REPORTS ON MATHEMATICAL LOGIC 51 (2016), 3–14 doi:10.4467/20842589RM.16.001.5278

Christopher J. TAYLOR

DISCRIMINATOR VARIETIES OF DOUBLE-HEYTING ALGEBRAS

A b s t r a c t. We prove that a variety of double-Heyting algebras is a discriminator variety if and only if it is semisimple if and only if it has equationally definable principal congruences. The result also applies to the class of Heyting algebras with a dual pseudocomplement operation and to the class of regular double p-algebras.

1. Introduction

A well-known theorem for boolean algebras, fundamental to the study of computing and the design of logic circuits, tells us that for all $n \in \omega$, any map $f: \{0,1\}^n \to \{0,1\}$ can be defined by a term in the language of boolean algebras. In a general setting, if a finite algebra **A** has the property that for

 $Received\ 21\ May\ 2015$

Keywords and phrases: double-Heyting algebra, dual pseudocomplement, Heyting algebra with dual pseudocomplement, dually pseudocomplemented Heyting algebra, discriminator variety, semisimple, EDPC.

all $n \in \omega$, any map $f: A^n \to A$ can be expressed as a term in the language of **A**, then **A** is called a *primal algebra*. In this terminology, the twoelement boolean algebra is a primal boolean algebra; indeed, the only primal boolean algebra. Further examples of primal algebras are found in the context of *n*-valued logic: the *n*-element chains are primal as Post algebras. Many properties of primal algebras are encapsulated by the existence of a term that produces the *discriminator function*: the function $t: A^3 \to A$ defined by

$$t(x, y, z) = \begin{cases} x & \text{if } x \neq y, \\ z & \text{if } x = y. \end{cases}$$

An equational class \mathcal{V} , or equivalently, a variety \mathcal{V} , is a discriminator variety if there exists a term t in the language of \mathcal{V} such that t is the discriminator function on every subdirectly irreducible member of \mathcal{V} . Discriminator varieties have been vital in the study of decidability. For instance, Werner [8] proved that for a discriminator variety \mathcal{V} , if \mathcal{V} is residually small (that is, it contains up to isomorphism only a set of subdirectly irreducible algebras), then the first-order theory of \mathcal{V} is decidable. Discriminator varieties also played an important role in McKenzie and Valeriote's classification of decidable locally finite varieties [5].

Kowalski [4] classified the discriminator varieties of tense algebras. The formal details can be found in [4], but we note that the proof relies on the existence of a unary term d satisfying certain properties. For all $n \in \omega$ let \mathcal{T}_n denote the class of tense algebras **A** satisfying the equation

$$d^{n+1}x \approx d^n x.$$

Theorem 1.1 (Kowalski [4]). Let \mathcal{V} be a variety of tense algebras. Then the following are equivalent:

- (1) \mathcal{V} is a discriminator variety,
- (2) \mathcal{V} is semisimple,
- (3) $\mathcal{V} \subseteq \mathcal{T}_n$ for some $n \in \omega$,
- (4) \mathcal{V} has definable principal congruences,
- (5) \mathcal{V} has equationally definable principal congruences.

In this paper we utilise techniques from Kowalski's proof to produce a result for double-Heyting algebras that is identical in form. The definitions are laid out in Section 2 and the main result proved in Section 3. Let **A** be a double-Heyting algebra and let $x \in A$. Define $\neg x = x \rightarrow 0$ and $\sim x = 1 - x$, then let $d^0x = x$, and for all $n \in \omega$ let $d^{n+1}x = \neg \sim d^n x$. For all $n \in \omega$, let \mathcal{DH}_n denote the class of double-Heyting algebras satisfying the equation

$$d^{n+1}x \approx d^n x.$$

Sankappanavar [6] proved that each of the classes \mathcal{DH}_n forms a discriminator variety. Our main result shows that they, and their subvarieties, are the only discriminator varieties of double-Heyting algebras.

Theorem 1.2. Let \mathcal{V} be a variety of double-Heyting algebras. Then the following are equivalent.

- (1) \mathcal{V} is a discriminator variety,
- (2) \mathcal{V} is semisimple,
- (3) $\mathcal{V} \subseteq \mathcal{DH}_n$ for some $n \in \omega$,
- (4) \mathcal{V} has definable principal congruences,
- (5) \mathcal{V} has equationally definable principal congruences.

