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Bruno DINIS and Gilda FERREIRA

INSTANTIATION OVERFLOW

A b s t r a c t. The well-known embedding of full intuition-

istic propositional calculus into the atomic polymorphic system

Fat is possible due to the intriguing phenomenon of instantia-

tion overflow. Instantiation overflow ensures that (in Fat) we can

instantiate certain universal formulas by any formula of the sys-

tem, not necessarily atomic. Until now only three types in Fat

were identified with such property: the types that result from the

Prawitz translation of the propositional connectives (⊥, ∧, ∨) into

Fat (or Girard’s system F). Are there other types in Fat with

instantiation overflow? In this paper we show that the answer is

yes and we isolate a class of formulas with such property.
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.1 Introduction

Since 2006 [1], it is known that the restriction of Jean-Yves Girard’s sys-

tem F [6] to atomic universal instantiations embeds the full intuitionistic

propositional calculus (IPC). Or, on recent terminology [3], the atomic

polymorphic system Fat embeds IPC.

System Fat has exactly the same formulas as F: the smallest class of

expressions which includes the atomic formulas (propositional constants P ,

Q, R, . . . and second-order variables X, Y , Z, . . .) and is closed under impli-

cation and second-order universal quantification. The (natural deduction)

rules of Fat only differ from the ones of F on the second-order universal

elimination rule where a restriction to atomic instantiations is imposed.

I.e., the introduction rules of Fat are as in F:

[A]
.
.
.
B →I

A→ B

.

.

.
A ∀I∀X.A

where, in the universal rule, X does not occur free in any undischarged

hypothesis

and the elimination rules of Fat are:

.

.

.
A→ B

.

.

.
A →E

B

.

.

.

∀X.A ∀E
A[C/X]

where C is an atomic formula (free for X in A), and A[C/X] is the result

of replacing in A all the free occurrences of X by C. (Note that system

F allows in the ∀E-rule the instantiation by any formula, not only by the

atomic ones.)

For a formulation of Fat in the (operational) λ-calculus style see [3].

As opposed to Girard’s F, system Fat is predicative, has a good notion

of subformula and enjoys the subformula property (see [1]).

Moreover, strong normalization for Fat can be proved by an easy adap-

tation of Tait’s reducibility technique with no need for Girard’s reducibility

candidates, and an alternative proof of strong normalization for IPC can

be derived [3].
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The embedding of IPC into Fat [1, 2] is via the Prawitz translation of

connectives [7]:

⊥:= ∀X.X

A ∧B := ∀X((A→ (B → X))→ X)

A ∨B := ∀X((A→ X)→ ((B → X)→ X)),

where X is a second-order variable which does not occur in A nor in B;

and is made possible due to the property of instantiation overflow, which

ensures that, from the universal formulas above, it is possible to deduce in

Fat (respectively)

F

(A→ (B → F ))→ F

(A→ F )→ ((B → F )→ F ),

for any (not necessarily atomic) formula F . In other words, although the

∀E-rule of Fat allows just atomic instantiations, for the three types above

(i.e., for the translations of⊥, A∧B or A∨B), instantiation overflow ensures

that we can (via a proper derivation in Fat) do the instantiation with any

formula. (Modulo derivations in Fat) These three types are not affected by

Fat’s restriction. Instantiation overflow is crucial in the embedding of IPC

into Fat. For the proof of instantiation overflow1 in the three cases above

and the proof of the (sound) embedding of IPC into Fat see [1, 2, 3]. The

faithfulness of the embedding can be seen in [4, 5].

In [3] we can read:

“The above three types correspond to the empty type, the product type

and the sum type (respectively) in the terminology of Girard et al. [6]. We

believe that it is an interesting question to characterize exactly which types

enjoy the property of instantiation overflow.”

Note that if all formulas of Fat had instantiation overflow, the system

would have the exact same expressive power as F. This is of course very

far from being the case2.

1The proof is by induction on the complexity of F and provides an algorithmic method

for obtaining the deductions for the three types above.
2It is not clear yet how Fat and IPC compare in terms of expressiveness.
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Until now, the only formulas identified in Fat with the overflow property

were the three types above. In general, from an universal formula, we do

not have a derivation in Fat for its instantiation by an arbitrary formula of

the system. See Appendix A for the illustration of that impossibility with

a concrete example. A brief inspection over arbitrary universal formulas

quickly made us wonder if there was any other formula in Fat with the

overflow property.

