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ON SOME PROPERTIES OF QUASI-MV

ALGEBRAS AND
√

′ QUASI-MV ALGEBRAS

A b s t r a c t. We investigate some properties of two varieties

of algebras arising from quantum computation - quasi-MV alge-

bras and
√

′ quasi-MV algebras - first introduced in [13], [12] and

tightly connected with fuzzy logic. We establish the finite model

property and the congruence extension property for both varieties;

we characterize the quasi-MV reducts and subreducts of
√

′ quasi-

MV algebras; we give a representation of semisimple
√

′ quasi-MV

algebras in terms of algebras of functions; finally, we describe the

structure of free algebras with one generator in both varieties.

.1 Introduction

Unlike classical computation, quantum computation [17] allows one to rep-

resent two atomic information bits in parallel. Here, in fact, the appropriate

Received 27 July 2006



32 FRANCESCO PAOLI, ANTONIO LEDDA, ROBERTO GIUNTINI, HECTOR FREYTES

counterpart of a classical bit is the qubit, defined as a unit vector in the

2-dimensional Hilbert space C2:

|ψ〉 = a |0〉 + b |1〉 ,

where a, b are complex numbers s.t. |a|2 + |b|2 = 1, while |0〉 , |1〉 are the

unit vectors 〈1, 0〉 , 〈0, 1〉, respectively. Supposing that, in analogy with the

classical case, |0〉 and |1〉 represent maximal and precise pieces of informa-

tion, the superposition state |ψ〉 corresponds to an uncertain information:

as dictated by the Born rule, |a|2 yields the probability of the information

described by the pure state |0〉, while |b|2 yields the probability of the in-

formation described by the pure state |1〉. A system of n qubits, also called

a n−quregister, is represented by a unit vector in the n-fold tensor product

Hilbert space ⊗nC2. Qubits and quregisters encode possibly uncertain, yet

maximal information. Non-maximal information pieces are matched, on a

mathematical level, by qumixes, i.e. density operators in C2 or in an ap-

propriate tensor product ⊗nC2 of C2, for which we will sometimes use the

variables ρ, σ, ...

Similarly to the classical case, we can introduce and study the behaviour

of a number of quantum logical gates (hereafter quantum gates for short)

operating on such information units. These gates are mathematically rep-

resented by unitary operators on the appropriate Hilbert spaces. In this

way, we end up defining an array of quantum computational logics ([3], [8]).

Here are some significant examples of quantum gates, whose behaviour is

at first described in the framework of quregisters.

Example 1. For any n ≥ 1, the negation on ⊗nC2 is the unitary

operator Not(n) such that, for every element |a1, ..., an〉 of the computational

basis1 B(n),

Not(n)(|a1, ..., an〉) = |a1, ..., an−1〉 ⊗ |1 − an〉 .

Example 2. For any n,m ≥ 1, the Petri-Toffoli gate on ⊗n+m+1C2 is

the unitary operator T (n,m,1) such that, for every element

|a1, ..., an〉 ⊗ |b1, ..., bm〉 ⊗ |c〉
1By B(n) we denote the set {|a1, ..., an〉 : ai ∈ {0, 1}}, which is an orthonormal basis

for the space ⊗nC2.
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of the computational basis B(n+m+1) (shortened as |−→a 〉 ⊗
∣∣∣
−→
b
〉
⊗ |c〉),

T (n,m,1)(|−→a 〉 ⊗
∣∣∣
−→
b
〉
⊗ |c〉) = |−→a 〉 ⊗

∣∣∣
−→
b
〉
⊗
∣∣anbm+̂c

〉
,

where +̂ represents sum modulo 2. The conjunction And(|−→a 〉 ,
∣∣∣
−→
b
〉

) can be

defined as T (n,m,1)(|−→a 〉 ⊗
∣∣∣
−→
b
〉
⊗ |0〉).

One can easily verify that, when applied to classical bits, Not and And

behave as the standard Boolean truth functions. However, the quantum

computational And is, unlike classical conjunction, reversible: one can re-

trieve the input values from the output with no loss of information.

Example 3. For any n ≥ 1, the square root of the negation on ⊗nC2

is the unitary operator
√
Not

(n)
such that, for every element |a1, ..., an〉 of

the computational basis B(n),

√
Not

(n)
(|a1, ..., an〉) = |a1, ..., an−1〉 ⊗

1

2
((1 + i) |an〉 + (1 − i) |1 − an〉) ,

where i is the imaginary unit.

The basic property of
√
Not

(n)
is the following: for any |−→a 〉 in ⊗nC2,√

Not
(n)
(√

Not
(n)

(|−→a 〉)
)

= Not(n) (|−→a 〉). From a logical point of view, the

square root of the negation can be regarded as a kind of ”tentative par-

tial negation” that transforms precise pieces of information into maximally

uncertain ones. True to form, this gate has no Boolean counterpart.

Next, we provide an example of an (irreversible) quantum gate whose

behaviour is described in the framework of qumixes. We parenthetically

observe that, when applied to qumixes, the previously mentioned gates

are usually written in capital letters, while the superscript indicating the

Hilbert space where the operator ”lives” is dropped; for example,
√
Not

(n)

becomes
√
NOT.2

Example 4. Let τ, σ be density operators of ⊗nC2 and ⊗mC2, re-

spectively. The  Lukasiewicz disjunction of τ and σ is the operator ⊕ :

⊗nC2 ×⊗mC2 → ⊗n+mC2 defined by:

τ ⊕ σ = (1 − (p (τ) ⊕ p (σ)))κP
(n+m)
0 + (p (τ) ⊕ p (σ))κP

(n+m)
1 ,

2In order to guarantee closure of the set of density operators w.r.t. the above-

mentioned gates, a special device must be adopted. The exact definition of
√
NOTρ,

for example, is
√
Not

(n)
ρ
√
Not

(n)∗
, where

√
Not

(n)∗
is the adjoint operator of

√
Not.
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where:

• κ = 1
2n+m−1 is a normalisation factor;

• P
(n+m)
0 (respectively, P

(n+m)
1 ) is the projection operator onto the

subspace spanned by the vectors of the computational basis B(n+m)

whose last figure is 0 (respectively, 1) and acts as a mathematical rep-

resentative of the ”falsity” property (respectively, ”truth” property)

in ⊗n+mC2;

• p (ρ) is the probability3 of the density operator ρ;

• ⊕ is the usual  Lukasiewicz truncated sum.

Thus, if n = m = 1,

τ ⊕ σ =
(1 − (p (τ) ⊕ p (σ)))

2
P

(2)
0 +

(p (τ) ⊕ p (σ))

2
P

(2)
1 .

Although the preceding examples were given in the general framework

of arbitrary n-fold tensor products of C2, it can be shown [4] that - from

a logical viewpoint - it is unnecessary to consider information quantities in

Hilbert spaces other than C2: in fact, the algebra whose universe is the set

of all qumixes of C2 and whose operations correspond to appropriate exten-

sions of the quantum logical gates generates the same logical consequence

relation (in the sense of [3]) as the algebra over the set of all qumixes of

arbitrary n-fold tensor products of C2. This result smooths things out to

a considerable extent, since density operators of C2 are amenable to the

well-known matrix representation

1

2

(
I + r1

(
0 1

1 0

)
+ r2

(
0 −i
i 0

)
+ r3

(
1 0

0 −1

))
,

(where I is the identity 2 × 2 matrix, while r1, r2, r3 are real numbers s.t.

r21 + r22 + r23 ≤ 1). In other words, every density operator ρ of C2 can be

represented as a special triple 〈r1, r2, r3〉 of real numbers, namely a point in

the Bloch-Poincaré sphere D3. The third element of the triple determines

3Recall that the probability of the density operator ρ of ⊗nC2 is simply the trace of

the operator P
(n)
1 ρ.
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the probability of ρ, while the second element of the triple determine the

probability of
√
NOTρ. In fact, an easy calculation shows that

p (ρ) =
1 + r3

2
, p
(√

NOTρ
)

=
1 − r2

2

It follows that, if we are concerned only with the probability of ρ

and with the probability of
√
NOTρ, we can shift down by one dimen-

sion: the triple 〈r1, r2, r3〉 shrinks to the pair 〈a, b〉, where a represents

the probability of ρ and b represents the probability of
√
NOTρ. Clearly,

the elements a, b must satisfy the condition that a2 + b2 ≤ 1; that is,

they must belong to the closed disc D2. To make computations easier,

however, it is more convenient to transpose the disc to the first quad-

rant, scaling it down by one half: after such a move, qumixes are rep-

resented (modulo a neglection of the first component) by points of the

closed disc with centre
〈

1
2 ,

1
2

〉
and radius 1

2 - which correspond to the sub-

set
{
〈a, b〉 ∈ R×R : (1 − 2a)2 + (1 − 2b)2 ≤ 1

}
of the set of all complex

numbers. In this way, quantum logical gates are transformed into opera-

tions on such a set of complex numbers. So, we can obtain some standard

algebras over the complex numbers, sharing the same universe but having

different signatures according to the set of logical gates under examination

([4], [9]).