2. Preliminaries

2.1. Algebraic preliminaries

We introduce our notation and basic definitions here. For more on universal algebra see Burris and Sankappanavar [2]. For an algebra \mathbf{A} , the congruence lattice of \mathbf{A} is written $\mathbf{Con}(\mathbf{A})$. For any $a, b \in A$, the principal congruence generated by identifying a and b is denoted by $\mathrm{Cg}^{\mathbf{A}}(a, b)$. For a complete lattice \mathbf{L} , an element $\alpha \in L$ is *compact* if, for all $I \subseteq L$, whenever $\alpha \leq \bigvee I$, there exists a finite set $J \subseteq I$ such that $\alpha \leq \bigvee J$. For any lattice \mathbf{L} , and any $a, b \in L$ we say that a covers b if b < a and there is no element $x \in L$ such that b < x < a. Note that every principal congruence is compact in $\mathbf{Con}(\mathbf{A})$.

If $\operatorname{Con}(\mathbf{A})$ is a distributive lattice then we say \mathbf{A} is congruence distributive. If, for all $\alpha, \beta \in \operatorname{Con}(\mathbf{A}), \ \alpha \circ \beta = \beta \circ \alpha$, then \mathbf{A} is congruence permutable. It is easy to prove that if \mathbf{A} is congruence permutable then, for all $\alpha, \beta \in \operatorname{Con}(\mathbf{A}), \ \alpha \lor \beta = \alpha \circ \beta$. An algebra is arithmetical if it is both congruence distributive and congruence permutable.

If every algebra in a class \mathcal{K} is congruence distributive (congruence permutable, arithmetical) then we say that the class \mathcal{K} is congruence distributive (congruence permutable, arithmetical). If the class \mathcal{K} is closed under taking homomorphic images, subalgebras and direct products then \mathcal{K} is called a *variety*. If there is a set of equations such that \mathcal{K} consists of all algebras satisfying all of those equations, then \mathcal{K} is called an *equational class*. A fundamental result due to Birkhoff tells us that a class is a variety if and only if it is an equational class.

An algebra \mathbf{A} is subdirectly irreducible if $\mathbf{Con}(\mathbf{A})$ has a least non-zero element μ . We will call μ the monolith of \mathbf{A} . An algebra is called simple if its congruence lattice has precisely two elements. A variety \mathcal{V} is semisimple if every subdirectly irreducible member of \mathcal{V} is simple.

A variety \mathcal{V} has definable principal congruences (DPC) if there exists a first-order formula $\varphi(x, y, u, v)$ such that, for all $\mathbf{A} \in \mathcal{V}$ and all $a, b, c, d \in \mathbf{A}$, the following equivalence is satisfied:

$$(a,b) \in Cg^{\mathbf{A}}(c,d) \iff \mathbf{A} \models \varphi(a,b,c,d).$$

If $\varphi(x, y, u, v)$ can be taken to be a finite conjunction of equations then we say \mathcal{V} has equationally definable principal congruences (EDPC).

We will let \mathbb{N} denote the set of natural numbers not including zero.

2.2. Double-Heyting algebras

Definition 2.1. An algebra $\mathbf{A} = \langle A; \lor, \land, \rightarrow, -, 0, 1 \rangle$ is called a *double-Heyting algebra* if $\langle A; \lor, \land, \rightarrow, 0, 1 \rangle$ is a Heyting algebra and $\langle A; \lor, \land, -, 0, 1 \rangle$ is a dual Heyting algebra. More precisely, \mathbf{A} is a double-Heyting algebra if $\langle A; \lor, \land, 0, 1 \rangle$ is a bounded lattice and the operations \rightarrow and - satisfy the following equivalences:

$$\begin{split} & x \wedge y \leq z \iff y \leq x \to z, \\ & x \vee y \geq z \iff y \geq z - x. \end{split}$$

An algebra $\mathbf{A} = \langle A; \lor, \land, \rightarrow, \sim, 0, 1 \rangle$ is a Heyting algebra with dual pseudocomplementation (H⁺-algebra for short) if $\langle A; \lor, \land, \rightarrow, 0, 1 \rangle$ is a Heyting algebra and \sim is a dual pseudocomplement operation, that is,

$$x \lor y = 1 \iff y \ge \sim x.$$

For a Heyting algebra **A** and all $x \in A$ the *pseudocomplement of* x in **A** can be given by $\neg x = x \rightarrow 0$. Similarly, for a dual-Heyting algebra **A** and all $x \in A$, the dual pseudocomplement of x in **A** can be defined by $\sim x = 1 - x$.

