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DISCRIMINATOR VARIETIES OF
DOUBLE-HEYTING ALGEBRAS

A bstract. We prove that a variety of double-Heyting algebras
is a discriminator variety if and only if it is semisimple if and
only if it has equationally definable principal congruences. The
result also applies to the class of Heyting algebras with a dual
pseudocomplement operation and to the class of regular double

p-algebras.

1. Introduction

A well-known theorem for boolean algebras, fundamental to the study of
computing and the design of logic circuits, tells us that for all n € w, any
map f: {0,1}"™ — {0, 1} can be defined by a term in the language of boolean
algebras. In a general setting, if a finite algebra A has the property that for
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all n € w, any map f: A” — A can be expressed as a term in the language
of A, then A is called a primal algebra. In this terminology, the two-
element boolean algebra is a primal boolean algebra; indeed, the only primal
boolean algebra. Further examples of primal algebras are found in the
context of n-valued logic: the n-element chains are primal as Post algebras.
Many properties of primal algebras are encapsulated by the existence of a
term that produces the discriminator function: the function t: A3 — A
defined by

if
t(x,y,z) = {x o # .

z ifx=y.

An equational class V, or equivalently, a variety V, is a discriminator variety
if there exists a term ¢ in the language of V such that t is the discrimina-
tor function on every subdirectly irreducible member of V. Discriminator
varieties have been vital in the study of decidability. For instance, Werner
[8] proved that for a discriminator variety V, if V is residually small (that
is, it contains up to isomorphism only a set of subdirectly irreducible alge-
bras), then the first-order theory of V is decidable. Discriminator varieties
also played an important role in McKenzie and Valeriote’s classification of
decidable locally finite varieties [5].

Kowalski [4] classified the discriminator varieties of tense algebras. The
formal details can be found in [4], but we note that the proof relies on the
existence of a unary term d satisfiying certain properties. For all n € w let
T, denote the class of tense algebras A satisfying the equation

A"y ~ d"x.

Theorem 1.1 (Kowalski [4]). Let V be a variety of tense algebras. Then
the following are equivalent:

(1) V is a discriminator variety,

(2) V is semisimple,

(3) V C T, for somen € w,

(4) V has definable principal congruences,

(5) V has equationally definable principal congruences.
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In this paper we utilise techniques from Kowalski’s proof to produce a
result for double-Heyting algebras that is identical in form. The definitions
are laid out in Section 2 and the main result proved in Section 3. Let A be a
double-Heyting algebra and let « € A. Define —x =2 — 0 and ~z =1—x,
then let d°z = z, and for all n € w let d"T'x = ~~d"z. For all n € w, let
DH,, denote the class of double-Heyting algebras satisfying the equation

A"y~ d"z.

Sankappanavar [6] proved that each of the classes DH,, forms a discrim-
inator variety. Our main result shows that they, and their subvarieties, are
the only discriminator varieties of double-Heyting algebras.

Theorem 1.2. LetV be a variety of double-Heyting algebras. Then the
following are equivalent.

1) V is a discriminator variety,

2) V is semisimple,

4

V has definable principal congruences,

(1)
(2)
(3) V C DH,, for some n € w,
(4)
(5)

5

V has equationally definable principal congruences.

2. Preliminaries

2.1. Algebraic preliminaries

We introduce our notation and basic definitions here. For more on universal
algebra see Burris and Sankappanavar [2]. For an algebra A, the congruence
lattice of A is written Con(A). For any a,b € A, the principal congruence
generated by identifying a and b is denoted by CgA(a, b). For a complete
lattice L, an element o € L is compact if, for all I C L, whenever o < \/ I,
there exists a finite set J C I such that « < \/J. For any lattice L, and
any a,b € L we say that a covers b if b < a and there is no element x € L
such that b < x < a. Note that every principal congruence is compact in
Con(A).
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If Con(A) is a distributive lattice then we say A is congruence dis-
tributive. If, for all o, 8 € Con(A), a o = o «, then A is congruence
permutable. 1t is easy to prove that if A is congruence permutable then,
for all o, 5 € Con(A), aV 3 = aof. An algebra is arithmetical if it is both
congruence distributive and congruence permutable.

If every algebra in a class K is congruence distributive (congruence
permutable, arithmetical) then we say that the class K is congruence dis-
tributive (congruence permutable, arithmetical). If the class K is closed
under taking homomorphic images, subalgebras and direct products then
IC is called a wvariety. If there is a set of equations such that I consists of
all algebras satisfying all of those equations, then K is called an equational
class. A fundamental result due to Birkhoff tells us that a class is a variety
if and only if it is an equational class.