In ([13]) we considered, for a start, the standard algebra whose funda-

mental operations included the counterparts of the negation gate and of the

 Lukasiewicz disjunction gate (see Examples 1 and 4) and two distinguished

elements,
〈
0, 1

2

〉
and

〈
1, 1

2

〉
(standing, respectively, for the ”falsity” property

and for the ”truth” property). Such a structure, therefore, has the similar-

ity type of Chang’s MV algebras ([6]) and satisfies all of the MV algebraic

axioms except that
〈
0, 1

2

〉
is not a neutral element for truncated sum. We

then introduced the notion of quasi-MV algebra with the following analogy

in mind: the above-mentioned algebra should play w.r.t. quasi-MV alge-

bras the same role as the standard algebra over the real closed unit interval

plays w.r.t. MV algebras. Our choice of axioms was bolstered, indeed, by

a completeness theorem to the effect that an equation in the appropriate

language holds in all quasi-MV algebras iff it holds in the standard algebra

over the complex numbers.

In a subsequent paper we focussed on
√

′ quasi-MV algebras, i.e. quasi-

MV algebras expanded by an operation of square root of the inverse (
√

′),
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which is the algebraic counterpart of the logical gate of square root of

negation introduced in Example 3. The square root of the inverse can

therefore be seen as a kind of ”tentative inversion”: by applying it twice

to a given element a, we obtain the inverse a′ of the element itself. In the

standard algebra, for example, we have

√
′ 〈a, b〉 = 〈b, 1 − a〉 ;√

′
√

′ 〈a, b〉 = 〈1 − a, 1 − b〉 = 〈a, b〉′ .

Also this variety, as a matter of fact, turns out to be generated by the

standard algebra over the complex numbers.

Once we forget about their original computational motivation, these

varieties lend themselves to a purely algebraic investigation. As already

mentioned, some progress towards this goal was made already in [13], [12].

In this paper we inquire further into this subject: we establish the finite

model property and the congruence extension property for both varieties;

we characterize the quasi-MV reducts and subreducts of
√

′ quasi-MV alge-

bras; we give a representation of semisimple
√

′ quasi-MV algebras in terms

of algebras of functions; finally, we describe the structure of free algebras

with one generator in both varieties.

To keep the paper self-contained, the next two sections will contain a

brief précis of [13], [12].

.2 Quasi-MV algebras

Definition 5. A quasi-MV algebra (for short, qMV algebra4) is an alge-

bra A = 〈A,⊕,′ , 0, 1〉 of type 〈2, 1, 0, 0〉 satisfying the following equations:

4A different notation was used in [13], [12]: ”quasi-MV algebra” was shortened into

”QMV algebra” (with uppercase Q). The present notational change is motivated by the

desire to avoid any possible confusion with quantum MV algebras (also abbreviated as

QMV algebras: see e.g. [11]).
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A1. x⊕ (y ⊕ z) ≈ (x⊕ z) ⊕ y

A2. x′′ ≈ x

A3. x⊕ 1 ≈ 1

A4. (x′ ⊕ y)′ ⊕ y ≈ (y′ ⊕ x)′ ⊕ x

A5. (x⊕ 0)′ ≈ x′ ⊕ 0

A6. (x⊕ y) ⊕ 0 ≈ x⊕ y

A7. 0′ ≈ 1

We can think of a qMV algebra as identical to an MV algebra, except

for the fact that 0 need not be a neutral element for the truncated sum ⊕.

Of course, a qMV algebra is an MV algebra iff it satisfies the additional

equation x⊕ 0 ≈ x.

An immediate consequence of Definition 5 is the fact that the class of

qMV algebras is a variety in its signature. Henceforth, such a variety will

be denoted by qMV. The subvariety of MV algebras will be denoted by

MV.

Definition 6. We introduce the following abbreviations:

x⊗ y = (x′ ⊕ y′)′;

x ⋒ y = x⊕ (x′ ⊗ y);

x ⋓ y = x⊗ (x′ ⊕ y).

As already remarked, every MV algebra is an example of qMV algebra.

Examples of ”pure” qMV algebras, i.e. qMV algebras that are not MV

algebras, are given by the next two structures over the complex numbers,

S (for square) and D (for disc, already mentioned in the introduction).

Example 7. (standard quasi-MV algebras). We introduce two standard

quasi-MV algebras. S is the algebra
〈
[0, 1] × [0, 1] ,⊕S,′S , 0S, 1S

〉
, where:

• 〈a, b〉 ⊕S 〈c, d〉 =
〈
min(1, a + c), 1

2

〉
;

• 〈a, b〉′S = 〈1 − a, 1 − b〉;

• 0S =
〈
0, 1

2

〉
;

• 1S =
〈
1, 1

2

〉
.
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Remark that 〈a, b〉 ⊕S
〈
0, 1

2

〉
6= 〈a, b〉 whenever b 6= 1

2 .

D is the subalgebra of S whose universe is the set

{〈a, b〉 : a, b ∈ R and (1 − 2a)2 + (1 − 2b)2 ≤ 1}.

We now list some very simple properties of qMV algebras.

Lemma 8. The following equations are satisfied in every qMV algebra:

(i) x⊕ (y ⊕ z) ≈ (x⊕ y) ⊕ z; (v) 0 ⊕ 0 ≈ 0;

(ii) x⊕ y ≈ y ⊕ x; (vi) x⊕ 0 ≈ x ⋓ x;

(iii) x⊕ x′ ≈ 1; (vii) x ⋓ y ≈ y ⋓ x.

(iv) x⊗ x′ ≈ 0; (viii) x ⋒ y ≈ y ⋒ x.

It is well-known (see e.g. [6]) that it is possible to introduce a lattice

order on any MV algebra by simply taking a ≤ b to hold whenever a⊗(a′⊕
b) = a. This condition is obviously equivalent to a ⋓ b = a ⊕ 0 in an MV

algebraic setting, yet it is no longer such in a quasi-MV algebraic one. We

define:

Definition 9. Let A be a qMV algebra. For all a, b ∈ A:

a ≤ b iff a ⋓ b = a⊕ 0.

Lemma 10. Let A be a qMV algebra. (i) For all a, b ∈ A, a ≤ b iff

1 = a′⊕ b; (ii) ≤ is a preordering, but not necessarily a partial ordering, of

A.

Our preordering relation enjoys some standard properties, including a

few monotonicity properties:

Lemma 11. Let A be a qMV algebra. For all a, b, c, d ∈ A:

(i) a⊕ 0 ≤ b⊕ 0, b⊕ 0 ≤ a⊕ 0 ⇒ a⊕ 0 = b⊕ 0;

(ii) a ≤ b, c ≤ d⇒ a⊕ c ≤ b⊕ d;

(iii) a ≤ b, c ≤ d⇒ a⊗ c ≤ b⊗ d;

(iv) a ≤ b, c ≤ d⇒ a ⋓ c ≤ b ⋓ d;

(v) a ≤ b, c ≤ d⇒ a ⋒ c ≤ b ⋒ d;

(vi) a ≤ a⊕ 0, a⊕ 0 ≤ a;

(vii) a⊗ b ≤ c⇔ a ≤ b′ ⊕ c;

(viii) a ≤ b⇒ b′ ≤ a′;

(ix) 0 ≤ a, a ≤ 1;

(x) a⊕ 0 = b⊕ 0 ⇒ a⊕ c = b⊕ c.
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Some elements in a qMV algebra (at least one indeed, i.e. 0) are ”well-

behaved” in that they satisfy the equation x⊕ 0 ≈ x; we call them regular.

