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DISCRIMINATOR VARIETIES OF

DOUBLE-HEYTING ALGEBRAS

A b s t r a c t. We prove that a variety of double-Heyting algebras

is a discriminator variety if and only if it is semisimple if and

only if it has equationally definable principal congruences. The

result also applies to the class of Heyting algebras with a dual

pseudocomplement operation and to the class of regular double

p-algebras.

.1 Introduction

A well-known theorem for boolean algebras, fundamental to the study of

computing and the design of logic circuits, tells us that for all n ∈ ω, any

map f : {0, 1}n → {0, 1} can be defined by a term in the language of boolean

algebras. In a general setting, if a finite algebra A has the property that for
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all n ∈ ω, any map f : An → A can be expressed as a term in the language

of A, then A is called a primal algebra. In this terminology, the two-

element boolean algebra is a primal boolean algebra; indeed, the only primal

boolean algebra. Further examples of primal algebras are found in the

context of n-valued logic: the n-element chains are primal as Post algebras.

Many properties of primal algebras are encapsulated by the existence of a

term that produces the discriminator function: the function t : A3 → A

defined by

t(x, y, z) =

{
x if x 6= y,

z if x = y.

An equational class V, or equivalently, a variety V, is a discriminator variety

if there exists a term t in the language of V such that t is the discrimina-

tor function on every subdirectly irreducible member of V. Discriminator

varieties have been vital in the study of decidability. For instance, Werner

[8] proved that for a discriminator variety V, if V is residually small (that

is, it contains up to isomorphism only a set of subdirectly irreducible alge-

bras), then the first-order theory of V is decidable. Discriminator varieties

also played an important role in McKenzie and Valeriote’s classification of

decidable locally finite varieties [5].

Kowalski [4] classified the discriminator varieties of tense algebras. The

formal details can be found in [4], but we note that the proof relies on the

existence of a unary term d satisfiying certain properties. For all n ∈ ω let

Tn denote the class of tense algebras A satisfying the equation

dn+1x ≈ dnx.

Theorem 1.1 (Kowalski [4]). Let V be a variety of tense algebras. Then

the following are equivalent:

(1) V is a discriminator variety,

(2) V is semisimple,

(3) V ⊆ Tn for some n ∈ ω,

(4) V has definable principal congruences,

(5) V has equationally definable principal congruences.
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In this paper we utilise techniques from Kowalski’s proof to produce a

result for double-Heyting algebras that is identical in form. The definitions

are laid out in Section 2 and the main result proved in Section 3. Let A be a

double-Heyting algebra and let x ∈ A. Define ¬x = x→ 0 and ∼x = 1−x,

then let d0x = x, and for all n ∈ ω let dn+1x = ¬∼dnx. For all n ∈ ω, let

DHn denote the class of double-Heyting algebras satisfying the equation

dn+1x ≈ dnx.

Sankappanavar [6] proved that each of the classes DHn forms a discrim-

inator variety. Our main result shows that they, and their subvarieties, are

the only discriminator varieties of double-Heyting algebras.

Theorem 1.2. Let V be a variety of double-Heyting algebras. Then the

following are equivalent.

(1) V is a discriminator variety,

(2) V is semisimple,

(3) V ⊆ DHn for some n ∈ ω,

(4) V has definable principal congruences,

(5) V has equationally definable principal congruences.

.2 Preliminaries

.2.1. Algebraic preliminaries

We introduce our notation and basic definitions here. For more on universal

algebra see Burris and Sankappanavar [2]. For an algebra A, the congruence

lattice of A is written Con(A). For any a, b ∈ A, the principal congruence

generated by identifying a and b is denoted by CgA(a, b). For a complete

lattice L, an element α ∈ L is compact if, for all I ⊆ L, whenever α ≤
∨
I,

there exists a finite set J ⊆ I such that α ≤
∨
J . For any lattice L, and

any a, b ∈ L we say that a covers b if b < a and there is no element x ∈ L
such that b < x < a. Note that every principal congruence is compact in

Con(A).
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If Con(A) is a distributive lattice then we say A is congruence dis-

tributive. If, for all α, β ∈ Con(A), α ◦ β = β ◦ α, then A is congruence

permutable. It is easy to prove that if A is congruence permutable then,

for all α, β ∈ Con(A), α∨β = α◦β. An algebra is arithmetical if it is both

congruence distributive and congruence permutable.

