmΣ,

ϕi = σΣ(ϕ, χ⃗), ϕk = σΣ(ψ, χ⃗).

By weak selfextensionality of I, we get ⟨ϕ,ψ⟩ ∈ ΩΣ(Thm). Thus,

since Ω(Thm) is a congruence system, ⟨ϕi, ϕk⟩ ∈ ΩΣ(Thm). Since,

by the Induction Hypothesis, ϕi ∈ ThmΣ, by the compatibility of the

Leibniz congruence system, we get ϕk ∈ ThmΣ.
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This shows that ϕ ∈ ThmΣ. Therefore ThmR ≤ Thm. ◻

The next result shows that IThm,R is a self-extensional π-institution.

Intuitively speaking, this feature is instilled to the π-institution by virtue

of its definition.

Lemma 6. Let I = ⟨F ,C⟩ be a weakly self-extensional π-institution,

with theorem family Thm. Then IThm,R is a selfextensional π-institution.

Proof. Suppose Σ ∈ ∣Sign∣ and ϕ,ψ ∈ SEN(Σ) are such that

CThm,R
Σ (ϕ) = CThm,R

Σ (ψ).

Then ϕ ∈ CThm,R
Σ (ψ). Let σ ∶ SENk → SEN in N , Σ′ ∈ ∣Sign∣, f ∈

Sign(Σ,Σ′) and χ⃗ ∈ SEN(Σ′)k be fixed but arbitrary. Our goal is to show

that σΣ′(SEN(f)(ϕ), χ⃗) ∈ CThm,R
Σ′ (σΣ′(SEN(f)(ψ), χ⃗)). By symmetry, it

then follows

CThm,R
Σ′ (σΣ′(SEN(f)(ϕ), χ⃗)) = CThm,R

Σ′ (σΣ′(SEN(f)(ψ), χ⃗)),

i.e., that IThm,R is self-extensional.

Suppose first that ϕ ∈ ThmΣ. Then, ψ ∈ ThmΣ also. Hence SEN(f)(ϕ)
and SEN(f)(ψ) are in ThmΣ′ . Therefore, σΣ′(SEN(f)(ϕ), χ⃗) follows by

an application of a rule in RΣ′ from σΣ′(SEN(f)(ψ), χ⃗). This proves that

σΣ′(SEN(f)(ϕ), χ⃗) ∈ CThm,R
Σ′ (σΣ′(SEN(f)(ψ), χ⃗)).

Now we turn to the case where ϕ ∉ ThmΣ. Since ϕ ∈ CThm,R
Σ (ψ), there

exists an RΣ-proof

ϕ0, ϕ1, . . . , ϕn = ϕ

of ϕ from premises {ψ} ∪ThmΣ. Consider the sequence

ϕ′0, ϕ
′

1, . . . , ϕ
′

n,

defined by induction on k ≤ n as follows:

● If ϕk = ψ, then ϕ′k = σΣ′(SEN(f)(ψ), χ⃗).

● If ϕk ∈ ThmΣ, then ϕ′k = SEN(f)(ϕk).

● If ϕk follows from ϕi, i < k, by an application of the RΣ-rule
τΣ(ζ,η⃗)
τΣ(ξ,η⃗)

,

we set:
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– ϕ′k = SEN(f)(φk), if ϕ′i = SEN(f)(ϕi);
– ϕ′k = σΣ′(SEN(f)(ϕk), χ⃗), if ϕ′i = σΣ′(SEN(f)(ϕi), χ⃗).

Our goal is to show that this is a valid RΣ′-proof of σΣ′(SEN(f)(ϕ), χ⃗)
from premises {σΣ′(SEN(f)(ψ), χ⃗)} ∪ ThmΣ′ . We do this by employing

induction on k ≤ n to show that the sequence

ϕ′0, ϕ
′

1, . . . , ϕ
′

k

is an RΣ′-proof of ϕ′k from premises {σΣ′(SEN(f)(ψ), χ⃗)} ∪ThmΣ′ .