Of course, MV algebras contain nothing but regular elements. Pure qMV

algebras, on the contrary, also have irregular elements which fail to satisfy

that equation.

Definition 12. Let A be a qMV algebra and let a ∈ A. We call a

regular just in case a ⊕ 0 = a. We denote by R(A) the set of all regular

elements of A.

The relations χA and τA on A defined by

aχAb iff a ≤A b and b ≤A a (iff a⊕A 0 = b⊕A 0)

aτAb iff a, b ∈ R(A) or a = b

are congruences on any qMV algebra A; we drop the superscripts whenever

it is clear which algebra is at issue. Moreover, we call clouds the elements

of A/χ. We have that:

Lemma 13. Let A be a qMV algebra. The algebra

RA =
〈
R(A),⊕R,′R , 0R, 1R

〉

where, for any functor f , fR is the restriction to R(A) of fA, is an MV-

subalgebra of A, lattice ordered by the restriction to R(A) of ≤A, and

isomorphic to A/χ.

QMV algebras consisting of just one cloud are called flat ; they cor-

respond to the subvariety of qMV algebras whose equational basis w.r.t.

qMV is the single equation 0 ≈ 1. For any qMV algebra A, A/τ is a flat

algebra.

Definition 14. A qMV algebra F is called flat iff it satisfies the equa-

tion 0 ≈ 1. The subvariety of flat qMV algebras will be denoted by FqMV.

Any qMV algebra can be thought of as composed by an MV algebraic

component and a flat component. More precisely:

Theorem 15. For every qMV algebra Q, there exist an MV algebra

M and a flat qMV algebra F such that Q can be embedded into the direct

product M× F.
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Proof. Indeed, choosing A/χ for M and A/τ for F does the trick. �

As a corollary to Theorem 15, to Chang’s completeness theorem for MV

algebras and to the completeness of flat qMV algebras w.r.t. a standard

flat algebra over the complex numbers, we get the desired completeness

result w.r.t. both the square and the disc:

Theorem 16. If t, s are terms in the language of qMV algebras, the

following are equivalent:

(i) qMV � t ≈ s;

(ii) S � t ≈ s;

(iii) D � t ≈ s.

.3 Adding square roots of the inverse

We now enrich quasi-MV algebras by an additional unary operation of

square root of the inverse and by a constant k, which realises in the standard

algebra the element
〈

1
2 ,

1
2

〉
, corresponding to the ”absolutely undetermined”

density operator5.

Definition 17. A
√

′ quasi-MV algebra (for short,
√

′qMV algebra) is

an algebra A =
〈
A,⊕,

√
′, 0, 1, k

〉
of type 〈2, 1, 0, 0, 0〉 such that, upon

defining a′ =
√

′
√

′a for all a ∈ A, the following conditions are satisfied:

SQ1. 〈A,⊕,′ , 0, 1〉 is a quasi-MV algebra;

SQ2. k =
√

′k;

SQ3.
√

′(a⊕ b) ⊕ 0 = k for all a, b ∈ A.

The axiom SQ3 may at first look somewhat puzzling. The reason why

it is there lies in two facts: first, the output of a  Lukasiewicz disjunction

between any density operator ρ and
〈
0, 1

2

〉
has the same probability as ρ,

while the probability of its square root of the negation is the constant value
1
2 ; second, the probability of the square root of the negation

√
NOT (ρ⊕ σ)

of the  Lukasiewicz disjunction ρ⊕σ of any two density operators ρ, σ turns

out to assume the constant value 1
2 .

5An interesting physical model for this operator is given by the so-called semi-

transparent mirror, i.e. a half-silvered mirror which reflects exactly one half of any light

beam incident at a π

4
angle.
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√
′qMV algebras form a variety in their own similarity type, hereafter

named
√

′qMV. We remark in passing that it is impossible to add a square

root of the inverse to a nontrivial MV algebra: letting b be 0 in SQ3, for

all a ∈ A we would have
√

′a = k, whence by SQ2 a′ =
√

′
√

′a =
√

′k = k

and so a = a′′ = k′ =
√

′
√

′k = k.

Examples of
√

′qMV algebras are the following expansions of the stan-

dard qMV algebras over the complex numbers; finite examples of
√

′qMV

algebras can be found in [12].

Example 18. (standard
√

′qMV algebras). We introduce two standard√
′qMV algebras. Sr is the algebra

〈
[0, 1] × [0, 1] ,⊕Sr ,

√
′Sr
, 0Sr , 1Sr , kSr

〉
,

where:

•
〈
[0, 1] × [0, 1] ,⊕Sr ,′Sr , 0Sr , 1Sr

〉
is the qMV algebra S of Example 7;

•
√

′Sr 〈a, b〉 = 〈b, 1 − a〉;

• kSr =
〈

1
2 ,

1
2

〉
.

Dr is the subalgebra of Sr whose universe is the set

{〈a, b〉 : a, b ∈ R and (1 − 2a)2 + (1 − 2b)2 ≤ 1}.

In
√

′qMV algebras we have not only regular elements, but also coregular

elements, i.e. elements whose square roots of the inverse are regular. In

other words, a is coregular just in case
√

′a ⊕ 0 =
√

′a. We denote by

COR(A) the set of all coregular elements of A.

Lemma 19. The following equations are satisfied in every
√

′qMV al-

gebra:

(i) k ≈ k′; (iii)
√

′(x′) ≈ (
√

′x)′;

(ii) k ≈ k ⊕ 0; (iv)
√

′(x⊕ y) ⊕
√

′(z ⊕ w) ≈ 1.

Lemma 20. Let A be a
√

′qMV algebra and let a ∈ COR(A). Then:

(i) a⊕ 0 = k; (ii) a⊕ k = a⊕
√

′0 = a⊕
√

′1 = 1.

√
′qMV algebras whose universes contain nothing but regular or coreg-

ular elements are worth a special label. For a reason that will become clear

presently, we dub them strongly cartesian. Indeed, any
√

′qMV algebra has

a strongly cartesian subalgebra:
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Lemma 21. Let A be a
√

′qMV algebra. The algebra

NA =
〈
R(A) ∪ COR(A),⊕N,

√
′N, 0N, 1N, kN

〉

where, for any functor f , fN is the restriction to R(A) ∪ COR(A) of fA,

is a subalgebra of A.

Such a subalgebra can always be embedded into a quotient algebra of

A modulo a congruence relation which we are now going to define.

Definition 22. Let A be a
√

′qMV algebra and let a, b ∈ A. We set:

aλAb iff a⊕A 0 = b⊕A 0 and
√

′a⊕A 0 =
√

′b⊕A 0

or, equivalently,

aλAb iff a ≤A b, b ≤A a,
√

′a ≤A
√

′b and
√

′b ≤A
√

′a.

It turns out that λA is a congruence on every
√

′qMV algebra. We call

the relation λA the cartesian congruence on a given
√

′qMV algebra, and

drop once again the superscripts whenever it is clear which algebra is at

issue. It is easily seen that:

Lemma 23. Let A be a
√

′qMV algebra. The subalgebra NA of Lemma

21 is embeddable into A/λ.

Likewise, we introduce a congruence which we call the flat congruence

on a
√

′ qMV algebra. Omitting superscripts from the very beginning, we

put:

Definition 24. Let A be a
√

′qMV algebra and let a, b ∈ A. We define:

aµb iff a = b or a, b ∈ R(A) ∪ COR(A).

λ is orthogonal to µ (i.e., their intersection is the identity relation). We

now introduce two special classes of
√

′ qMV algebras: cartesian algebras,

where λ is the identity relation ∆, and flat algebras, where λ is the universal

relation ∇.