If every algebra in a class K is congruence distributive (congruence

permutable, arithmetical) then we say that the class K is congruence dis-

tributive (congruence permutable, arithmetical). If the class K is closed

under taking homomorphic images, subalgebras and direct products then

K is called a variety. If there is a set of equations such that K consists of

all algebras satisfying all of those equations, then K is called an equational

class. A fundamental result due to Birkhoff tells us that a class is a variety

if and only if it is an equational class.

An algebra A is subdirectly irreducible if Con(A) has a least non-zero

element µ. We will call µ the monolith of A. An algebra is called simple if

its congruence lattice has precisely two elements. A variety V is semisimple

if every subdirectly irreducible member of V is simple.

A variety V has definable principal congruences (DPC) if there exists a

first-order formula ϕ(x, y, u, v) such that, for all A ∈ V and all a, b, c, d ∈ A,

the following equivalence is satisfied:

(a, b) ∈ CgA(c, d) ⇐⇒ A |= ϕ(a, b, c, d).

If ϕ(x, y, u, v) can be taken to be a finite conjunction of equations then we

say V has equationally definable principal congruences (EDPC).

We will let N denote the set of natural numbers not including zero.

.2.2. Double-Heyting algebras

Definition 2.1. An algebra A = 〈A;∨,∧,→,−, 0, 1〉 is called a double-

Heyting algebra if 〈A;∨,∧,→, 0, 1〉 is a Heyting algebra and 〈A;∨,∧,−, 0, 1〉
is a dual Heyting algebra. More precisely, A is a double-Heyting algebra if

〈A;∨,∧, 0, 1〉 is a bounded lattice and the operations → and − satisfy the

following equivalences:

x ∧ y ≤ z ⇐⇒ y ≤ x→ z,

x ∨ y ≥ z ⇐⇒ y ≥ z − x.
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An algebra A = 〈A;∨,∧,→,∼, 0, 1〉 is a Heyting algebra with dual pseu-

docomplementation (H+-algebra for short) if 〈A;∨,∧,→, 0, 1〉 is a Heyting

algebra and ∼ is a dual pseudocomplement operation, that is,

x ∨ y = 1 ⇐⇒ y ≥ ∼x.

For a Heyting algebra A and all x ∈ A the pseudocomplement of x in

A can be given by ¬x = x → 0. Similarly, for a dual-Heyting algebra A

and all x ∈ A, the dual pseudocomplement of x in A can be defined by

∼x = 1− x.

Let H+ denote the class of H+-algebras and let DH denote the class of

double-Heyting algebras. It is known (see [6] for example) that the classes

H+ and DH are both equational classes.

The following result due to Sankappanavar allows us to restrict our

attention to H+-algebras for the remainder of this article.

Theorem 2.2 (Sankappanavar [6]). Let A be a double-Heyting algebra.

Then every H+ congruence on A is a double-Heyting congruence on A.

Definition 2.3. Let A be a H+-algebra. Define the map d : A→ A by

dx = ¬∼x and define inductively for each n ∈ ω the map dn : A → A by

d0x = x and dn+1x = d(dnx). A normal filter on A is a filter F ⊆ A that

is closed under d. Let NF(A) denote the lattice of normal filters of A and,

for all x ∈ A let N(x) denote the smallest normal filter containing x. For

each (normal) filter F , let θ(F ) denote the relation given by

(x, y) ∈ θ(F ) ⇐⇒ (∃f ∈ F ) x ∧ f = y ∧ f.

Lemma 2.4 (Sankappanavar [6]). Let A be an H+-algebra.

(1) Let x ∈ A. Then N(x) =
⋃

n∈ω ↑dnx.

(2) Let F ∈ NF(A). Then θ(F ) is a congruence on A.

(3) Let α ∈ Con(A). Then 1/α is a normal filter.

Theorem 2.5 (Sankappanavar [6]). Let A ∈ H+ and let θ : NF(A)→
Con(A) be the map defined by F 7→ θ(F ). Then θ is an isomorphism.

