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Gert-Jan C. LOKHORST

AN ALTERNATIVE INTUITIONISTIC
VERSION

OF MALLY’S DEONTIC LOGIC

A b s t r a c t. Some years ago, Lokhorst proposed an intuitionistic

reformulation of Mally’s deontic logic (1926). This reformulation

was unsatisfactory, because it provided a striking theorem that

Mally himself did not mention. In this paper, we present an alter-

native reformulation of Mally’s deontic logic that does not provide

this theorem.

.1 Introduction

Some years ago, Lokhorst proposed an intuitionistic reformulation of Mally’s
deontic logic (1926) [3]. This reformulation was unsatisfactory, because it
provided a striking theorem that Mally himself did not mention, namely
�(A∨¬A). In this paper, we present an alternative reformulation of Mally’s
deontic logic that does not provide this theorem.
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.2 Definitions

Heyting’s system of intuitionistic propositional logic h is defined as
follows [1, Ch. 2].

Axioms: (a) A→ (B → A).

(b) (A→ (B → C))→ ((A→ B)→ (A→ C)).

(c) (A ∧B)→ A; (A ∧B)→ B.

(d) A→ (B → (A ∧B)).

(e) A→ (A ∨B); B → (A ∨B).

(f) (A→ C)→ ((B → C)→ ((A ∨B)→ C)).

(g) ⊥ → A.

Rule: A,A→ B/B (modus ponens, MP).

Definitions: ¬A = A→ ⊥, > = ¬⊥, A↔ B = (A→ B) ∧ (B → A).

The second-order intuitionistic propositional calculus with
comprehension C2h is h plus [1, Ch. 9]:

Axioms: Q1 (∀x)A(x)→ A(y).

Q2 A(y)→ (∃x)A(x).

Q5 (∀x)(B ∨A(x))→ (B ∨ (∀x)A(x)), x not free in B.

Q6 (∃x)(x↔ A), x not free in A.

Rules: Q3 A(x)→ B/(∃x)A(x)→ B, x not free in B.

Q4 B → A(x)/B → (∀x)A(x), x not free in B.

Definition: ⊥ df
= (∀x)x [1, Ch. 9, Exercise 10].

An intuitionistic version of Mally’s deontic logic �C2h is C2h plus
[4, Ch. I]:

A1 ((A→ �B) ∧ (B → C))→ (A→ �C).

A2 ((A→ �B) ∧ (A→ �C))→ (A→ �(B ∧ C)).

A3 (A→ �B)↔ �(A→ B).

A4 �>.

A5 ¬(> → �⊥).

Some comments on �C2h:

1. Mally wrote !A instead of �A. He read !A as “it ought to be case
that A” or “it is required that A is the case.” He read A→ !B as “A
requires B.”
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2. Definition: U
df
= >. Mally read U as “the unconditionally required”

or “what conforms with what ought to be the case.”

3. Definition:

Udf
= ⊥. Mally read

U

as “what conflicts with what ought
to be the case.”

4. Mally wrote ∃U �U instead of A4. We regard ∃U �U as ill-formed,
because we view U as a constant. We therefore replace ∃U � U by
(∃x)((x ↔ U) ∧ �x) (this is formula T15′′ in the Appendix below).
This agrees with Mally’s informal interpretation of ∃U �U.

.3 Theorems

Definition 1. Let A be a formula in the language of �C2h. By induc-
tion on the number of connectives in A we define two translations, [A]+ and
[A]−, of A into the formulas of C2h as follows:

1. If A is atomic, then [A]±
df
= A.

2. [⊥]±
df
= ⊥.

3. [A1 ⊗A2]
± df

= [A1]
± ⊗ [A2]

±, where ⊗ is ∧, ∨ or →.

4. [(Qx)A(x)]±
df
= (Qx)[A(x)]±, where (Qx) is (∀x) or (∃x).

5. [�A]+
df
= [A]+ and [�A]−

df
= ¬¬[A]−.

Theorem 1. (After [2, Theorem 1, p. 312].) If A is a theorem of �C2h,
then [A]± is a theorem of C2h.

Proof. By induction on the construction of the proof of A. Base case:
for each axiom A of �C2h, [A]± is a theorem of C2h, as can easily be
checked. Inductive step: MP, Q3 and Q4 preserve this property. Suppose
that the theorem holds for A, B and that �C2h provides A/B by rule R
(induction hypothesis). We show that C2h provides [A]±/[B]± by R.

Case R of:

• MP: let A
df
= C, B

df
= C → D. C2h provides [A]±/[B]± by R,

because [A]± = [C]± and [B]±
df
= [C → D]±

df
= [C]± → [D]±.

• Q3: let A
df
= C(x) → D, B = (∃x)C(x) → D, x not free in D. C2h

provides [A]±/[B]± by R, because [A]±
df
= [C(x)→ D]±

df
= [C(x)]± →

[D]± and [B]±
df
= [(∃x)C(x)→ D]±

df
= (∃x)[C(x)]± → [D]±.
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• Q4: let A
df
= C → D(x), B = [C → (∀x)D(x)]±, x not free in C. C2h

provides [A]±/[B]± by R, because [A]±
df
= [C → D(x)]±

df
= [C]± →

[D(x)]± and [B]±
df
= [C → (∀x)D(x)]±

df
= [C]± → (∀x)[D(x)]±.