Definition 25. A
√

′ qMV algebra A is called cartesian iff λ = ∆, i.e.

iff it satisfies the quasi-equation

x⊕ 0 ≈ y ⊕ 0 ∧
√

′x⊕ 0 ≈
√

′y ⊕ 0 ⇒ x ≈ y

A
√

′ qMV algebra A is called flat iff λ = ∇. We denote by F the class

of flat
√

′ qMV algebras, and by C the class of cartesian
√

′ qMV algebras.
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As a consequence of the definition, the only
√

′qMV algebra which is

both cartesian and flat is the trivial one-element algebra. Strongly cartesian√
′qMV algebras are cartesian, but not always conversely; for example,

the algebras of Example 18 are cartesian but not strongly cartesian. The

algebras in the next example, on the other hand, are flat.

Example 26. F100 is the algebra6 whose universe is the 2-element set

{0, b}, s.t. all truncated sums equal 0, while
√

′0 = 0 and
√

′b = b. F020 is

the algebra whose universe is the 3-element set {0, a, b}, whose semigroup

reduct is again the constant 0-valued semigroup and whose table for
√

′ is

given by √
′

0 0

a b

b a

Both F100 and F020 are flat; moreover, F100 is simple, while F020 is a

nonsimple subdirectly irreducible algebra having three congruences: ∆, λ =

∇ and the monolith θ whose cosets are {a, b} and {0}.

C and F do not exhaust the variety of
√

′qMV algebras: for example,

the direct product of the Cross (Example 20 in [12]) and F100 is neither

cartesian nor flat. It is also worth noticing that F is a variety, whose

equational basis relative to
√

′qMV is given by the single equation 0 ≈ 1,

while C is a quasivariety which is not a variety.

Lemma 27. (i) F is a variety; (ii) C is a quasivariety but not a variety.

Cartesian
√

′qMV algebras are amenable to a clean representation in

terms of algebras of pairs. Consider the standard
√

′qMV algebra Sr. One

may think of it as obtained out of the standard MV algebra MV[0,1] by

taking the cartesian square of its universe and defining the operations in

such a way that each component of the result may be extracted out of the

components of the argument(s) simply by means of polynomial MV[0,1]-

operations. It turns out that this construction can be carried out not just

for MV[0,1], but for an arbitrary MV algebra - provided that inverse has a

fixpoint - as the next definition shows.

6In general, we denote by Fnmp the finite flat algebra which contains n fixpoints for√
′ beside 0, m fixpoints for the inverse which are not fixpoints for

√
′, and p elements

which are not fixpoints under either operation.
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Definition 28. Let A =
〈
A,⊕A,′A , 0A, 1A

〉
be an MV algebra and let

k ∈ A be such that k = k′. The pair algebra over A is the algebra

P(A) =
〈
A2,⊕P(A),

√
′P(A)

, 0P(A), 1P(A), kP(A)
〉

where:

• 〈a, b〉 ⊕P(A) 〈c, d〉 =
〈
a⊕A c, k

〉
;

•
√

′P(A) 〈a, b〉 =
〈
b, a′A

〉
;

• 0P(A) =
〈
0A, k

〉
;

• 1P(A) =
〈
1A, k

〉
;

• kP(A) = 〈k, k〉.

Every pair algebra P(A) over an MV algebra A is a cartesian
√

′qMV

algebra. Conversely, every cartesian
√

′qMV algebra is embeddable into a

pair algebra:

Theorem 29. Every cartesian
√

′qMV algebra A is embeddable into

the pair algebra P(RA) over its MV polynomial subreduct RA of regular

elements.

Proof. Let f : A→ R(A)2 be defined by

f(a) =
〈
a⊕ 0,

√
′a⊕ 0

〉
.

The quasi-equation of Definition 25 guarantees that f is one-one. It can be

checked that it preserves the operations. �

A variant of the direct decomposition for quasi-MV algebras provided

by Theorem 15 carries over to our enriched structures:

Theorem 30. For every
√

′qMV algebra Q, there exist a cartesian

algebra C and a flat algebra F such that Q can be embedded into the direct

product C × F.

Proof. Let Q =
〈
Q,⊕Q,

√
′Q, 0Q, 1Q, kQ

〉
be a

√
′qMV algebra. The

ingredients of our representation are the following:
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• C = P(RQ), the pair
√

′qMV algebra over the MV algebra RQ of

regular elements of Q;

• F = Q/µ.

Now, let h : Q→ R(Q)2 ×Q be given by:

h(a) =






〈〈
a⊕ 0,

√
′a⊕ 0

〉
, k/µ

〉
, if a ∈ R(Q) ∪ COR(Q);

〈〈
a⊕ 0,

√
′a⊕ 0

〉
, a/µ

〉
, otherwise.

The function h does the required job. �

As regards positive properties of congruence lattices in
√

′qMV algebras,

we were able to collect nothing but meagre results. For example,
√

′qMV

is neither congruence modular nor ideal-determined. Nonetheless, in any√
′qMV algebra, an important sublattice of the lattice of congruences is

isomorphic to the lattice of the ideals of the corresponding MV algebraic

subreduct:

Definition 31. Let A be a
√

′qMV algebra. A congruence θ on A is

called a
√

′qMV − C congruence iff A/θ is cartesian; in other words, iff for

any a, b ∈ A, a⊕0/θ = b⊕0/θ and
√

′a⊕0/θ =
√

′b⊕0/θ implies a/θ = b/θ.

From the previous definition it follows that:

• λ is the smallest
√

′qMV − C congruence in any
√

′qMV algebra;

• in a flat
√

′qMV algebra, λ = ∇ is the unique
√

′qMV − C congruence;

• in a cartesian
√

′qMV algebra,
√

′qMV − C congruences are exactly

the relative congruences.

Ideals in
√

′qMV algebras are defined exactly as in MV algebras. Let

I(RA), I(A) and CI(A) denote the lattices of, respectively, the ideals of

RA, the ideals of A, and the
√

′qMV − C congruences of A. We have that:

Theorem 32. Let A be a
√

′qMV algebra. The following lattices are

mutually isomorphic:

• CI(A);

• C(RA);
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• I(RA);

• I(A).

Since MV is known to be an arithmetical variety, the previous theorem

implies that:

Corollary 33. C is a relatively congruence distributive and relatively

congruence permutable quasivariety.

A closer scrutiny of strongly cartesian algebras allows one to prove:

Lemma 34. The universal class of strongly cartesian
√

′ qMV algebras

is closed w.r.t. quotients, but not w.r.t. products.

Proof. The first claim follows from the fact that the universal formula

defining strongly cartesian algebras is a positive formula. As to the second

one, consider the Cross C, which is strongly cartesian. In C× C, the

element
〈√

′0, 1
〉

is neither regular nor coregular, for
〈√

′0, 1
〉
⊕ 〈0, 0〉 =

〈k, 1〉, while
√

′
〈√

′0, 1
〉
⊕ 〈0, 0〉 = 〈1, k〉 6=

〈
1,
√

′1
〉

=
√

′
〈√

′0, 1
〉

. �

It is shown in [12] that the quasivariety of Cartesian
√

′qMV algebras

generates the whole variety
√

′qMV:

Theorem 35. V(C) =
√

′qMV.

Moreover, the standard completeness theorem for qMV algebras carries

over to
√

′qMV. We state it in the next section in a more general form than

we did in [12].

.4 Finite model property

A variety of algebras of type T has the finite model property (FMP) if

every equation of type T which does not hold in the variety can be falsified

in a finite member of the variety. Alternatively, one can say that a variety

has the FMP iff it is generated as a variety by its finite members. This

is indeed a remarkable property, since e.g. it implies decidability. As it

is well-known that the variety MV has the FMP (see e.g. [15]), it is all

too natural to investigate whether qMV and
√

′qMV have the property as
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well. In [12] it is shown that their respective subvarieties FqMV (flat qMV

algebras) and F (flat
√

′qMV algebras) have the FMP (actually, an explicit

proof is given only for F, yet a proof for FqMV can be easily obtained by

fiddling).

For a start, we notice that the finite model property for qMV is little

more than a triviality:

Lemma 36. qMV has the FMP.