This paper is a first contribution towards (what seems to be) the hard

problem of characterizing the class of formulas of Fat with instantiation

overflow. Inspired by the formula’s structure imposed by the Prawitz trans-

lation of the IPC connectives ⊥, ∧, ∨, we construct a class of formulas

stratified by levels and prove that the universal closure of all formulas in

the first two levels (which properly include the translation of the three

IPC connectives above) have the property of instantiation overflow. We

also show that at each level we can find at least a formula whose universal

closure has the overflow property.

.2 Formulas with instantiation overflow

As mentioned in Section 1, we know that the three types

• ∀X.X,

• ∀X((A→ (B → X))→ X),

• ∀X((A→ X)→ ((B → X)→ X)),

with X a second-order variable which does not occur in A nor in B, have

instantiation overflow. So far, no other formulas in Fat were known to

have such property. When trying to answer the natural question: “Are

there other formulas in Fat with instantiation overflow?” some easy can-

didates are the universal closure of the subformulas of the formulas above.

Not surprisingly, as shown in the result below, they still have instantiation

overflow. Proposition 2.1 follows as a particular case of more general results

(see Corollary 2.11) presented later in this section. We opted for presenting

its proof here to familiarize the reader with the algorithmic structure of a

proof of instantiation overflow.
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Proposition 2.1. The following formulas

1. ∀X (A→ X),

2. ∀X (A→ (B → X)),

3. ∀X ((A→ X)→ X),

with X a second-order variable which does not occur in A nor in B, have

instantiation overflow.

Proof. 1. From ∀X (A→ X) we want to show that there is a deriva-

tion in Fat of A → F , for any formula F . The proof is by induction on

the complexity of the formula F . For F an atomic formula the result is

immediate from the application of the ∀E-rule. For F of the form D → E

we have

∀X (A→ X)
(IH)

A→ E [A]

E
D → E

A→ (D → E)

For F of the form ∀X.E we have

∀X (A→ X)
(IH)

A→ E [A]

E
∀X.E

A→ ∀X.E

Note that in the double lines above we are assuming (by induction hypoth-

esis) that instantiation overflow is available for E.

Cases 2. and 3. are proved in a similar way. We present below the

deduction trees for implication and universal quantification in the latter

case.
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3. One has

∀X ((A→ X)→ X)
(IH)

(A→ E)→ E

[A→ (D → E)] [A]

D → E [D]

E
A→ E

E
D → E

(A→ (D → E))→ (D → E)

and

∀X ((A→ X)→ X)
(IH)

(A→ E)→ E

[A→ ∀X.E] [A]

∀X.E
E

A→ E

E
∀X.E

(A→ ∀X.E)→ ∀X.E
�

In the following proposition we present a formula with instantiation

overflow which is not a subformula of any of the three types in the beginning

of this section.

Proposition 2.2. The formula ∀X ((A→ X)→ (B → X)), with X

not occurring in A nor in B, has instantiation overflow.

Proof. Let us prove, by induction on the complexity of the formula F ,

that from ∀X ((A→ X)→ (B → X)) we can derive (A→ F )→ (B → F )

for any formula F . For F an atomic formula, the result is immediate. We

give below the deduction trees for F :≡ D → E and for F :≡ ∀X.E.

∀X ((A→ X)→ (B → X))
(IH)

(A→ E)→ (B → E)

[A→ (D → E)] [A]

D → E [D]

E
A→ E

B → E [B]

E
D → E

B → (D → E)

(A→ (D → E))→ (B → (D → E))
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and

∀X ((A→ X)→ (B → X))
(IH)

(A→ E)→ (B → E)

[A→ ∀X.E] [A]

∀X.E
E

A→ E

B → E [B]

E
∀X.E

B → ∀X.E
(A→ ∀X.E)→ (B → ∀X.E)

�

Since the target system in the Prawitz translation of the full intuition-

istic propositional calculus is a system with implication, the connectives

translated are ⊥, ∧ and ∨, with no need to translate →. Note however

that B → A could be translated (following a similar strategy) by the for-

mula of Proposition 2.2.

Could it be the case that the only formulas in Fat with instantiation

overflow were the ones that came from the translation of the four logical

connectives via the previous extension of Prawitz correspondence (and their

subformulas)? The answer is “no”.

Having in view to isolate a class of formulas with instantiation overflow

we start with some definitions.