�

Theorem 2. (After [2, Theorem 1, p. 312].) Let p be an atomic formula.
There is no formula A in the language of C2h such that �C2h ` �p↔ A.

Proof. From Theorem 1. If for some formula A of C2h, �C2h ` �p↔
A, then C2h ` ¬¬p ↔ A and C2h ` p ↔ A, since [A]± is A. Hence
C2h ` p↔ ¬¬p, but this is false. �

Definition 2. For theories T based on intuitionistic logic, if A is an
arbitrary formula of the language of T , then A is stable in T if and only if
T provides ¬¬A→ A.

Theorem 3. �A is not stable in �C2h.

Proof. From Theorem 1. [¬¬�p→ �p]+ (
df
= ¬¬p→ p) is not a theorem

of C2h. �

Theorem 4. �C2h provides A1–A5 and all theorems of [4, Chs. I–II]
(see Appendix), except:

T12c �(A→ B)↔ �¬(A ∧ ¬B).

T12d �¬(A ∧ ¬B)↔ �(¬A ∨B).

T13a (A→ �B)↔ ¬(A ∧ ¬ �B).

T13b ¬(A ∧ ¬ �B)↔ (¬A ∨ �B).

T14 (A→ �B)↔ (¬B → �¬A).

Proof. From Theorem 1. For each formula A on the above list, [A]+ is
not a theorem of C2h. Additionally, [T13b]− is not a theorem of C2h. �

Theorem 5. �C2h does not provide �(A ∨ ¬A).

Proof. From Theorem 1. [�(p ∨ ¬p)]+ (
df
= p ∨ ¬p) is not a theorem of

C2h. �
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.4 Conclusion

The intuitionistic reformulation of Mally’s deontic logic proposed in [3] pro-
vided �(A ∨ ¬A). This formula is not a theorem of �C2h. Moreover,
Mally did not mention this formula. �C2h is, in a sense, therefore more
adequate than the intuitionistic reformulation proposed in [3], even though
the latter reformulation lacked only T13b (from the formulas mentioned in
Theorem 4).

.Appendix

All theorems from [4, Ch. II], as listed in [5, pp. 121–123], plus one theorem
that seems to have been overlooked in [5, pp. 121–123], namely T15′′ (cf. [4,
Ch. I, axiom IV]). All theorems are derivable in �C2h, except those marked
with a † (Theorem 4).

T01 (C → �(A ∧B))→ ((C → �A) ∧ (C → �B))
T02 ((C → �A) ∧ (C → �B))↔ (C → �(A ∧B))
T1 (A→ �B)→ (A→ �>)
T2′ (A→ �⊥)→ (∀x)(A→ �x)
T2′′ (∀x)(A→ �x)→ (A→ �⊥)
T3 ((C → �A) ∨ (C → �B))→ (C → �(A ∨B))
T4 ((C → �A) ∧ (D → �B))→ ((C ∧D)→ �(A ∧B))
T5a �A↔ (∀x)(x→ �A)
T5b (∀x)(x→ �A)↔ (∀x)(x→ �A)
T6 (�A ∧ (A→ B))→ �B
T7 �A→ �>
T8 ((A→ �B) ∧ (B → �C))→ (A→ �C)
T9 (�A ∧ (A→ �B))→ �B
T10 (�A ∧ �B)↔ �(A ∧B)
T11 ((A→ �B) ∧ (B → �A))↔ �(A↔ B)
T12a (A→ �B)↔ (A→ �B)
T12b (A→ �B)↔ �(A→ B)
†T12c �(A→ B)↔ �¬(A ∧ ¬B)
†T12d �¬(A ∧ ¬B)↔ �(¬A ∨B)
†T13a (A→ �B)↔ ¬(A ∧ ¬ �B)
†T13b ¬(A ∧ ¬ �B)↔ (¬A ∨ �B)
†T14 (A→ �B)↔ (¬B → �¬A)
T15 (∀x)(x→ �U)
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T15′′ (∃x)((x↔ U) ∧ �x)
T16 (U→ A)→ �A
T17 (U→ �A)→ �A
T18 � �A→ �A
T19 � �A↔ �A
T20 (U→ �A)↔ ((A→ �U) ∧ (U→ �A))
T21 �A↔ ((A→ �U) ∧ (U→ �A))
T22 �>
T23′ > → �U
T23′′ U→ �>
T23′′′ �(U↔ >)
T24 A→ �A
T25 (A→ B)→ (A→ �B)
T26 (A↔ B)→ ((A→ �B) ∧ (B → �A))
T27 (∀x)(

U

→ �¬x)
T27′ (∀x)(

U

→ �x)
T28

U

→ �

U

T29

U

→ �U
T30

U

→ �⊥
T31 (

U
→ �⊥) ∧ (⊥ → �

U
)

T31′ �(

U

↔ ⊥)
T32 ¬(U→ �⊥)
T33 ¬(U→ ⊥)
T34 U↔ >
T35

U

↔ ⊥
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