Let \mathcal{H}^+ denote the class of H^+ -algebras and let \mathcal{DH} denote the class of double-Heyting algebras. It is known (see [6] for example) that the classes \mathcal{H}^+ and \mathcal{DH} are both equational classes.

The following result due to Sankappanavar allows us to restrict our attention to H^+ -algebras for the remainder of this article.

Theorem 2.2 (Sankappanavar [6]). Let \mathbf{A} be a double-Heyting algebra. Then every H^+ congruence on \mathbf{A} is a double-Heyting congruence on \mathbf{A} .

Definition 2.3. Let \mathbf{A} be a H^+ -algebra. Define the map $d: A \to A$ by $dx = \neg \sim x$ and define inductively for each $n \in \omega$ the map $d^n: A \to A$ by $d^0x = x$ and $d^{n+1}x = d(d^nx)$. A normal filter on \mathbf{A} is a filter $F \subseteq A$ that is closed under d. Let NF(\mathbf{A}) denote the lattice of normal filters of \mathbf{A} and, for all $x \in A$ let N(x) denote the smallest normal filter containing x. For each (normal) filter F, let $\theta(F)$ denote the relation given by

$$(x,y) \in \theta(F) \iff (\exists f \in F) \ x \land f = y \land f.$$

Lemma 2.4 (Sankappanavar [6]). Let \mathbf{A} be an H^+ -algebra.

- (1) Let $x \in A$. Then $N(x) = \bigcup_{n \in \omega} \uparrow d^n x$.
- (2) Let $F \in NF(\mathbf{A})$. Then $\theta(F)$ is a congruence on \mathbf{A} .
- (3) Let $\alpha \in \text{Con}(\mathbf{A})$. Then $1/\alpha$ is a normal filter.

Theorem 2.5 (Sankappanavar [6]). Let $\mathbf{A} \in \mathcal{H}^+$ and let $\theta \colon NF(\mathbf{A}) \to Con(\mathbf{A})$ be the map defined by $F \mapsto \theta(F)$. Then θ is an isomorphism. Moreover,

- (1) for all $F \in NF(\mathbf{A})$ and all $\alpha \in Con(\mathbf{A})$, we have $1/\theta(F) = F$ and $\theta(1/\alpha) = \alpha$,
- (2) for all $x, y \in A$, we have $\operatorname{Cg}^{\mathbf{A}}(x, y) = \theta(N((x \to y) \land (y \to x)))$. In particular, $\theta(N(x)) = \operatorname{Cg}^{\mathbf{A}}(1, x)$.

The following lemma is a straightforward consequence of Theorem 2.5.

Lemma 2.6. Let \mathbf{A} be an H^+ -algebra.

- (1) If **A** is simple then, for all $a \in A \setminus \{1\}$, there exists $k \in \omega$ such that $d^k a = 0$.
- (2) If **A** is subdirectly irreducible with monolith μ then, for all $z \in 1/\mu$ and all $a \in A \setminus \{1\}$, there is some $k \in \omega$ such that $d^k a \leq z$.

3. The main result

In this section we state and prove our main reslt. We begin with four preparatory lemmas.

Definition 3.1. Let \mathcal{V} be a variety with unary terms \neg and \sim , and let $dx = \neg \sim x$. For all $n \in \omega$, let \mathcal{V}_n denote the subvariety of \mathcal{V} satisfying the equation

 $d^{n+1}x \approx d^n x.$

Lemma 3.2. Let A be a H^+ -algebra and let $x, y \in A$. Then the following hold for all $n \in \omega$.

- (D1) $d^n 1 = 1$, $d^n 0 = 0$.
- (D2) $d^{n+1}x \le d^n x$.
- (D3) if $x \leq y$ then $d^n x \leq d^n y$.
- (D4) $\sim x \leq d^n \sim d^n x$.