Definition 2.3. Consider the formula ∀X.A. We say thatA is a Prawitz

formula if A can be obtained according to the following clauses:

(i) A ≡ X.

(ii) A ≡ B → P , where X does not occur in B and P is a Prawitz

formula.

(iii) A ≡ P → Q, where P , Q are Prawitz formulas.

Definition 2.4. Let A be a Prawitz formula. We define lv(A), the level

of A, according to the following clauses:

(i) lv(A) := 0, if A ≡ X.

(ii) lv(A) := lv(P ), if A ≡ B → P , where X does not occur in B and P

is a Prawitz formula.
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(iii) lv(A) := max (lv (P ) + 1, lv (Q)), if A ≡ P → Q, where P , Q are

Prawitz formulas.

Note that the formulas of level 0 are the ones obtained by restricting

Definition 2.3 to the first two clauses, i.e. are the smallest class of formulas

that includes X and is closed under B → with B any formula of Fat where

X does not occur. It is easy to see that a formula A has level 0 if and only

if A is of the form Bn → (Bn−1 → (...→ (B1 → B0)...)), for n ∈ N0, where

X does not occur in Bi (1 ≤ i ≤ n) and B0 ≡ X.

Lemma 2.5. Let A be a Prawitz formula such that lv (A) = 0. Let

D,E be formulas in Fat.

1. If there is a proof of A [E/X] in Fat, possibly with undischarged hy-

pothesis, then we can extend that proof to a proof of A [D → E/X]

and discharge any hypothesis D.

2. If there is a proof of A [E/X] in Fat, where X does not occur free in

any undischarged hypothesis, then we can extend that proof to a proof

of A [∀X.E/X].

Proof. Take A ≡ Bn → (Bn−1 → (...→ (B1 → B0) ...)), where B0 is

X and X does not occur in Bi (1 ≤ i ≤ n). In both cases the proof is by

induction on n ∈ N0.

1. For n = 0 the proof is trivial (an application of the→I-rule). For the in-

duction step assume that from a proof of Bn→(Bn−1→(...→(B1 → E) ...))

we may derive Bn → (Bn−1 → (...→ (B1 → (D → E)) ...)) and discharge

any hypothesis D. Then

.

.

.
Bn+1 → (Bn → (...→ (B1 → E) ...)) [Bn+1]

Bn → (Bn−1 → (...→ (B1 → E) ...))
(IH)

Bn → (Bn−1 → (...→ (B1 → (D → E)) ...))

Bn+1 → (Bn → (...→ (B1 → (D → E)) ...))

I.e., from a proof of Bn+1 → (Bn → (...→ (B1 → E) ...)) we may derive

Bn+1 → (Bn → (...→ (B1 → (D → E)) ...)) and discharge any hypothesis

D.

2. For n = 0 the proof is trivial (an application of the ∀I-rule).
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For the induction step assume that from a proof of Bn → (Bn−1 → (... →
(B1 → E)...)), where X does not occur free in any undischarged hypothesis

we may derive a proof of Bn → (Bn−1 → (...→ (B1 → ∀X.E) ...)). Then

.

.

.
Bn+1 → (Bn → (...→ (B1 → E) ...)) [Bn+1]

Bn → (Bn−1 → (...→ (B1 → E) ...))
(IH)

Bn → (Bn−1 → (...→ (B1 → ∀X.E) ...))

Bn+1 → (Bn → (...→ (B1 → ∀X.E)) ...)

I.e., from a proof of Bn+1 → (Bn → (...→ (B1 → E) ...)), where X does

not occur free in any undischarged hypothesis, we may derive a proof of

Bn+1 → (Bn → (...→ (B1 → ∀X.E)) ...). �

In what follows we will be interested not only on the existence of the

derivations above but also in the concrete derivations displayed in the proof

of Lemma 2.5.

Theorem 2.6. If lv(A) = 0 then the formula ∀X.A has instantiation

overflow.

Proof. Because lv(A) = 0 we have (i) A ≡ X or (ii) A ≡ Bn →
(Bn−1 → (... → (B1 → X)...)), for some n ≥ 1. Case (i) was shown in [1].