Proof. Let t, s ∈ Term(〈2, 1, 0, 0〉) be such that the equation t ≈ s

has a counterexample in a given qMV algebra A. By Theorem 15 it has a

counterexample in A/χ× A/τ , thus either in A/χ or in A/τ . Since both

MV and FqMV are subvarieties of qMV with the FMP, there exists either

a finite MV algebra M or a finite flat qMV algebra F which falsifies the

equation. �

The analogous problem for
√

′qMV is somewhat more interesting. To

address it, we need to restate the standard completeness theorem for
√

′qMV

algebras in a more general form. Thus, let Qr be the subalgebra of Sr whose

universe is the set (Q∩ [0, 1]) × (Q∩ [0, 1]).

Theorem 37. Let t, s ∈ Term(〈2, 1, 0, 0, 0〉). The following are equiv-

alent:

1. Sr � t ≈ s;

2. Qr � t ≈ s;

3.
√

′qMV � t ≈ s;

4. NQr
� t ≈ s;

5. NSr
� t ≈ s.

Proof. The equivalence of (1) and (3) is just Corollary 53 in [12], while

the equivalence of (2) and (3) can be recovered from the proof of Corollary

53 in [12], in the light of the completeness theorem for MV algebras w.r.t.

the standard MV algebra over the rational numbers. (2) obviously implies

(4) and (4) implies (5) for the same reason as above. Thus, it remains to

show that (5) implies (1).
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We proceed contrapositively. Suppose that t ≈ s has a counterexample

in Sr. W.l.g. we can restrict ourselves to the case in which t either is a

constant preceded by k (k ≥ 0) square root symbols, or else contains at

least an occurrence of ⊕, while s is the variable x preceded by k (k ≥ 0)

square root symbols, for equations of the remaining forms are easily seen

either to have no counterexample (e.g. x ≈ x), or to have counterexamples

already in NSr
.

If t is a constant preceded by k (k ≥ 0) square root symbols, it suffices

to assign x the value
〈
m, 1

2

〉
, with 0 < m < 1

2 , to get the desired counterex-

ample. So, let t be a term in the variables x1, ..., xn containing at least

an occurrence of ⊕. It follows that there exist ai, bi,m, n, a ∈ [0, 1] and

b, c 6= 1
2 s.t. either:

tSr

(〈−−→
ai, bi

〉)
=
〈
a, 1

2

〉
6= sSr (〈b, c〉) or

tSr

(〈−−→
ai, bi

〉)
=
〈

1
2 , a
〉
6= sSr (〈b, c〉) ,

where the vectorial notation is self-explanatory. We deal with the former

case, the latter being perfectly dual.

First case: a 6= 1
2 . Then there exist terms t1, t2 such that t is the term

t1 ⊕ t2 preceded by an even number (possibly zero) of square root symbols.

Thus, we assign x the value
〈
b, 1

2

〉
or
〈

1
2 , c
〉

according as it is preceded by

an odd or an even number of square root symbols, while the other variables

in t can be assigned arbitrary values (say
〈

1
2 ,

1
2

〉
). Let tSr (v1, ..., vn) be the

value obtained by t under this assignment. Then sSr
(〈
b, 1

2

〉)
(respectively,

sSr
(〈

1
2 , c
〉)

is coregular and different from
〈

1
2 ,

1
2

〉
, while tSr (v1, ..., vn) is

regular.

Second case: a = 1
2 . Then there exist terms t1, t2 such that t is the

term t1 ⊕ t2 preceded by zero or more square root symbols, and t1 ⊕
tSr

2

(〈−−→
ai, bi

〉)
=
〈

1
2 ,

1
2

〉
. If the number of square root symbols preceding

t1⊕t2 is even, we proceed as in the previous case. If it is odd, we assign x the

value
〈
b, 1

2

〉
or
〈

1
2 , c
〉

according as it is preceded by an even or an odd num-

ber of square root symbols, while the other variables in t can be assigned

arbitrary values (say
〈

1
2 ,

1
2

〉
). Let tSr (v1, ..., vm) be the value obtained by t

under this assignment. Then sSr
(〈
b, 1

2

〉)
(respectively, sSr

(〈
1
2 , c
〉)

is regu-

lar and different from
〈

1
2 ,

1
2

〉
, while tSr (v1, ..., vm) is coregular. �

This variant of the completeness theorem for
√

′qMV comes in quite
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handy since NQr
, unlike Sr or NSr

, is a locally finite algebra, as we

presently show.

Lemma 38. NQr
is locally finite.

Proof. Let a1, ..., an ∈ R (Qr) ∪ COR (Qr) , and let Sg(a1, ..., an) be

the subalgebra of NQr
generated by a1, ..., an. Recall that, if a is coregular,

then for any b we have that b⊕ a = b⊕ k, while the sum of two coregulars

equals 1. Thus, since the MV term subreduct RQr
is locally finite (cp. [7]),

closure under truncated sum yields only finitely many new elements beside

the generators, and the same can be said for closure under square root of

the inverse. Therefore Sg(a1, ..., an) is finite. �

Theorem 39.
√

′qMV has the FMP.

Proof. Let t (x1, ..., xn) ≈ s (y1, ..., ym) be an equation which has a

counterexample in a
√

′ qMV algebra. By Theorem 37 it has a counterex-

ample in NQr
, i.e. there exist a1, ..., an, b1, ..., bm ∈ R (Qr) ∪ COR (Qr)

s.t.

tNQr (a1, ..., an) 6= sNQr (b1, ..., bm) .

Consider Sg(a1, ..., an, b1, ..., bm). By Lemma 38, it is a finite subalgebra

of NQr
, hence a finite

√
′ qMV algebra in its own right. Thus we have the

desired countermodel. �

It would be interesting to ascertain whether qMV and
√

′qMV have the

strong finite model property - i.e. whether they are generated as quasiva-

rieties by their finite members. This question is answered in the positive

for MV in [2].

.5 Congruence extension property

We say that a variety V has the congruence extension property (CEP) iff

for every A ∈ V , every subalgebra B of A, and every congruence θ on

B, there is a congruence ψ on the whole of A which extends θ, i.e. such

that θ = ψ ∩ B2. That MV has the CEP seems to be part of the folklore

about the subject: it follows from more general results about residuated

lattices ([18]) and is explicitly proved e.g. in [10]. On the other hand, the

proof of the CEP for MV algebras - as well as the analogous proofs for



50 FRANCESCO PAOLI, ANTONIO LEDDA, ROBERTO GIUNTINI, HECTOR FREYTES

commutative residuated lattices or for other varieties of algebras motivated

by logic - rests essentially on the 1-1 correspondence between congruences

and ideals, a property which is available neither for qMV nor for
√

′qMV.

As a consequence, a different strategy is needed.

For a start, we notice that:

Lemma 40. A flat qMV algebra has the same congruences as its mo-

nounary reduct.

Proof. There is no way a reflexive binary relation on a flat qMV algebra

can disrespect truncated sum. �

As a consequence:

Lemma 41. The variety FqMV has the CEP.

Proof. Let A be a flat qMV algebra, let B be a subalgebra of its, and

let θ be an arbitrary congruence on B. It follows from Lemma 40 and from

simple results about monounary algebras that the relation

θ′ =
{
〈a, b〉 ∈ A2 : aθb or a = b

}

is a congruence on A s.t. θ = θ′ ∩B2. �

Thus, every qMV algebra is directly decomposable in terms of algebras

which belong to subvarieties of qMV with the CEP. We exploit this fact to

attain our goal.

Lemma 42. Let A be a qMV algebra and let θ be any congruence on

A. Then there exist a congruence θ1 on A/χ and a congruence θ2 on A/τ

such that aθb iff 〈a/χ, a/τ〉 θ1 × θ2 〈b/χ, b/τ〉.