Proof. (D1) is obvious, and (D2) and (D3) follow since both \neg and \sim are order-reversing. We prove (D4) by induction. Firstly, we have $\sim \sim dx \leq dx$ and so $d \sim dx = \neg \sim \sim dx \geq \neg dx = \neg \neg \sim x \geq \sim x$. Now assume the inequality holds for $k \leq n$. By the inductive hypothesis we

have $d^n \sim d^n dx \geq \sim dx$, and it then follows from (D3) that $d^{n+1} \sim d^{n+1}x = dd^n \sim d^n dx \geq d \sim dx \geq \sim x$.

Lemma 3.3. Let $\mathbf{A} \in \mathcal{H}^+$ and let $n \in \mathbb{N}$. If there exists $b \in A \setminus \{1\}$ such that $d^{\lfloor \frac{n-1}{2} \rfloor} a \leq b$, for all $a \in A \setminus \{1\}$, then $\mathbf{A} \in \mathcal{H}_n^+$.

Proof. We separate the argument into cases where n = 2k and n = 2k + 1. First, assume n = 2k, so that $\lfloor \frac{n-1}{2} \rfloor = k - 1$. Let $b \in A \setminus \{1\}$ and assume, for all $a \in A \setminus \{1\}$, that $d^{k-1}a \leq b$. Suppose that $d^{k+1}b \neq 0$. Then $\sim d^k b \neq 1$, and so $d^{k-1} \sim d^k b \leq b$ by assumption. By (D2) we have $d^k \sim d^k b \leq d^{k-1} \sim d^k b$ and so $\sim b \leq b$ by (D4), which only happens if b = 1 which is not the case. Thus $d^{k+1}b = 0$. Then, for all $x \leq b$ we have by (D3) that $d^{k+1}x = 0$. So, in particular, $d^{k+1}d^{k-1}a = 0$, i.e., $d^{2k}a = 0 = d^{2k+1}a$. We have by (D1) that $d^{2k}1 = d^{2k+1}1 = 1$, and therefore $\mathbf{A} \in \mathcal{H}_n^+$. The argument is essentially identical for the case n = 2k + 1.

For convenience we now introduce the term q, dual to d, given by $qx = \sim \neg x$.

Lemma 3.4. Let $\mathbf{A} \in \mathcal{H}^+$ and let $x \in A$. For all $n \in \omega$, the following hold:

- (1) $\sim d^n x = q^n \sim x$ and $\neg q^n x = d^n \neg x$,
- (2) $d^{n+1}x = \neg q^n \sim x$ and $q^{n+1}x = \sim d^n \neg x$,
- (3) $q^n d^n x \le x \le d^n q^n x$.

Proof. Parts (1) and (2) are obvious. For part (3), we proceed via induction. Firstly, we have $qdx = \sim \neg \neg \sim x$. Since $\neg \neg \sim x \ge \sim x$ we then have $\sim \neg \neg \sim x \le \sim \sim x \le x$ and the inequality holds for n = 1. Now let n > 1 and assume the inequality holds for all $k \le n$. By the inductive hypothesis we have $qdd^nx \le d^nx$. It then follows that $q^{n+1}d^{n+1}x = q^nqdd^nx \le q^nd^nx$, and once again by the inductive hypothesis we have $q^nd^nx \le x$, so the inequality holds for the remainder of the inequality.

Lemma 3.5. Let $\mathbf{A} \in \mathcal{H}_+$ be simple and assume that $\mathbf{A} \notin \mathcal{H}_n^+$, for some $n \in \mathbb{N}$. Then there exists $p \in A \setminus \{0, 1\}$ such that $d^{k+1} \sim d^{k-1}p = 0$, for all $k \in \{1, \ldots, n\}$.

Proof. Since $\mathbf{A} \notin \mathcal{H}_n^+$, there exists some $x \in A$ falsifying $d^n x = d^{n+1}x$. Since \mathbf{A} is simple, by Lemma 2.6, there exists $m \ge n$ such that $d^m x \ne 0$ and $d^{m+1}x = 0$. Let $a = d^{m-n}x$. Then $d^n a \ne 0$ and $d^{n+1}a = 0$. Let $p = \neg d^n a$. Since $d^n a \ne 0$ we have $p \ne 1$. By Lemma 3.4, we have $p = \neg d^n a = \neg \neg q^{n-1} \sim a \ge q^{n-1} \sim a = \sim d^{n-1}x$. We cannot have $\sim d^{n-1}x = 0$ as otherwise $d^{n-1}x = 1$, contradicting $d^n x \ne d^{n+1}x$, and so p > 0.

