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UNIFICATION IN SOME SUBSTRUCTURAL
LOGICS OF BL-ALGEBRAS AND HOOPS

A b s t r a c t. Abstract. It is shown that substructural logics of k-

potent BL-algebras and k-potent hoops have unitary unification

(in fact, transparent unifiers) while Basic Fuzzy Logic, BL (the

logic of BL-algebras), and ∞-valued  Lukasiewicz logic (the logic

of MV-algebras) do not have unitary unification. It follows that

every k-potent substructural logic containing BL is structurally

complete in the restricted sense, but Basic Logic itself is not.

Given an equational theory E, equational unification or E-unification

is concerned with finding a substitution σ of individual variables that

makes two given terms t1, t2 equal, or unified, modulo the theory E, i.e.

⊢E σt1 = σt2. Such a substitution is called a unifier for t1 and t2; if such

a unifier exists then t1 and t2 are called unifiable. Given two unifiers of τ

and σ, we say that σ is more general then τ , in symbols τ � σ, if τ is an

instance of σ, i.e. ⊢E δ(σ(x)) = τ(x), for some substitution δ. A unifier σ

for t1 and t2 is a most general unifier, a mgu, if it is more general then any

other unifier for t1 and t2.
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Unification type of a theory E, equivalently, of a variety VE , can be uni-

tary, finitary, infinitary or nullary, according to a number of �-maximal

E-unifiers of ,,the worst case” of t1 and t2, see [1], [8].

Unification is basic to Resolution Theorem and Term Rewriting Systems.

We consider logics of partially ordered algebras such that among the alge-

braic operations there is a pair (·,⇒) called an adjoint or residuated pair,

which satisfies the following condition of residuation:

c ≤ a⇒ b iff a · c ≤ b (1)

in other words, ⇒ is a residuum of ·. (·,⇒) are represented by the connec-

tives (&,→) of fusion and implication in the corresponding logics. In partic-

ular we consider the following classes of algebras which contain the residu-

ated pair (·,⇒) as a reduct: hoops, basic hoops, Wajsberg (or  Lukasiewicz)

hoops, BL-algebras, Gödel algebras, and corresponding to them, substruc-

tural logics which are related to fuzzy logics, see [7], [10], [6].

All of the above algebras belong to the class of FLew-algebras, i.e. com-

mutative integral residuated lattices, corresponding to the substructural

logics over FLew, Full Lambek calculus with weakening and exchange but

without contraction, introduced by Ono, see [7], [13], [14].

Hoops originated in a manuscript by Büchi and Owens in the 70’s.

Later, they were considered by Blok and Pigozzi [3], Blok, Ferreirim [2]

and others. Hoops capture a common {&,→} fragment of all fuzzy logics.

BL-algebras or Basic Logic algebras have been introduced by P.Hájek

[10] as an algebraic counterpart of Basic Fuzzy Logic, BL, which is a com-

mon generalization of the three main fuzzy logics: Gödel logic,  Lukasiewicz

logic and Product logic. Gödel algebras, Wajsberg algebras and prod-

uct algebras are the algebraic counterparts of these logics, respectively. It

was proved that the variety of BL-algebras is generated by all algebras

([0, 1], ⋆,⇒, 0, 1), where ⋆ is a continuous t-norm on the real interval [0, 1]

and ⇒ its residuum.

In case of algebras with 1 (unit) and with ⇒, · considered here, unifi-

cation problem t1 =? t2 in a class V of algebras is equivalent to t =? 1, for

t = (t1 ⇒ t2) · (t1 ⇒ t2) or, in logical terms, to finding a substitution σ

such that ⊢L σφ, where L is a logic determined by V. The subsumption

preorder � is related to ⊢L, provability in L.
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The set of all formulas F∆ is built up from variables x1, x2, . . . by means

of the connectives from a set ∆, where {&,→} ⊆ ∆ ⊆ {&,→,∧,∨,⊥}, (⊥

= constant falsity). Further connectives are defined: ⊤ (constant truth) is

x→ x, a negation ¬φ is φ→⊥ and φ ≡ ψ is (φ→ ψ)&(ψ → φ).

By a logic we mean a set of formulas closed on Modus Ponens and substi-

tution. Γ ⊢L φ means that a formula φ is derivable from a set of formulas

Γ and from L by Modus Ponens. ⊢L φ means that φ is provable in L.

Let A = (A, ·,⇒,∧,∨, 1, 0) be a residuated lattice. A map ǫ : {xi} → A

can be uniquely extended to a homomorphism (denoted by the same letter)

ǫ : F → A, called a valuation, in such a way that: ǫ(A&B) = ǫ(A) · ǫ(B),

ǫ(A→ B) = ǫ(A) ⇒ ǫ(B), ǫ(A∨B) = ǫ(A)∨ ǫ(B), ǫ(A∧B) = ǫ(A)∧ ǫ(B),

ǫ(⊥) = 0. By restriction of ǫ to {&,→} we get a valuation in a hoop

(A, ·,⇒).