Proof. Let θ be a congruence on A. If f is any injective homomorphism

with domain A, it follows that {〈f(a), f(b)〉 : aθb} is a congruence on the

range of f . In particular, if f is the embedding provided by Theorem

15, then θ′ = {〈〈a/χ, a/τ〉 , 〈b/χ, b/τ〉〉 : aθb} is a congruence s.t. aθb iff

f(a)θ′f(b). Now, define binary relations θ1 on A/χ and θ2 on A/τ in such

a way that

a/χθ1b/χ iff 〈a/χ, a/τ〉 θ′ 〈b/χ, b/τ〉 ;

a/τθ2b/τ iff 〈a/χ, a/τ〉 θ′ 〈b/χ, b/τ〉 .
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θ1 and θ2 are congruences, respectively, on A/χ and A/τ . Moreover,

aθb iff 〈a/χ, a/τ〉 θ′ 〈b/χ, b/τ〉
iff a/χθ1b/χ and a/τθ2b/τ

iff 〈a/χ, a/τ〉 θ1 × θ2 〈b/χ, b/τ〉

�

It is not hard to see that:

Lemma 43. If A is a qMV algebra and B is a subalgebra of its, then

χB extends to χA and τB extends to τA.

Having settled these preliminaries, we now proceed to prove that

Theorem 44. The variety qMV has the CEP.

Proof. Take a qMV algebra A, a subalgebra B of its, and an arbi-

trary congruence θ on B. By Lemma 42, there exist a congruence θ1 on

B/χB and a congruence θ2 on B/τB such that, for any a, b in B, aθb iff〈
a/χB, a/τB

〉
θ1 × θ2

〈
b/χB, b/τB

〉
. We recall that, since B is a subalge-

bra of A, the sets
{
x/χA : x ∈ B

}
and

{
x/τA : x ∈ B

}
are subuniverses,

respectively, of A/χA and A/τA. Recall moreover that the CEP holds for

MV algebras and, in the light of Lemma 41, also for flat qMV algebras. So,

by Lemma 43 and the third isomorphism theorem, there exist congruences

θ′1 on A/χA and θ′2 on A/τA s.t. θ1 = θ′1∩
(
B/χB

)2
and θ2 = θ′2∩

(
B/τB

)2
.

We have to show that θ1 × θ2 = (θ′1 × θ′2) ∩
(
B/χB ×B/τB

)2
. For the

nontrivial direction, let a, b ∈ B, and
〈
a/χA, a/τA

〉
θ′1 × θ′2

〈
b/χA, b/τA

〉
.

Then a/χAθ′1b/χ
A and thus a/χBθ1b/χ

B, while a/τAθ′2b/τ
A and thus

a/τBθ2b/τ
B. So

〈
a/χB, a/τB

〉
θ1 × θ2

〈
b/χB, b/τB

〉
. �

We now tackle the analogous problem for
√

′qMV. The obvious option

will consist in mimicking the previous strategy and exploiting the direct

decomposition result of Theorem 30. There is an important difference,

though: the role previously played by MV algebras - a subvariety for which

the CEP is known to hold - is now played by the subquasivariety of cartesian

algebras. Thus, we wish to investigate first whether relative congruences

extend in this quasivariety. This is indeed the case:

Lemma 45. The quasivariety C has the RCEP.
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Proof. By Theorem 32 and the observation that
√

′qMV − C congru-

ences are exactly the relative congruences in cartesian algebras, it suffices

to prove that C has the ideal extension property, namely, that given any

cartesian
√

′ qMV algebra A, any subalgebra B of A, and any ideal I of

B, there exists an ideal J of A s.t. I = J ∩B. In fact, let (I] be the ideal

of A generated by I. It is easy to see that

(I] = {x ∈ A : x ≤ a1 ⊕ ...⊕ an for some a1, ..., an ∈ I}

and it is just as easy to show that I = (I] ∩B. �

The previous lemma turns out to be the key to the desired result:

Theorem 46.
√

′qMV has the CEP.

Proof. Lemma 42 can be easily adapted to cover the case of
√

′qMV: if

A is a
√

′qMV algebra and θ a congruence on A, there exist a congruence

θ1 on P(RA) and a congruence θ2 on F(A, k) such that, for any a, b in A,

aθb iff
〈〈
a⊕ 0,

√
′a⊕ 0

〉
, π2(h(a))

〉
θ1 × θ2

〈〈
b⊕ 0,

√
′b⊕ 0

〉
, π2(h(b))

〉
,

where π2(h(a)) is the second component of the image of a under the injec-

tion of Theorem 30. By Lemma 45, if we can prove that θ1 therein is neces-

sarily a
√

′qMV − C congruence, we are done, for we can resort to the strat-

egy of Theorem 44. Carrying out the appropriate calculations, what must

be shown is that 〈a⊕ 0, k〉 θ1 〈b⊕ 0, k〉 and
〈√

′a⊕ 0, k
〉
θ1

〈√
′b⊕ 0, k

〉
im-

ply
〈
a⊕ 0,

√
′a⊕ 0

〉
θ1

〈
b⊕ 0,

√
′b⊕ 0

〉
.

We distinguish several cases. First of all, remark that a and b must be

either regular or coregular, because the first components of h(a) and h(b)

must be, respectively, 〈a⊕ 0, k〉 and 〈b⊕ 0, k〉 for 〈a⊕ 0, k〉 θ1 〈b⊕ 0, k〉 to

hold.

So, if a, b are both regular, then 〈a, k〉 θ1 〈b, k〉 and we are done. If a, b

are both coregular,
〈√

′a, k
〉
θ1

〈√
′b, k

〉
and thus

〈
k,
√

′a′
〉
θ1

〈
k,
√

′b′
〉

,

whence
〈
k,
√

′a
〉
θ1

〈
k,
√

′b
〉

. Finally, if w.l.g. a is regular and b is coreg-

ular, then 〈a, k〉 θ1 〈k, k〉 and 〈k, k〉 θ1
〈√

′b, k
〉

, whereby 〈k, k〉 θ1
〈
k,
√

′b
〉

and by transitivity 〈a, k〉 θ1
〈
k,
√

′b
〉

. �
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.6 QMV term reducts and term subreducts of
√

′ qMV

algebras

Which qMV algebras are such that one can impose thereupon a square

root of the inverse? And which qMV algebras are embeddable into the

appropriate term reduct of a
√

′ qMV algebra? In this subsection we will

on the one hand provide necessary and sufficient conditions for a qMV

algebra to be a qMV term reduct of a
√

′ qMV algebra, and on the other

hand show that qMV algebras are exactly the qMV term subreducts of
√

′

qMV algebras.

Definition 47. A qMV algebra A is called extensible iff it has the

following three properties:

E1 it contains a regular element k = k′;

E2 the cloud of k contains a bijective copy f(R(A)) of R(A), with f(k) =

k;

E3 (Four-partitioning property): the set NFA = {a ∈ A : a 6= a′} can be

partitioned into classes of cardinality 4, in such a way that every

a ∈ NFA belongs to the same member of the partition as a′.

Extensibility is a necessary condition for being a qMV term reduct of a√
′ qMV algebra:

Lemma 48. Every qMV term reduct of a
√

′ qMV algebra is an exten-

sible qMV algebra.

Proof. Let A =
〈
A,⊕,

√
′, 0, 1, k

〉
be a

√
′ qMV algebra. By SQ1,

〈A,⊕,′ , 0, 1〉 is a qMV algebra; we now check one by one the requirements

E1-E3 in order to show it is extensible.

(ad E1). k is regular and it is a fixpoint for the inverse operation, by

Lemma 19(i)-(ii).

(ad E2). Let a be a regular element of A: by SQ3,
√

′a is in the cloud

of k, whence f(a) =
√

′a maps R(A) to the cloud of k. It is also injective,

since
√

′a =
√

′b implies a′ = b′ and thus a = b. Finally, by SQ2 f(k) = k.

(ad E3). Let θ be an equivalence on NFA defined as follows: for every

a in NFA, a/θ =
{
a,
√

′a, a′,
√

′a′
}

. Since a 6= a′, by what we remarked
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above it has to be
√

′a 6=
√

′a′ ; also, a 6=
√

′a (or else it would be a = a′)

and similarly a 6=
√

′a′. Thus, each member of the given partition has the

required cardinality. �

All that remains to be shown is that extensibility is a sufficient condition

as well. In fact:

Theorem 49. Every extensible qMV algebra is a qMV term reduct of

a
√

′ qMV algebra.