Now let $k \in \{1, \ldots, n\}$. We then have

$$d^{k+1} \sim d^{k-1}p = d^{k+1}q^{k-1} \sim p \qquad \text{by Lemma 3.4(1)}$$
$$= d^{k+1}q^{k-1} \sim \neg d^n a \qquad \text{as } p = \neg d^n a$$
$$= d^{k+1}q^{k-1}qd^n a \qquad \text{as } qx = \sim \neg x$$
$$= d^{k+1}q^k d^n a$$
$$= d^{k+1}q^k d^k d^{n-k}a.$$

From Lemma 3.4(3) we have $q^k d^k d^{n-k} a \leq d^{n-k} a$ and hence

$$d^{k+1}q^k d^k d^{n-k} a \le d^{n+1}a = 0,$$

as required.

We are now equipped to prove the main result of this paper.

Theorem 3.6. Let \mathcal{V} be a variety of H^+ -algebras. Then the following are equivalent.

- (1) \mathcal{V} is a discriminator variety,
- (2) \mathcal{V} is semisimple,
- (3) $\mathcal{V} \subseteq \mathcal{H}_n^+$, for some $n \in \omega$,
- (4) \mathcal{V} has DPC,
- (5) \mathcal{V} has EDPC.

Proof. (1) \implies (2): This is a known result. See Werner [8].

(2) \implies (3): Suppose \mathcal{V} is semisimple but for all $n \in \omega$ we have $\mathcal{V} \not\subseteq \mathcal{H}_n^+$. Then there exists a sequence $\{\mathbf{A}_i\}_{i\in\omega} \subseteq \mathcal{V}$ such that each \mathbf{A}_i is subdirectly irreducible and $\mathbf{A}_i \notin \mathcal{H}_i^+$. Furthermore, since \mathcal{V} is semisimple, each \mathbf{A}_i is simple and so, by Lemma 3.5, for each i > 0 there exists $p_i \in A_i \setminus \{0, 1\}$ such that $d^{k+1} \sim d^{k-1}p_i = 0_i$ for each $k \in \{1, \ldots, i\}$.

Take an ultraproduct $\mathbf{A} = \prod_{i \in \mathbb{N}} \mathbf{A}_i / U$ by some non-principal ultrafilter U on \mathbb{N} . Let $p = \langle p_i \mid i \in \mathbb{N} \rangle / U$ and let $\alpha = \operatorname{Cg}^{\mathbf{A}}(1, p)$. It is an easy consequence of Zorn's Lemma that since α is compact, there is at least one element $\beta \in \operatorname{Con}(\mathbf{A})$ such that α covers β . Let $\Gamma = \{\gamma \in \operatorname{Con}(\mathbf{A}) \mid \gamma \geq \beta \text{ and } \gamma \not\geq \alpha\}$. It follows from the compactness of α and congruence distributivity that $\bigvee \Gamma \in \Gamma$. Let $\eta = \bigvee \Gamma$. It is easy to see that \mathbf{A}/η is subdirectly irreducible, and is consequently simple by the semisimplicity of \mathcal{V} .