Moreover,
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(1) for all F ∈ NF(A) and all α ∈ Con(A), we have 1/θ(F ) = F and

θ(1/α) = α,

(2) for all x, y ∈ A, we have CgA(x, y) = θ(N((x → y) ∧ (y → x))). In

particular, θ(N(x)) = CgA(1, x).

The following lemma is a straightforward consequence of Theorem 2.5.

Lemma 2.6. Let A be an H+-algebra.

(1) If A is simple then, for all a ∈ A\{1}, there exists k ∈ ω such that

dka = 0.

(2) If A is subdirectly irreducible with monolith µ then, for all z ∈ 1/µ

and all a ∈ A\{1}, there is some k ∈ ω such that dka ≤ z.

.3 The main result

In this section we state and prove our main reslt. We begin with four

preparatory lemmas.

Definition 3.1. Let V be a variety with unary terms ¬ and ∼, and let

dx = ¬∼x. For all n ∈ ω, let Vn denote the subvariety of V satisfying the

equation

dn+1x ≈ dnx.

Lemma 3.2. Let A be a H+-algebra and let x, y ∈ A. Then the fol-

lowing hold for all n ∈ ω.

(D1) dn1 = 1, dn0 = 0.

(D2) dn+1x ≤ dnx.

(D3) if x ≤ y then dnx ≤ dny.

(D4) ∼x ≤ dn∼dnx.

Proof. (D1) is obvious, and (D2) and (D3) follow since both ¬ and

∼ are order-reversing. We prove (D4) by induction. Firstly, we have

∼∼dx ≤ dx and so d∼dx = ¬∼∼dx ≥ ¬dx = ¬¬∼x ≥ ∼x. Now as-

sume the inequality holds for k ≤ n. By the inductive hypothesis we
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have dn∼dndx ≥ ∼dx, and it then follows from (D3) that dn+1∼dn+1x =

ddn∼dndx ≥ d∼dx ≥ ∼x. �

Lemma 3.3. Let A ∈ H+ and let n ∈ N. If there exists b ∈ A\{1}
such that db

n−1
2
ca ≤ b, for all a ∈ A\{1}, then A ∈ H+

n .

Proof. We separate the argument into cases where n = 2k and n =

2k + 1. First, assume n = 2k, so that bn−12 c = k − 1. Let b ∈ A\{1}
and assume, for all a ∈ A\{1}, that dk−1a ≤ b. Suppose that dk+1b 6= 0.

Then ∼dkb 6= 1, and so dk−1∼dkb ≤ b by assumption. By (D2) we have

dk∼dkb ≤ dk−1∼dkb and so ∼b ≤ b by (D4), which only happens if b = 1

which is not the case. Thus dk+1b = 0. Then, for all x ≤ b we have by (D3)

that dk+1x = 0. So, in particular, dk+1dk−1a = 0, i.e., d2ka = 0 = d2k+1a.

We have by (D1) that d2k1 = d2k+11 = 1, and therefore A ∈ H+
n . The

argument is essentially identical for the case n = 2k + 1. �

For convenience we now introduce the term q, dual to d, given by qx =

∼¬x.

Lemma 3.4. Let A ∈ H+ and let x ∈ A. For all n ∈ ω, the following

hold:

(1) ∼dnx = qn∼x and ¬qnx = dn¬x,

(2) dn+1x = ¬qn∼x and qn+1x = ∼dn¬x,

(3) qndnx ≤ x ≤ dnqnx.

Proof. Parts (1) and (2) are obvious. For part (3), we proceed via

induction. Firstly, we have qdx = ∼¬¬∼x. Since ¬¬∼x ≥ ∼x we then have

∼¬¬∼x ≤ ∼∼x ≤ x and the inequality holds for n = 1. Now let n > 1 and

assume the inequality holds for all k ≤ n. By the inductive hypothesis we

have qddnx ≤ dnx. It then follows that qn+1dn+1x = qnqddnx ≤ qndnx, and

once again by the inductive hypothesis we have qndnx ≤ x, so the inequality

holds. A dual argument holds for the remainder of the inequality. �

Lemma 3.5. Let A ∈ H+ be simple and assume that A /∈ H+
n , for

some n ∈ N. Then there exists p ∈ A\{0, 1} such that dk+1∼dk−1p = 0, for

all k ∈ {1, . . . , n}.
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Proof. Since A /∈ H+
n , there exists some x ∈ A falsifying dnx = dn+1x.