Proof. Let A = 〈A,⊕,′ , 0, 1〉 be an extensible qMV algebra, on which

we need to define an operation of square root of the inverse. By E1, there

is in R(A) an element k = k′, and by E2 the cloud of k contains a bijective

copy f(R(A)) of R(A), with f(k) = k. Moreover, if F = {a, b, a′, b′} ∈
NFA, the partition whose existence is guaranteed by E3, we define g in such

a way that g(a) = b, g(b) = a′, g(a′) = b′ and g(b′) = a - or, alternatively,

g(a) = b′, g(b′) = a′, g(a′) = b and g(b) = a. Now, define the operation
√

′

as follows:

√
′a =






f(a), if a ∈ R(A);(
f−1(a)

)′
, if a ∈ f(R(A)) − {k} ;

a, if a /∈ R(A) ∪ f(R(A)) and a = a′;

g(a), if a /∈ R(A) ∪ f(R(A)) and a 6= a′.

First of all, we have to show that this definition does not conflict with

the behaviour of the inverse. In fact: i) if a ∈ R(A),
√

′
√

′a =
√

′f(a) = a′;

ii) if a ∈ f(R(A)) − {k},
√

′
√

′a =
√

′
(
f−1(a)

)′
= f

(
f−1(a)

)′
= a′; (iii)

if a /∈ R(A) ∪ f(R(A)) and a = a′,
√

′
√

′a = a = a′; finally, iv) if a /∈
R(A) ∪ f(R(A)) and a 6= a′,

√
′
√

′a =
√

′g(a) = g(g(a)) = a′.

Now, we check the remaining two axioms. SQ2 is satisfied because√
′k = f(k) = k by hypothesis; SQ3 holds because a ⊕ b is a regular

element, whence
√

′(a⊕ b) = f(a⊕ b) is in the cloud of k, which means that√
′(a⊕ b) ⊕ 0 = k. �

The conditions in Definition 47 are far from elementary. It would be

nice to describe extensible qMV algebras using more manageable conditions

from a model-theoretic viewpoint. Also, it would be interesting to char-

acterize such algebras in terms of properties of their factors in the direct

decomposition of Theorem 15.
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We now turn to the issue of subreducts. As a preliminary move, we

need to prove that every qMV algebra can be embedded into a qMV algebra

where inverse has a fixpoint.

Lemma 50. Every qMV algebra can be embedded into a qMV algebra

with a regular element k s.t. k = k′.

Proof. Let Q be a qMV algebra. By Theorem 15, there are an MV

algebra M and a flat qMV algebra F s.t. Q is embeddable into M × F.

By Di Nola’s representation theorem (cp. [6]), M is embeddable into an

MV algebra M′ where inverse has a fixpoint i, while F is (identically)

embeddable into a flat qMV algebra F′ where inverse has a fixpoint 0F′

.

Let f, g, h be, respectively, such embeddings. Then the mapping

(g × h) (〈a, b〉) = 〈g(a), h(b)〉

is obviously an embedding of M × F into M′ × F′. Composing f with

g× h, we can embed Q into M′ ×F′. It remains to be shown that M′ ×F′

contains a regular element k s.t. k = k′: but it is immediate to check that

the pair
〈
i, 0F′

〉
has the required properties. �

By definition, every qMV term reduct of a
√

′ qMV algebra is a qMV

algebra, and so is every subalgebra of such since qMV is a variety. We now

show the converse:

Theorem 51. Every qMV algebra is a qMV term subreduct of a
√

′

qMV algebra.

Proof. Let A =
〈
A,⊕A,′A , 0A, 1A

〉
be a qMV algebra. By Lemma 50,

we can assume w.l.g. that it satisfies E1 in Definition 47. Consider the set

KA =
{
〈a, b〉 ∈ A2 : a = k or b = k

}
,

and define the algebra K =
〈
KA,⊕K,

√
′K, 0K, 1K, kK

〉
, where:

• 〈a, b〉 ⊕K 〈c, d〉 =
〈
a⊕A c, k

〉
;

•
√

′K 〈a, b〉 =
〈
b, a′A

〉
;

• 0K =
〈
0A, k

〉
, 1K =

〈
1A, k

〉
, kK = 〈k, k〉.
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These operations are well-defined: the second component of a sum is

always k, while the first or the second component of
√

′K 〈a, b〉 is k according

as the second or the first component of 〈a, b〉 is k. Also, K is easily seen to

be a
√

′ qMV algebra. We verify that the mapping h(a) = 〈a, k〉 embeds A

into the qMV term reduct of K. The mapping is clearly well-defined and

injective; we now check that it preserves operations. Nullary operations are

obviously preserved. As regards truncated sum,

h(a⊕A b) =
〈
a⊕A b, k

〉

= 〈a, k〉 ⊕K 〈b, k〉
= h(a) ⊕K h(b).

Finally, we have preservation of inverses:

h(a′A) =
〈
a′A, k

〉

= 〈a, k〉′K
= h(a)′K.

�

.7 Semisimple algebras

One of the deepest results in the theory of MV algebras is the representation

of semisimple MV algebras in terms of algebras of real-valued functions: [5],

[1]. It is an important theorem since it allows to think of a semisimple MV

algebra as an algebra of fuzzy sets, exactly like Boolean algebras (which are

always semisimple) can be viewed as algebras of standard, ”crisp” sets -

and as such it acts as a proper fuzzy counterpart of Stone’s representation

theorem.

Can we get an analogous result in our framework? The aim of this

section is to answer this question in the affirmative, although the theorem

we will prove is, frankly speaking, far less elegant. We will confine our

investigations to
√

′qMV.

Lemma 52. If RA is a subalgebra of RB, the pair algebra P (RA) is a

subalgebra of P (RB).

Proof. Let f be an embedding of RA into RB . Now define, for a, b ∈
R(A),

g(〈a, b〉) = 〈f(a), f(b)〉 .
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This is a homomorphism from P(RA) to P(RB). To see that it is one-

one, suppose that g(〈a, b〉) = g(〈c, d〉), i.e. 〈f(a), f(b)〉 = 〈f(c), f(d)〉. Then

f(a) = f(c) and f(b) = f(d), whence by the injectivity of f , a = c and

b = d. Thus our conclusion follows. �

Before we address our main problem, we need to know something more

about the structure of simple algebras - in particular, since every simple√
′ qMV algebra is either cartesian or flat, we need additional information

about simple cartesian algebras and simple flat algebras. The next three

lemmas provide such information.

Lemma 53. If A is a simple cartesian
√

′ qMV algebra, then A is

strongly cartesian.

Proof. Assume that A is cartesian yet not strongly cartesian and

consider the congruence whose blocks are just R (A) ∪ COR (A) and its

set-theoretical complement w.r.t A. This congruence differs from ∇ as A

is not strongly cartesian, and differs from ∆ since A is cartesian. It follows

that A is not simple. �

Lemma 54. If A is a simple cartesian
√

′ qMV algebra, then RA is a

simple MV algebra.

Proof. Lemma 53 entitles us to assume that A be strongly cartesian.

Suppose θ ∈ C(RA) is such that ∆ ⊂ θ ⊂ ∇. Let the partition induced by

θ be

{Ai}i<λ ∪ {k/θ} ,

where λ ≥ 1 (since θ ⊂ ∇) and either k/θ or some Ai is not a singleton

(since ∆ ⊂ θ). Now, for X ⊆ A, let
√

′X =
{√

′x : x ∈ X
}

, and let ϕ be

an equivalence on A such that

A/ϕ = {Ai}i<λ ∪
{√

′Ai

}

i<λ
∪
{
k/θ ∪

√
′k/θ

}
.

It is easy to see that ϕ is a congruence on A. Also, ∆ ⊂ ϕ ⊂ ∇ because

of the above assumptions on θ. So A is not simple. �

Lemma 55. The only simple flat
√

′ qMV algebra is F100.

Proof. As we know from Example 26, F100 is simple. On the other

hand, let A be a flat
√

′ qMV algebra with at least 3 elements. In the light
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of Lemma 40, the equivalence whose blocks are just {0} and A − {0} is a

congruence, different from ∆ (A has more than two elements) and from ∇
(A is nontrivial). Thus, A is not simple. �

We now prove an analogue of Hölder’s theorem for cartesian
√

′ qMV

algebras.