To prove case (ii) we need to show that from ∀X.A we can derive, in Fat,

A [F/X], for any formula F . By induction on the complexity of F we study

the cases F :≡ D → E and F :≡ ∀X.E. One has

∀X (Bn → (Bn−1 → (...→ (B1 → X) ...)))
(IH)

Bn → (Bn−1 → (...→ (B1 → E) ...))
Lemma 2.5.1

Bn → (Bn−1 → (...→ (B1 → (D → E)) ...))

and

∀X (Bn → (Bn−1 → (...→ (B1 → X) ...)))
(IH)

Bn → (Bn−1 → (...→ (B1 → E) ...))
Lemma 2.5.2

Bn → (Bn−1 → (...→ (B1 → (∀X.E)) ...))

�

We aim to show that any Prawitz formula A such that lv (A) = 1 also

has instantiation overflow. In order to do so we need a kind of converse of
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Lemma 2.5 (for level 0 formulas) and a version of the same lemma for level

1 formulas.

Lemma 2.7. Let A be a Prawitz formula such that lv (A) = 0. Let D,E

be arbitrary formulas in Fat. From A [D → E/X] and D we can derive, in

Fat, A [E/X].

Proof. Since lv (A) = 0, A has the form

Bn → (Bn−1 → (...→ (B1 → B0) ...)) ,

where B0 is X and X does not occur in Bi (1 ≤ i ≤ n). The proof is

by induction on n ∈ N0. For n = 0 the proof is trivial (an applica-

tion of the →E-rule). For the induction step assume that from Bn →
(Bn−1 → (... → (B1 → (D → E))...)) and D we may derive Bn →
(Bn−1 → (...→ (B1 → E) ...)). Then

Bn+1 → (Bn → (...→ (B1 → (D → E)) ...)) [Bn+1]

Bn → (Bn−1 → (...→ (B1 → (D → E)) ...)) D
(IH)

Bn → (Bn−1 → (...→ (B1 → E) ...))

Bn+1 → (Bn → (...→ (B1 → E) ...))

I.e., from Bn+1 → (Bn → (...→ (B1 → (D → E)) ...)) and D we may

derive Bn+1 → (Bn → (...→ (B1 → E) ...)).

�

Lemma 2.8. Let A be a Prawitz formula such that lv(A) = 0. Let E

be an arbitrary formula in Fat. Then from A [∀X.E/X] we can derive, in

Fat, A [E/X].

Proof. We prove, by induction on n, that the formula A ≡ Bn →
(Bn−1 → (... → (B1 → B0)...)), where B0 ≡ X and X does not occur

in Bi (1 ≤ i ≤ n) has the desired property, for all n ∈ N0. For n = 0

the result is trivial (an application of the ∀E-rule). For the induction step

assume that from Bn → (Bn−1 → (... → (B1 → ∀X.E)...)) we may derive

Bn → (Bn−1 → (...→ (B1 → E) ...)). Then
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Bn+1 → (Bn → (...→ (B1 → ∀X.E) ...)) [Bn+1]

Bn → (Bn−1 → (...→ (B1 → ∀X.E) ...))
(IH)

Bn → (Bn−1 → (...→ (B1 → E) ...))

Bn+1 → (Bn → (...→ (B1 → E) ...))

I.e., from Bn+1 → (Bn → (...→ (B1 → ∀X.E) ...)) we may derive

Bn+1 → (Bn → (...→ (B1 → E) ...)). �

By Definition 2.4, we can see that the class of Prawitz formulas of level

1 is the smallest class of formulas which includes the formulas of the form

P2 → P1 with lv (P2) = lv (P1) = 0 and is closed under B → and S →
where B is any formula in Fat where X does not occur and S is any level

0 formula.

Lemma 2.9. Let A be a Prawitz formula such that lv (A) = 1. Let

D,E be arbitrary formulas in Fat. Then

1. If there is a proof of A [E/X] in Fat, possibly with undischarged hy-

pothesis, then we can extend that proof to a proof of A [D → E/X]

and discharge any hypothesis D.

2. If there is a proof of A [E/X], in Fat, where X does not occur free in

any undischarged hypothesis, then we can extend that proof to a proof

of A [∀X.E/X].

Proof. The proof is, in both cases, by induction on A, noticing that,

because lv(A) = 1, the Prawitz formula A has one of the following forms:

a) A ≡ A1 → A2, with A1, A2 Prawitz formulas of level 0;

b) A ≡ B → A′, where X does not occur in B and A′ is a Prawitz

formula of level 1;

c) A ≡ A1 → A2, where A1 is a Prawitz formula of level 0 and A2 is a

Prawitz formula of level 1.
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1. For cases a) and c) we have

.

.