Since A is simple, by Lemma 2.6, there exists m ≥ n such that dmx 6= 0

and dm+1x = 0. Let a = dm−nx. Then dna 6= 0 and dn+1a = 0. Let

p = ¬dna. Since dna 6= 0 we have p 6= 1. By Lemma 3.4, we have

p = ¬dna = ¬¬qn−1∼a ≥ qn−1∼a = ∼dn−1x. We cannot have ∼dn−1x = 0

as otherwise dn−1x = 1, contradicting dnx 6= dn+1x, and so p > 0.

Now let k ∈ {1, . . . , n}. We then have

dk+1∼dk−1p = dk+1qk−1∼p by Lemma 3.4(1)

= dk+1qk−1∼¬dna as p = ¬dna
= dk+1qk−1qdna as qx = ∼¬x
= dk+1qkdna

= dk+1qkdkdn−ka.

From Lemma 3.4(3) we have qkdkdn−ka ≤ dn−ka and hence

dk+1qkdkdn−ka ≤ dn+1a = 0,

as required. �

We are now equipped to prove the main result of this paper.

Theorem 3.6. Let V be a variety of H+-algebras. Then the following

are equivalent.

(1) V is a discriminator variety,

(2) V is semisimple,

(3) V ⊆ H+
n , for some n ∈ ω,

(4) V has DPC,

(5) V has EDPC.

Proof. (1) =⇒ (2): This is a known result. See Werner [8].

(2) =⇒ (3): Suppose V is semisimple but for all n ∈ ω we have V * H+
n .

Then there exists a sequence {Ai}i∈ω ⊆ V such that each Ai is subdirectly

irreducible and Ai /∈ H+
i . Furthermore, since V is semisimple, each Ai is

simple and so, by Lemma 3.5, for each i > 0 there exists pi ∈ Ai\{0, 1}
such that dk+1∼dk−1pi = 0i for each k ∈ {1, . . . , i}.
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Take an ultraproduct A =
∏

i∈NAi/U by some non-principal ultrafilter

U on N. Let p = 〈pi | i ∈ N〉/U and let α = CgA(1, p). It is an easy

consequence of Zorn’s Lemma that since α is compact, there is at least

one element β ∈ Con(A) such that α covers β. Let Γ = {γ ∈ Con(A) |
γ ≥ β and γ � α}. It follows from the compactness of α and congruence

distributivity that
∨

Γ ∈ Γ. Let η =
∨

Γ. It is easy to see that A/η is

subdirectly irreducible, and is consequently simple by the semisimplicity

of V.

Since A/η is simple, we have that α∨ η = 1 in Con(A). By congruence

permutability we then have that α ∨ η = η ◦ α. Then in particular (0, 1) ∈
η ◦ α and so there exists some c ∈ A such that (0, c) ∈ η and (c, 1) ∈ α. It

follows that (1,∼c) ∈ η. Since α = CgA(1, p), from Theorem 2.5 we have

that 1/α = N(p). We then have for some fixed k > 0 that c ≥ dk−1p. Recall

that for each i ≥ k we have dk+1∼dk−1pi = 0i, and so dk+1∼dk−1p = 0 in

the ultraproduct. Then from c ≥ dk−1p we have ∼c ≤ ∼dk−1p and so from

(D3) we have dk+1∼c ≤ dk+1∼dk−1p = 0. Then 0 ∈ N(∼c) and hence

(0, 1) ∈ CgA(1,∼c). But then since (1,∼c) ∈ η it follows that η is the full

congruence on A, contradicting the assumption that η � α. Hence we must

have V ∈ H+
n , for some n ∈ ω.

(3) =⇒ (1): Sankappanavar [6, p. 413] proved that for all n ∈ ω,

t(x, y, z) = [z ∧ dn((x ∨ y)→ (x ∧ y))] ∨ [x ∧ ¬dn((x ∨ y)→ (x ∧ y))]

is the discriminator on H+
n .

(1) =⇒ (5): If t(x, y, z) is a discriminator term for V then for all

A ∈ J and all a, b, c, d ∈ A we have (c, d) ∈ CgA(a, b) if and only if

t(a, b, c) = t(a, b, d). See [1, p. 201].