Theorem 56. Every simple cartesian
√

′ qMV algebra A is isomorphic

to a subalgebra of Sr.

Proof. By Theorem 29 A can be embedded into P (RA), and RA,

according to Lemma 54, is a simple MV algebra, hence isomorphic to a

subalgebra of MV[0,1]. Thus, by Lemma 52, P (RA) is isomorphic to a

subalgebra of Sr, whence our conclusion. �

Theorem 57. Every semisimple
√

′ qMV algebra A is isomorphic to

an algebra of functions which are either complex-valued or have values in

F100.

Proof. Let A be a semisimple
√

′ quasi-MV algebra. Thus, A can be

represented as a subdirect product of simple
√

′ quasi-MV algebras, whence

by Birkhoff’s subdirect representation theorem there is a family {θi}i∈I

of congruences on A such that the A/θi’s are the simple factors in the

subdirect representation of A, and
⋂
i∈I

{θi} = ∆. Being simple, the A/θi’s

are necessarily either cartesian or flat. So, by Lemma 55 and Theorem 56,

for every i ∈ I there is an isomorphism fi : A/θi → Bi, where Bi is either

F100 or a subalgebra of Sr.

Now, for every b ∈ A, let b be a function with domain {θi}i∈I s.t. for

every i ∈ I,

b(θi) = fi (b/θi) .

Each b, thus, is either a complex-valued function or an F100-valued func-

tion over {θi}i∈I . Let F (A) =
{
b : b ∈ A

}
, and let FA be the algebra

of functions with universe F (A) and pointwise defined operations. It is

easy to check that the map h : A → F (A) defined by h(b) = b is a ho-

momorphism from A onto FA. It remains to prove that it is injective.

Thus, let h(b) = h(c), i.e. b(θi) = c(θi) for every i ∈ I. Then, for every

i ∈ I, fi (b/θi) = fi (c/θi) and, since fi is bijective, b/θi = c/θi. Hence

〈b, c〉 ∈ ⋂
i∈I

{θi} = ∆, i.e. b = c. �
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Corollary 58. Every semisimple cartesian
√

′ qMV algebra A is iso-

morphic to an algebra of complex-valued functions.

.8 Free algebras

A thorough and satisfactory description of free MV algebras over arbitrarily

many generators is available as a consequence of McNaughton’s theorem

([14], [16]): free MV algebras with κ many generators can be described as

algebras of McNaughton functions from [0, 1]κ to [0, 1]. In this paper, for

the sake of simplicity, we will also confine ourselves to free qMV and
√

′

qMV algebras with one generator, although the extension to an arbitrary

number of generators does not seem to present, in principle, additional

difficulties. We start by recalling the notion of McNaughton function in

one variable.

Definition 59. A function f : [0, 1] → [0, 1] is called a McNaughton

function iff it satisfies the following conditions:

• it is continuous;

• there are linear polynomials p1, ..., pn in one variable and with integer

coefficients s.t. for each a ∈ [0, 1] there is 1 ≤ i ≤ n s.t. f(a) = pi(a).

In other words, a McNaughton function in one variable is nothing but

a continuous piecewise linear function over [0, 1].

Taking advantage of Theorem 16 and mimicking the proof of Proposi-

tion 3.1.4 in [6], it is not hard to see that the free qMV algebra over one

generator is nothing but the algebra TermS
1 of the qMV term functions over

the standard qMV algebra S, a notion that we now define more explicitly.

Definition 60. Consider the qMV algebra of functions SS, with point-

wise defined operations. The qMV algebra

TermS
1 =

〈
TermS

1 ,⊕TermS
1 ,′TermS

1 , 0TermS
1 , 1TermS

1

〉

is its subalgebra whose universe is the set TermS
1 , inductively defined as

follows:

• the identity function X on S belongs to TermS
1 ;
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• the constant functions 0S and 1S, s.t. for every a, b ∈ [0, 1] it is

0S 〈a, b〉 =
〈
0, 1

2

〉
and 1S 〈a, b〉 =

〈
1, 1

2

〉
, belong to TermS

1 ;

• If τS ∈ TermS
1 , then (τ ′)S ∈ TermS

1 , where

(
τ ′
)S 〈a, b〉 =

〈
1 − π1(τS 〈a, b〉), 1 − π2(τS 〈a, b〉)

〉
;

• If τS, σS ∈ TermS
1 , then (τ ⊕ σ)S ∈ TermS

1 , where

(τ ⊕ σ)S 〈a, b〉 =
〈
min(1, π1(τS 〈a, b〉) + π1(σS 〈a, b〉)), 1

2

〉
.

This algebra can be easily described with reference to the character-

ization of free MV algebras with one generator in terms of McNaughton

functions. In fact:

Theorem 61. A function f ∈ ([0, 1] × [0, 1])[0,1]×[0,1] belongs to TermS
1

iff for every a, b ∈ [0, 1] the following conditions are satisfied:

• π2(f 〈a, b〉) is either b or 1 − b or 1
2 ;

• if π2(f 〈a, b〉) = b, then π1(f 〈a, b〉) = a;

• if π2(f 〈a, b〉) = 1 − b, then π1(f 〈a, b〉) = 1 − a;

• if π2(f 〈a, b〉) = 1
2 , then π1(f 〈a, b〉) is a McNaughton function in one

variable.

Proof. A function in TermS
1 , in fact, is either the identity function, or

a constant function (0S or 1S), or a function f s.t. f 〈a, b〉 = 〈1 − a, 1 − b〉,
or a function f s.t. f 〈a, b〉 =

〈
f ′(a), 1

2

〉
, where f ′ ∈ Term

[0,1]
1 . Our

claim, then, is a direct consequence of McNaughton’s theorem for free MV

algebras. �

The description of free
√

′ qMV algebras is similar, albeit slightly more

convoluted. Once again, taking advantage of Theorem 37 and mimicking

the proof of Proposition 3.1.4 in [6], it is not hard to see that the free√
′qMV algebra over one generator is nothing but the algebra TermSr

1 of

the qMV term functions over the standard
√

′qMV algebra Sr, a notion

that we now define in full.
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Definition 62. Consider the
√

′qMV algebra of functions SSr
r , with

pointwise defined operations. The
√

′qMV algebra

TermSr

1 =

〈
TermSr

1 ,⊕Term
Sr
1 ,

√
′Term

Sr
1 , 0Term

Sr
1 , 1Term

Sr
1 , kTerm

Sr
1

〉

is its subalgebra whose universe is the set TermSr

1 , obtained by adding to

the definition of TermS
1 the following two inductive clauses:

• the constant function kSr , s.t. for every a, b ∈ [0, 1] it is kSr 〈a, b〉 =〈
1
2 ,

1
2

〉
, belongs to TermSr

1 ;

• If τSr ∈ TermSr

1 , then
(√

′τ
)Sr

∈ TermSr

1 , where

(√
′τ
)Sr

〈a, b〉 =
〈
π2(τSr 〈a, b〉), 1 − π1(τSr 〈a, b〉)

〉
.

(The clause concerning (τ ′)S in Definition 60 becomes obviously redun-

dant.) This algebra can also be described with reference to the character-

ization of free MV algebras with one generator in terms of McNaughton

functions. Omitting details, we just state the result:

Theorem 63. A function f ∈ SSr
r belongs to TermSr

1 iff for every

a, b ∈ [0, 1] one of the following conditions is satisfied:

f 〈a, b〉 = 〈a, b〉 or

f 〈a, b〉 = 〈1 − a, 1 − b〉
f 〈a, b〉 = 〈b, 1 − a〉 or

f 〈a, b〉 = 〈1 − a, b〉 or

f 〈a, b〉 =
〈
f ′(a), 1

2

〉
(
〈
f ′(b), 1

2

〉
) where f ′ is a McNaughton function, or

f 〈a, b〉 =
〈

1
2 , f

′(b)
〉

(
〈

1
2 , f

′(a)
〉

) where f ′ is a McNaughton function.
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