.
A1 [E/X]→ A2 [E/X]

[A1 [D → E/X]] [D]
Lemma 2.7

A1 [E/X]

A2 [E/X]
Lemma 2.5.1, case a), or IH, case c); D discharged

A2 [D → E/X]

A1 [D → E/X]→ A2 [D → E/X]

For case b) we have

.

.

.
B → A′ [E/X] [B]

A′ [E/X]
(IH); D discharged

A′ [D → E/X]

B → A′ [D → E/X]

2. For cases a) and c) we have

.

.

.
A1 [E/X]→ A2 [E/X]

[A1 [∀X.E/X]]
Lemma 2.8

A1 [E/X]

A2 [E/X]
Lemma 2.5.2 (for case a)) or IH (for case c))

A2 [∀X.E/X]

A1 [∀X.E/X]→ A2 [∀X.E/X]

For case b) we have

.

.

.
B → A′ [E/X] [B]

A′ [E/X]
(IH)

A′ [∀X.E/X]

B → A′ [∀X.E/X]

�
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Theorem 2.10. If lv(A) = 1 then the formula ∀X.A has instantiation

overflow.

Proof. The proof is by induction on the complexity of F . We need to

show that from ∀X.A we may derive A [F/X] for any formula F . For F

atomic the proof is trivial (an application of the ∀E-rule). If F :≡ D → E

then

∀X.A
(IH)

A [E/X]
Lemma 2.9.1

A [D → E/X]

If F := ∀X.E then

∀X.A
(IH)

A [E/X]
Lemma 2.9.2

A [∀X.E/X]

We conclude that we may derive A [F/X] for any formula F , hence the

formula ∀X.A has instantiation overflow. �

Corollary 2.11. Let A be the translation into Fat of a formula of the

intuitionistic propositional calculus (through the embedding of IPC into Fat

mentioned in the introductory section) then:

• every universal subformula of A (say ∀X.B) has instantiation over-

flow;

• the universal closure of the subformulas of B which have X as a free-

variable have instantiation overflow.

Proof. Immediately from Theorems 2.6 and 2.10. Note that ∀X.B has

to be the Prawitz’s translation of ⊥, conjunction or disjunction and so B

(and its subformulas which have X as a free-variable) have level less than

or equal to 1. �

Remark 2.12. Let A be an arbitrary closed universal formula, and let

Aio := ∀X ((A→ X)→ X) .
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Trivially, A `Fat A
io. On the other side, by definition, (A→ X)→ X is

a Prawitz formula of level 1, and so by Theorem 2.10, the formula Aio has

instantiation overflow. Hence, Aio `Fat (A→ A)→ A and also Aio `Fat A

does hold. The (not so surprising) conclusion is that any universal formula

is equivalent, in Fat, to a universal formula having instantiation overflow.

And so, given that not all universal formulas have instantiation overflow (see

Appendix A), it turns out that the class of formulas having instantiation

overflow is not closed under logical equivalence.

.3 Prawitz formulas of level 2 and beyond

It remains an open question if levels greater or equal than 2 are also as

well-behaved as levels 0 and 1 concerning instantiation. We are able to

show that (even disregarding tautologies) each level n contains particular

inhabitants whose universal closure has instantiation overflow, namely,

(. . . ((P → X)→ X) . . .)→ X︸ ︷︷ ︸
n+1 times

with P a propositional constant.

Definition 3.1. Let P be a propositional constant. For all n ∈ N0, we

define An recursively by {
A0 := P

An+1 := An → X.

Observe that for n ≥ 1 the formula An is a Prawitz formula with level

n − 1. To show that for all n ∈ N, the formula ∀X.An has instantiation

overflow we need the following lemma.

Lemma 3.2. Let An be as defined above. For all i, k ∈ N0, we can ex-

tend, in Fat, a proof of Ai[F/X] to a proof of A2k+i[F/X], for any formula

F in Fat.

Proof. Fix i ∈ N0. The proof is by induction on k ∈ N0. For k = 0

the result is obvious. Assume that it is possible to extend, in Fat, a proof

of Ai [F/X] to a proof of A2k+i [F/X]. Then
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.

.

.
Ai [F/X]

(IH)
A2k+i [F/X] [A2k+i+1 [F/X]]

F
A2k+i+2 [F/X]

�

Theorem 3.3. For all n ∈ N, the formula ∀X.An has instantiation

overflow.

Proof. We consider two cases: i) n is even (say n ≡ 2m with m ∈ N)

and ii) n in odd (say n ≡ 2m− 1 with m ∈ N).