Since \mathbf{A}/η is simple, we have that $\alpha \lor \eta = 1$ in $\operatorname{Con}(\mathbf{A})$. By congruence permutability we then have that $\alpha \lor \eta = \eta \circ \alpha$. Then in particular $(0,1) \in \eta \circ \alpha$ and so there exists some $c \in A$ such that $(0,c) \in \eta$ and $(c,1) \in \alpha$. It follows that $(1, \sim c) \in \eta$. Since $\alpha = \operatorname{Cg}^{\mathbf{A}}(1,p)$, from Theorem 2.5 we have that $1/\alpha = N(p)$. We then have for some fixed k > 0 that $c \ge d^{k-1}p$. Recall that for each $i \ge k$ we have $d^{k+1} \sim d^{k-1}p_i = 0_i$, and so $d^{k+1} \sim d^{k-1}p = 0$ in the ultraproduct. Then from $c \ge d^{k-1}p$ we have $\sim c \le \sim d^{k-1}p$ and so from (D3) we have $d^{k+1} \sim c \le d^{k+1} \sim d^{k-1}p = 0$. Then $0 \in N(\sim c)$ and hence $(0,1) \in \operatorname{Cg}^{\mathbf{A}}(1,\sim c)$. But then since $(1,\sim c) \in \eta$ it follows that η is the full congruence on \mathbf{A} , contradicting the assumption that $\eta \ngeq \alpha$. Hence we must have $\mathcal{V} \in \mathcal{H}_n^+$, for some $n \in \omega$.

(3) \implies (1): Sankappanavar [6, p. 413] proved that for all $n \in \omega$,

$$t(x, y, z) = [z \land d^n((x \lor y) \to (x \land y))] \lor [x \land \neg d^n((x \lor y) \to (x \land y))]$$

is the discriminator on \mathcal{H}_n^+ .

(1) \implies (5): If t(x, y, z) is a discriminator term for \mathcal{V} then for all $\mathbf{A} \in \mathcal{J}$ and all $a, b, c, d \in \mathbf{A}$ we have $(c, d) \in \mathrm{Cg}^{\mathbf{A}}(a, b)$ if and only if t(a, b, c) = t(a, b, d). See [1, p. 201].

(5) \implies (4): This follows immediately.

(4) \implies (3): Let \mathcal{V} have DPC and suppose $\mathcal{V} \not\subseteq \mathcal{H}_n^+$ for all $n \in \omega$. Then there exists a sequence $\{\mathbf{A}_i\}_{i\in\mathbb{N}} \subseteq \mathcal{V}$ such that each \mathbf{A}_i is subdirectly irreducible, but $\mathbf{A}_i \notin \mathcal{H}_i^+$. Let $\mathbf{A} = \prod_{i\in\mathbb{N}} \mathbf{A}_i/U$ be an ultraproduct for some non-principal ultrafilter U on \mathbb{N} .

Since \mathcal{V} has DPC, subdirect irreducibility is a first-order property and so **A** is subdirectly irreducible. Let μ be its monolith. By Lemma 2.6, for all $a \in A \setminus \{1\}$ and all $b \in 1/\mu$, there is some $k \in \omega$ with $d^k a \leq b$.

Let μ_n denote the monolith for \mathbf{A}_n and consider any sequence $\{b_n\}_{n \in \mathbb{N}}$ such that each $b_n \in (1/\mu_n) \setminus \{1\}$. Let $\overline{b} = \langle b_n \mid n \in \mathbb{N} \rangle / U$. It follows from DPC and properties of ultraproducts that $\overline{b} \in 1/\mu$ and so \overline{b} satisfies the property of Lemma 2.6(2):

$$(\forall a \in A \setminus \{1\}) (\exists k \in \omega) \ d^k a \leq \overline{b}.$$

We now construct an $a \in A \setminus \{1\}$ that does not satisfy this inequality. As $\mathbf{A}_n \notin \mathcal{H}_n^+$, by Lemma 3.3 there exists $a_n \in A_n$ such that $d^{\lfloor \frac{n-1}{2} \rfloor} a_n \nleq b_n$. By construction, $\overline{a} \neq 1$ and so by Lemma 2.6 there exists some $k \in \omega$ with $d^{k+1}\overline{a} \leq \overline{b}$. But for every m > 2k + 1, we have $d^k a_m \nleq b_m$ as otherwise $d^{\lceil \frac{m-1}{2} \rceil} a_m \leq b_m$. So we must have in the ultraproduct that $d^k \overline{a} \nleq \overline{b}$, contradicting Lemma 2.6. Thus there exists $n \in \omega$ such that $\mathcal{V} \subseteq \mathcal{H}_n^+$. \Box

Our main result now follows from Theorem 2.2.

Corollary 3.7. Let \mathcal{V} be a variety of double-Heyting algebras. Then the following are equivalent.