An algebra A is subdirectly irreducible if Con(A) has a least non-zero
element p. We will call p the monolith of A. An algebra is called simple if
its congruence lattice has precisely two elements. A variety V is semisimple
if every subdirectly irreducible member of V is simple.

A variety V has definable principal congruences (DPC) if there exists a
first-order formula ¢(x, y, u,v) such that, for all A € V and all a,b,c,d € A,
the following equivalence is satisfied:

(a,b) € Cgh(c,d) <= A E ¢la,b,c,d).

If p(x,y,u,v) can be taken to be a finite conjunction of equations then we
say V has equationally definable principal congruences (EDPC).
We will let N denote the set of natural numbers not including zero.

2.2. Double-Heyting algebras

Definition 2.1. An algebra A = (A;V, A, —, —,0,1) is called a double-
Heyting algebra if (A;V, A, —,0,1) is a Heyting algebra and (4; V, A, —,0, 1)
is a dual Heyting algebra. More precisely, A is a double-Heyting algebra if
(A;V,A,0,1) is a bounded lattice and the operations — and — satisfy the
following equivalences:

TANYy<z < y<z— 2z
zVYy>z < y=>z—1.
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An algebra A = (A;V, A\, —,~,0,1) is a Heyting algebra with dual pseu-
docomplementation (H™T-algebra for short) if (A4;V, A, —,0,1) is a Heyting
algebra and ~ is a dual pseudocomplement operation, that is,

zVy=1 <= y > ~z.

For a Heyting algebra A and all x € A the pseudocomplement of x in
A can be given by —x = x — 0. Similarly, for a dual-Heyting algebra A
and all x € A, the dual pseudocomplement of z in A can be defined by
~r=1-—2x.

Let H* denote the class of H T -algebras and let DH denote the class of
double-Heyting algebras. It is known (see [6] for example) that the classes
HT and DH are both equational classes.

The following result due to Sankappanavar allows us to restrict our
attention to H T-algebras for the remainder of this article.

Theorem 2.2 (Sankappanavar [6]). Let A be a double-Heyting algebra.
Then every HT congruence on A is a double-Heyting congruence on A.

Definition 2.3. Let A be a HT-algebra. Define the map d: A — A by
dx = -~z and define inductively for each n € w the map d": A — A by
d’r = x and d"*lz = d(d"x). A normal filter on A is a filter F' C A that
is closed under d. Let NF(A) denote the lattice of normal filters of A and,
for all z € A let N(x) denote the smallest normal filter containing x. For
each (normal) filter F', let 0(F) denote the relation given by

(r,y) €0(F) <= Bf e F)axNf=yAf.
Lemma 2.4 (Sankappanavar [6]). Let A be an H™ -algebra.

(1) Let x € A. Then N(z) =, Td"x.

new

(2) Let F € NF(A). Then 6(F) is a congruence on A.
(3) Let a € Con(A). Then 1/« is a normal filter.

Theorem 2.5 (Sankappanavar [6]). Let A € HT and let 0: NF(A) —
Con(A) be the map defined by F +— 6(F). Then 0 is an isomorphism.
Moreover,
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(1) for all F € NF(A) and all « € Con(A), we have 1/0(F) = F and
0(1/a) = a,

(2) for all z,y € A, we have Cg™(z,y) = O(N((x = y) A (y — z))). In
particular, O(N (z)) = Cg™ (1, z).

The following lemma is a straightforward consequence of Theorem 2.5.
Lemma 2.6. Let A be an H*-algebra.

(1) If A is simple then, for all a € A\{1}, there exists k € w such that
d*a = 0.

(2) If A is subdirectly irreducible with monolith p then, for all z € 1/u
and all a € A\{1}, there is some k € w such that d*a < z.

3. The main result

In this section we state and prove our main reslt. We begin with four
preparatory lemmas.

Definition 3.1. Let V be a variety with unary terms — and ~, and let
dr = —~z. For all n € w, let V,, denote the subvariety of V satisfying the
equation

A"y~ de.

Lemma 3.2. Let A be a HT -algebra and let x,y € A. Then the fol-
lowing hold for alln € w.

D1) d"1=1, d"0=0.

)

D2) d"tlz < d"x.

D3) if x <y then d"z < d™y.
)

(
(
(
(

D4) ~x < d"~d"x.

Proof. (D1) is obvious, and (D2) and (D3) follow since both — and
~ are order-reversing. We prove (D4) by induction. Firstly, we have
~~dr < dr and so d~dxr = —~~dx > —dr = ——~x > ~z. Now as-
sume the inequality holds for & < n. By the inductive hypothesis we
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have d"~d"dz > ~dz, and it then follows from (D3) that d""l~d"lz =
dd"~d"dx > d~dz > ~zx. 0

Lemma 3.3. Let A € H" and let n € N. If there exists b € A\{1}
n—1
such that d-"z la < b, for all a € A\{1}, then A € H; .