(5) =⇒ (4): This follows immediately.

(4) =⇒ (3): Let V have DPC and suppose V * H+
n for all n ∈ ω.

Then there exists a sequence {Ai}i∈N ⊆ V such that each Ai is subdirectly

irreducible, but Ai /∈ H+
i . Let A =

∏
i∈NAi/U be an ultraproduct for

some non-principal ultrafilter U on N.

Since V has DPC, subdirect irreducibility is a first-order property and

so A is subdirectly irreducible. Let µ be its monolith. By Lemma 2.6, for

all a ∈ A\{1} and all b ∈ 1/µ, there is some k ∈ ω with dka ≤ b.
Let µn denote the monolith for An and consider any sequence {bn}n∈N

such that each bn ∈ (1/µn)\{1}. Let b = 〈bn | n ∈ N〉/U . It follows from
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DPC and properties of ultraproducts that b ∈ 1/µ and so b satisfies the

property of Lemma 2.6(2):

(∀a ∈ A\{1})(∃k ∈ ω) dka ≤ b.

We now construct an a ∈ A\{1} that does not satisfy this inequality.

As An /∈ H+
n , by Lemma 3.3 there exists an ∈ An such that db

n−1
2
can � bn.

By construction, a 6= 1 and so by Lemma 2.6 there exists some k ∈ ω with

dk+1a ≤ b. But for every m > 2k + 1, we have dkam � bm as otherwise

dd
m−1

2
eam ≤ bm. So we must have in the ultraproduct that dka � b,

contradicting Lemma 2.6. Thus there exists n ∈ ω such that V ⊆ H+
n . �

Our main result now follows from Theorem 2.2.

Corollary 3.7. Let V be a variety of double-Heyting algebras. Then

the following are equivalent.

(1) V is a discriminator variety,

(2) V is semisimple,

(3) V ⊆ DHn for some n ∈ ω,

(4) V has DPC,

(5) V has EDPC.

.4 Concluding remarks

An algebra A = 〈A;∨,∧,¬,∼, 0, 1〉 is called a (distributive) double p-

algebra if 〈A;∨,∧, 0, 1〉 is a bounded (distributive) lattice and ¬ and ∼ are

pseudocomplement and dual pseudocomplement operations respectively.

Recall that an algebra is regular if, whenever two congruences share a class,

they are in fact the same congruence. Varlet [7] has given an equational

characterisation of regular double p-algebras. Furthermore, a result of Ka-

triňák [3] has shown that every regular double p-algebra is term-equivalent

to a double-Heyting algebra via the term

x→ y = ¬¬(¬x ∨ ¬¬y) ∧ (∼(x ∨ ¬x) ∨ ¬x ∨ y ∨ ¬y),

and its dual. Let R denote the variety of regular double p-algebras.



DISCRIMINATOR VARIETIES OF DOUBLE-HEYTING ALGEBRAS 13

Corollary 4.1. Let V be a variety of regular double p-algebras. Then

the following are equivalent.

(1) V is a discriminator variety,

(2) V is semisimple,

(3) V ⊆ Rn for some n ∈ ω,

(4) V has DPC,

(5) V has EDPC.

Bearing in mind that regular double p-algebras can be treated as double-

Heyting algebras, and double-Heyting algebras can be treated as H+-

algebras, we conclude by observing that, for n ∈ N , the classes Rn are

not finitely generated, which then extends to DHn and H+
n . Note that R0

is the class of boolean algebras and is therefore finitely generated. Let B

be any infinite boolean algebra and let B> denote the double p-algebra

obtained by affixing a new top element to B, say >. In [7], Varlet proved

that a double p-algebra A is regular if and only if for all x, y ∈ A the in-

equality ∼x∧x ≤ y∨¬y is satisfied. It is routine to verify that B> satisfies

this inequality, and thus B> forms a regular double p-algebra. Moreover,

the new top element is join-irreducible and so for all x ∈ B>\{>} we have

∼x = >, and hence dx = 0. It then follows that B> is simple, and that,

for all n ≥ 1, we have B> ∈ R1 ⊆ Rn. Since R is congruence distributive,

it follows that the classes Rn are not finitely generated for each n ≥ 1.
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