- (1) \mathcal{V} is a discriminator variety,
- (2) \mathcal{V} is semisimple,
- (3) $\mathcal{V} \subseteq \mathcal{DH}_n$ for some $n \in \omega$,
- (4) \mathcal{V} has DPC,
- (5) \mathcal{V} has EDPC.

4. Concluding remarks

An algebra $\mathbf{A} = \langle A; \lor, \land, \neg, \sim, 0, 1 \rangle$ is called a (*distributive*) double *p*algebra if $\langle A; \lor, \land, 0, 1 \rangle$ is a bounded (distributive) lattice and \neg and \sim are pseudocomplement and dual pseudocomplement operations respectively. Recall that an algebra is *regular* if, whenever two congruences share a class, they are in fact the same congruence. Varlet [7] has given an equational characterisation of regular double p-algebras. Furthermore, a result of Katriňák [3] has shown that every regular double p-algebra is term-equivalent to a double-Heyting algebra via the term

$$x \to y = \neg \neg (\neg x \lor \neg \neg y) \land (\sim (x \lor \neg x) \lor \neg x \lor y \lor \neg y),$$

and its dual. Let \mathcal{R} denote the variety of regular double p-algebras.

Corollary 4.1. Let \mathcal{V} be a variety of regular double p-algebras. Then the following are equivalent.

- (1) \mathcal{V} is a discriminator variety,
- (2) \mathcal{V} is semisimple,
- (3) $\mathcal{V} \subseteq \mathcal{R}_n$ for some $n \in \omega$,
- (4) \mathcal{V} has DPC,
- (5) \mathcal{V} has EDPC.

Bearing in mind that regular double p-algebras can be treated as double-Heyting algebras, and double-Heyting algebras can be treated as H^+ algebras, we conclude by observing that, for $n \in N$, the classes \mathcal{R}_n are not finitely generated, which then extends to \mathcal{DH}_n and \mathcal{H}_n^+ . Note that \mathcal{R}_0 is the class of boolean algebras and is therefore finitely generated. Let **B** be any infinite boolean algebra and let \mathbf{B}^\top denote the double p-algebra obtained by affixing a new top element to **B**, say \top . In [7], Varlet proved that a double p-algebra **A** is regular if and only if for all $x, y \in A$ the inequality $\sim x \wedge x \leq y \vee \neg y$ is satisfied. It is routine to verify that \mathbf{B}^\top satisfies this inequality, and thus \mathbf{B}^\top forms a regular double p-algebra. Moreover, the new top element is join-irreducible and so for all $x \in B^\top \setminus \{\top\}$ we have $\sim x = \top$, and hence dx = 0. It then follows that \mathbf{B}^\top is simple, and that, for all $n \geq 1$, we have $\mathbf{B}^\top \in \mathcal{R}_1 \subseteq \mathcal{R}_n$. Since **R** is congruence distributive, it follows that the classes \mathcal{R}_n are not finitely generated for each $n \geq 1$.

References

- W. J. Blok and D. Pigozzi, On the structure of varieties with equationally definable principal congruences. I. Algebra Universalis 15 (1982), 195–227.
- [2] S. Burris and H. P. Sankappanavar, A course in universal algebra, vol. 78 of Graduate Texts in Mathematics. Springer, New York-Berlin, 1981.
- [3] T. Katriňák, The structure of distributive double *p*-algebras. Regularity and congruences. Algebra Universalis 3 (1973), 238–246.
- [4] T. Kowalski, Varieties of tense algebras. Rep. Math. Logic 32 (1998), 53-95.
- [5] R. McKenzie and M. Valeriote, The structure of decidable locally finite varieties, vol. 79 of Progress in Mathematics. Birkhäuser Boston, Inc., Boston, MA, 1989.

- [6] H. P. Sankappanavar, Heyting algebras with dual pseudocomplementation. *Pacific J. Math.* 117 (1985), 405–415.
- [7] J. C. Varlet, A regular variety of type < 2, 2, 1, 1, 0, 0 >. Algebra Universalis 2 (1972), 218–223.
- [8] H. Werner, Discriminator-algebras, vol. 6 of Studien zur Algebra und ihre Anwendungen. Akademie-Verlag, Berlin, 1978. Algebraic representation and model theoretic properties.

Mathematics and Statistics La Trobe University Victoria 3086 Australia chris.taylor@latrobe.edu.au