Proof. We separate the argument into cases where n = 2k and n =
2k + 1. First, assume n = 2k, so that [251] = k — 1. Let b € A\{1}
and assume, for all @ € A\{1}, that d*"'a < b. Suppose that d*+1b # 0.
Then ~d*b # 1, and so d*"'~d*b < b by assumption. By (D2) we have
d*~d"b < d*1~d*b and so ~b < b by (D4), which only happens if b = 1
which is not the case. Thus d**'b = 0. Then, for all z < b we have by (D3)
that d*t1z = 0. So, in particular, d**1d*1a = 0, i.e., d**a = 0 = **1q.
We have by (D1) that d**1 = d?**11 = 1, and therefore A € H;}. The
argument is essentially identical for the case n = 2k + 1. O

For convenience we now introduce the term ¢, dual to d, given by gz =

~L.

Lemma 3.4. Let A € H' and let x € A. For all n € w, the following
hold:

(1) ~d"x = q"~x and ~q"x = d"—x,
(2) d"tlx = ~q"~x and ¢"tlz = ~d"—,
(3) ¢"d"r < x < d"¢"x.

Proof. Parts (1) and (2) are obvious. For part (3), we proceed via
induction. Firstly, we have qdox = ~——~xz. Since =—~x > ~x we then have
~—vg < ~rvx < xand the inequality holds for n = 1. Now let n > 1 and
assume the inequality holds for all £ < n. By the inductive hypothesis we
have gdd"x < d"x. It then follows that ¢"1d" 2z = ¢"¢dd"z < ¢"d"x, and
once again by the inductive hypothesis we have ¢"d"z < x, so the inequality
holds. A dual argument holds for the remainder of the inequality. O

Lemma 3.5. Let A € Hy be simple and assume that A ¢ H}, for
somen € N. Then there exists p € A\{0, 1} such that d**'~dF=1p =0, for
all ke{1,...,n}.
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Proof. Since A ¢ H.', there exists some = € A falsifying d"x = d" 'z
Since A is simple, by Lemma 2.6, there exists m > n such that d™z # 0
and d"tlz = 0. Let a = d™ "z. Then d"a # 0 and d""'a = 0. Let
p = —d"a. Since d"a # 0 we have p # 1. By Lemma 3.4, we have
p=-d"a = —¢" '~a > ¢" t~a = ~d¥ e, We cannot have ~d"lz =0
as otherwise d"~'x = 1, contradicting d"x # d" 'z, and so p > 0.

Now let k € {1,...,n}. We then have

d"di =y = dF g by Lemma 3.4(1)
= d"gF I —d as p=—d"a
= d"" " qda as qr = ~—x
— & gkara

— dk—qudkdn_ka.
From Lemma 3.4(3) we have ¢*d*d"*a < d"*a and hence
dk+1qkdkdn7ka < dn+1a — 0’

as required. O

We are now equipped to prove the main result of this paper.

Theorem 3.6. Let V be a variety of H'-algebras. Then the following
are equivalent.

1

V is a discriminator variety,

2) V is semisimple,

4) V has DPC,

5

(1)
(2)
(3) VCH}, for somen € w,
(4)
(5) V has EDPC.

Proof. (1) = (2): This is a known result. See Werner [8].

(2) = (3): Suppose V is semisimple but for all n € w we have V ¢ H'.
Then there exists a sequence {A;}ic, € V such that each A; is subdirectly
irreducible and A; ¢ ’Hj Furthermore, since V is semisimple, each A; is
simple and so, by Lemma 3.5, for each ¢ > 0 there exists p; € A4;\{0,1}
such that d**1~d*~1p; = 0; for each k € {1,...,4}.
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Take an ultraproduct A = [[..y A;/U by some non-principal ultrafilter
UonN. Let p=(p|ieN)/U and let a = Cg”(1,p). It is an easy
consequence of Zorn’s Lemma that since « is compact, there is at least
one element 8 € Con(A) such that a covers 5. Let I' = {7 € Con(A) |
v > B and v # a}. It follows from the compactness of o and congruence
distributivity that \/T' € T'. Let n = \/I'. It is easy to see that A/n is
subdirectly irreducible, and is consequently simple by the semisimplicity
of V.