In the first case, let us prove, by induction on the complexity of the

formula F , that from ∀X.A2m we can derive A2m[F/X] for any formula

F . For F an atomic formula, the result is immediate. We give below the

deduction trees for F :≡ D → E and for F :≡ ∀X.E.

∀X.A2m
(IH)

A2m [E/X]

[P → (D → E)] [P ]

D → E [D]

E
P → E
A1[E/X]

Lemma 3.2
A2m−1 [E/X]

E
D → E

(P → (D → E))→ (D → E)

A2 [D → E/X]
Lemma 3.2

A2m [D → E/X]

where the dashed line means syntactic equality.
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∀X.A2m
(IH)

A2m [E/X]

[P → ∀X.E] [P ]

∀X.E
E

P → E
A1[E/X]

Lemma 3.2
A2m−1 [E/X]

E
∀X.E

(P → ∀X.E)→ ∀X.E
A2 [∀X.E/X]

Lemma 3.2
A2m [∀X.E/X]

In the second case, let us prove, by induction on the complexity of the

formula F , that from ∀X.A2m−1 we can derive A2m−1[F/X] for any formula

F . For F an atomic formula, the result is immediate. We give below the

deduction trees for F :≡ D → E and for F :≡ ∀X.E.

∀X.A2m−1
(IH)

A2m−1 [E/X]

[P ]

A0[E/X]
Lemma 3.2

A2m−2 [E/X]

E
D → E

P → (D → E)

A1[D → E/X]
Lemma 3.2

A2m−1 [D → E/X]

∀X.A2m−1
(IH)

A2m−1 [E/X]

[P ]

A0[E/X]
Lemma 3.2

A2m−2 [E/X]

E
∀X.E

P → ∀X.E
A1[∀X.E/X]

Lemma 3.2
A2m−1 [∀X.E/X]

�

Corollary 3.4. For all n ∈ N0 there exists a Prawitz formula of level

n whose universal closure has instantiation overflow.
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.Appendix A

In this appendix we prove that the formula ∀X (X → P ), with P a propo-

sitional constant, does not have instantiation overflow. Observe that (ac-

cording to Definition 2.3) X → P is not a Prawitz formula.

Theorem 3.5. The formula ∀X (X → P ), with P a propositional con-

stant, does not have instantiation overflow.

Proof. Suppose, in order to obtain a contradiction, that from

∀X (X → P ) one could derive, in Fat, (P → P )→ P . Since Fat is strongly

normalizable [3] take D a normal proof of (P → P )→ P from ∀X (X → P ).

We know that

(δ) every formula in D is either a subformula of ∀X (X → P ) (the hy-

pothesis) or a subformula of (P → P )→ P (the conclusion).3

Let us analyse D. By (δ) the last rule in D must be an introduction rule,

so D has the form

∀X (X → P )
.
.
.

[P → P ]
.
.
.

P
(P → P )→ P

Since P is a propositional constant it has to be derived by an elimination

rule. By (δ) it is the elimination of an implication. Thus, in the bottom of

the proof we have

S → P S
P

(P → P )→ P

By (δ) three situations may occur:

(?) (i) S is the formula P → P or (ii) S is P or (iii) S is an atomic

formula different from P .

Case (i) does not occur. Note that if it were the case we would have

3Condition (δ) is known as the subformula property. See [1] for a proof of the subfor-

mula property in Fat.
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(P → P )→ P P → P

P
(P → P )→ P

which is impossible because D is a normal proof, so it cannot have an η-

conversion. Case (iii) also does not occur because if it was the case we

would have

S → P S
P

(P → P )→ P

and above S the rule could not be an introduction rule since S is an atomic

formula and could not be an elimination rule by (δ). Thus, we would have

case (ii) and the proof would be

P → P P
P

(P → P )→ P

Again, above P we would be in the previous (?) situation. Case (iii)

does not occur (see the argument above). Case (i) uses the conclusion, just

postponing the problem, so we may assume it is not the case. By case (ii)

we have

P → P
P → P P

P
P

(P → P )→ P

Another P and (?) situation was generated and it should be analysed

exactly as before. We see that the process would go forever. This is a

contradiction because D (being a natural deduction proof) has necessarily

a finite number of steps.

�
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Universidade Lusófona de Humanidades e Tecnologias

Av. do Campo Grande, 376

1749-024 Lisboa

Portugal

gmferreira@fc.ul.pt