Base: If k = 0, we have two cases:

– If ϕ0 = ψ, then ϕ′0 = σΣ′(SEN(f)(ψ), χ⃗) follows by hypothesis.

– If ϕ0 ∈ ThmΣ, then ϕ′0 = SEN(f)(ϕ0) ∈ ThmΣ′ also follows by

hypothesis.

Hypothesis: Assume that, for all i < k ≤ n,

ϕ′0, ϕ
′

1, . . . , ϕ
′

i

is a validRΣ′-proof of ϕ′i from premises {σΣ′(SEN(f)(ψ), χ⃗)}∪ThmΣ′ .

Step: If ϕk = ψ or ϕk ∈ ThmΣ, then we replicate the reasoning in the Base.

Suppose that ϕk follows from ϕi, i < k, by an application of the

RΣ-rule
τΣ(ζ,η⃗)
τΣ(ξ,η⃗)

, where ζ, η ∈ ThmΣ.

– If ϕ′i = SEN(f)(ϕi), then ϕ′k = SEN(f)(ϕk). Since ζ, ξ ∈ ThmΣ,

SEN(f)(ζ),SEN(f)(ξ) ∈ ThmΣ′ . Thus, this step in the proof is

justified by the fact that

ϕ′i
ϕ′k

= SEN(f)(ϕi)
SEN(f)(ϕk)

= τΣ′(SEN(f)(ζ),SEN(f)p(η⃗))
τΣ′(SEN(f)(ξ),SEN(f)p(η⃗))

is a valid RΣ′-rule.

– If ϕ′i = σΣ′(SEN(f)(ϕi), χ⃗), then ϕ′k = σΣ′(SEN(f)(ϕk), χ⃗).
Once more, since ζ, ξ ∈ ThmΣ, we get SEN(f)(ζ),SEN(f)(ξ) ∈
ThmΣ′ . Thus, this step in the proof is justified by the fact that

σΣ′(SEN(f)(ϕi), χ⃗)
σΣ′(SEN(f)(ϕk), χ⃗)

= σΣ′(τΣ′(SEN(f)(ζ),SEN(f)p(η⃗)), χ⃗)
σΣ′(τΣ′(SEN(f)(ξ),SEN(f)p(η⃗)), χ⃗)

is a valid RΣ′-rule.
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By symmetry, interchanging the roles of ϕ,ψ in the preceding reasoning, we

get that, for all σ ∶ SENk → SEN in N , all Σ′ ∈ ∣Sign∣, all f ∈ Sign(Σ,Σ′)
and all χ⃗ ∈ SEN(Σ′)k,

CThm,R
Σ′ (SEN(f)(ϕ), χ⃗) = CThm,R

Σ′ (SEN(f)(ψ), χ⃗).

By the CAAL characterization theorem of the Tarski congruence system of

a π-institution (Theorem 4 of [10]), we get that ⟨ϕ,ψ⟩ ∈ Ω̃Σ(IThm,R). This

proves that IThm,R is a selfextensional π-institution. ◻

Corollary 7. Let I = ⟨F ,C⟩ be a weakly self-extensional π-institution,

with theorem family Thm. Then IThm,R is a referential π-institution.

Proof. By Lemma 6 and Theorem 2 (Theorem 8 of [9]). ◻

Proposition 8. If a π-institution I = ⟨F ,C⟩ is weakly self-extensional,

then it is weakly referential.

Proof. Let I be weakly self-extensional. Denote by Thm its theo-

rem family. Construct the π-institution IThm,R and denote by ThmR its

theorem family. By Corollary 7, IThm,R is referential and, by Lemma 5,

Thm = ThmR. Therefore, I is weakly referential. ◻

Theorem 9. A π-institution I = ⟨F ,C⟩ is weakly referential if and only

if it is weakly self-extensional.

Proof. The left-to-right implication is Proposition 3. The right-to-left

implication is Proposition 8. ◻
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