Since A /7 is simple, we have that &V =1 in Con(A). By congruence
permutability we then have that o V7 = no «a. Then in particular (0,1) €
n o a and so there exists some ¢ € A such that (0,¢) € n and (¢,1) € a. It
follows that (1,~c) € 7. Since a = Cg?(1,p), from Theorem 2.5 we have
that 1/ = N(p). We then have for some fixed k > 0 that ¢ > d*~'p. Recall
that for each i > k we have d**'~d* 1p; = 0;, and so d*t1~d*~1p = 0 in
the ultraproduct. Then from ¢ > d*'p we have ~c¢ < ~d*~!p and so from
(D3) we have d**l~c < d**'~d* !p = 0. Then 0 € N(~c) and hence
(0,1) € Cg (1, ~c). But then since (1,~c) € 7 it follows that 7 is the full
congruence on A, contradicting the assumption that n # . Hence we must
have V € H,}, for some n € w.

(3) = (1): Sankappanavar [6, p. 413] proved that for all n € w,

ta,y,2) = [z Ad"((zVy) = (x Ay)]VI[zA=d"((zVy) = (xAy))]

is the discriminator on H,'.

(1) = (5): If t(z,y,2) is a discriminator term for V then for all
A € 7 and all a,b,c,d € A we have (¢,d) € Cg®(a,b) if and only if
t(a,b,c) =t(a,b,d). See [1, p. 201].

(5) = (4): This follows immediately.

(4) = (3): Let V have DPC and suppose V € H;} for all n € w.
Then there exists a sequence {A;};en C V such that each A; is subdirectly
irreducible, but A; ¢ H;. Let A = [[,.yAi/U be an ultraproduct for
some non-principal ultrafilter U on N.

Since V has DPC, subdirect irreducibility is a first-order property and
so A is subdirectly irreducible. Let u be its monolith. By Lemma 2.6, for
all a € A\{1} and all b € 1/p, there is some k € w with d*a < b.

Let p, denote the monolith for A, and consider any sequence {by, }nen
such that each b, € (1/u,)\{1}. Let b = (b, | n € N)/U. It follows from
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DPC and properties of ultraproducts that b € 1/u and so b satisfies the
property of Lemma 2.6(2):

(Va € A\{1})(3k € w) d*a < b.

We now construct an a € A\{1} that does not satisfy this inequality.
As A, ¢ H;, by Lemma 3.3 there exists a,, € A, such that a7 a, £ by,.
By construction, @ # 1 and so by Lemma 2.6 there exists some k € w with
d*la < b. But for every m > 2k + 1, we have d*a,, % bp, as otherwise
d(mT_lwam < by,. So we must have in the ultraproduct that d*a ﬁ b,
contradicting Lemma 2.6. Thus there exists n € w such that V C H;\. O

Our main result now follows from Theorem 2.2.

Corollary 3.7. Let V be a variety of double-Heyting algebras. Then
the following are equivalent.

(1) V is a discriminator variety,

2) V is semisimple,

4

(2)
(3) V C DH,, for somen € w,
(4) V has DPC,

(5)

5) V has EDPC.

4. Concluding remarks

An algebra A = (A;V,A,—,~,0,1) is called a (distributive) double p-
algebra if (A;V,A,0,1) is a bounded (distributive) lattice and — and ~ are
pseudocomplement and dual pseudocomplement operations respectively.
Recall that an algebra is regular if, whenever two congruences share a class,
they are in fact the same congruence. Varlet [7] has given an equational
characterisation of regular double p-algebras. Furthermore, a result of Ka-
trindk [3] has shown that every regular double p-algebra is term-equivalent
to a double-Heyting algebra via the term

x—=y=-(xzV-yY A(~xV-x)V-axVyV-y),

and its dual. Let R denote the variety of regular double p-algebras.
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Corollary 4.1. Let V be a variety of reqular double p-algebras. Then
the following are equivalent.

(1) V is a discriminator variety,

(2) V is semisimple,

)
(3) YV C R, for somen € w,
(4) V has DPC,

)

(5) V has EDPC.

Bearing in mind that regular double p-algebras can be treated as double-
Heyting algebras, and double-Heyting algebras can be treated as H™-
algebras, we conclude by observing that, for n € N, the classes R,, are
not finitely generated, which then extends to DH,, and H,'. Note that Rg
is the class of boolean algebras and is therefore finitely generated. Let B
be any infinite boolean algebra and let BT denote the double p-algebra
obtained by affixing a new top element to B, say T. In [7], Varlet proved
that a double p-algebra A is regular if and only if for all x,y € A the in-
equality ~z Az < yV -y is satisfied. It is routine to verify that BT satisfies
this inequality, and thus B' forms a regular double p-algebra. Moreover,
the new top element is join-irreducible and so for all z € BT\{T} we have
~z = T, and hence dz = 0. It then follows that BT is simple, and that,
for all n > 1, we have BT € Ry CR,. Since R is congruence distributive,
it follows that the classes R,, are not finitely generated for each n > 1.
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