The logic of A (i.e. a logic determined by A), denoted by L(A), is a

set of all formulas valid in A, i.e. φ ∈ L(A) iff ǫ(φ) = 1, for every valuation

ǫ : F → A; that is L(A) consists of all A-tautologies. The logic of a class

of algebras V, is a set of all formulas φ such that φ ∈ L(A), for all A ∈ V.

We denote by x a finite set of variables x1, . . . , xn. We write φ(x) to

express that a formula φ contains variables only from x. F (x) denotes the

set of all formulas of the form φ(x). A substitution σ : x → F is a unifier

for φ(x) in L, if ⊢L σφ; then φ is called unifiable. The most general unifier,

a mgu, for φ in L, is a unifier σ for φ such that σ � τ for any unifier τ for

φ. A unifier of the type σ : x→ {⊥,⊤} is called ground.

Unification in L depends on the collection of connectives used in L. Hence

we write ,,a logic L in ∆”, where {&,→} ⊆ ∆ ⊆ {&,→,∧,∨,¬}, to mean

that L ⊆ F∆, i.e. all formulas in L contain only connectives from ∆.

We begin with logics of hoops in {&,→} and expand to logics of residuated

lattices in {&,∧,∨,→, (¬)}, in two parts: I. without negation and II. with

negation, or constant ⊥.

Hoops. A hoop is an algebra A = (A, ·,⇒, 1) of type (2, 2, 0) such

that (A, ·, 1) is a commutative monoid with the unit 1, (i.e. satisfying:

x · (y · z) = (x · y) · z, x · y = y · x, x · 1 = 1) which satisfies the axioms:

(H1) x⇒ x = 1

(H2) x⇒ (y ⇒ z) = (x · y) ⇒ z
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(H3) (x⇒ y) · x = (y ⇒ x) · y.

A relation ≤ on any hoop (A, ·,⇒, 1) defined as follows: x ≤ y iff x⇒ y = 1

is a partial order; then (A,≤) is a ∧-semilattice. In fact, for any x, y ∈ A:

x ∧ y = x · (x⇒ y), (2)

which is called divisibility. Hence the class of hoops form a variety.

A hoop (A, ·,⇒, 1) is basic if it is prelinear, i.e. for x, y, z ∈ A :

(x⇒ y) ⇒ z ≤ ((y ⇒ x) ⇒ z) ⇒ z. (3)

In basic hoops we have x∨y = ((x⇒ y) ⇒ y)∧((y ⇒ x) ⇒ x), i.e. the join

is definable. Hence any basic hoop (A, ·,⇒, 1) is definitionally equivalent

to a commutative integral divisible residuated lattice, with the greatest

element 1, (A,∧,∨, ·,⇒, 1), cf.[12]. Basic hoops are also called generalized

BL-algebras since they are subalgebras of 0-free reducts of BL-algebras cf

[6].

A hoop (A, ·,⇒, 1) is a Wajsberg hoop or a  Lukasiewicz hoop if, for x, y ∈ A:

(x⇒ y) ⇒ y = (y ⇒ x) ⇒ x. Every Wajsberg hoops is basic.

A bounded hoop is an algebra (A, ·,⇒, 0, 1) such that (A, ·,⇒, 1) is a hoop

and 0 ≤ x, for all x ∈ A. In such hoops negation is defined by ¬x = x⇒ 0.

Bounded Wajsberg hoops are equivalent to Wajsberg algebras and to MV-

algebras, which are algebraic models of  Lukasiewicz many-valued logics.

An FLew-algebra is an algebra (A, ·,⇒,∧,∨, 0, 1) such that

(A,∧,∨, 0, 1) is a bounded (i.e. with 0 and 1) lattice, (A, ·,⇒, 1) is a com-

mutative monoid and the condition of residuation (1) holds.

A BL-algebra (a Basic Logic algebra) is a FLew-algebra satisfying

divisibility (2) and

(x⇒ y) ∨ (y ⇒ x) = 1 (prelinearity). (4)

Note: (4) is equivalent to (3), and (2) implies distributivity in (A,∧,∨).

A hoop or a BL-algebra A is k-potent, if, for every x ∈ A,

(Ek) xk+1 = xk. (5)

An element x ∈ A, is idempotent, if x2 = x; similarly, a formula φ is idem-

potent in L, if ⊢L φ2 ≡ φ. A logic L is k-potent if ⊢L φk → φk+1 for any

φ. If L is k-potent, then ⊢L (φk)2 ≡ φk, for any φ. By Blok and Pigozzi
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[3], a variety of hoops (BL-algebras) has Equationally Definable Principal

Congruences, EDPC, iff it is k-potent, for some k.

Transparent unifiers were defined by Wroński [19] (see also [18]), for

quasivarieties of equivalence algebras as follows. Let K be a class of al-

gebras of the same type, F be the set of all terms (F (x) terms built in

x respectively) of K, p(x), q(x) terms with variables in x = x1, . . . , xk. A

unifier σ for p, q is transparent if |=K (p = q ⇒ σ(x) = x), for every x. In

view of the completeness theorem: |=K = ⊢L we arrive at the following

definition.

Let φ(x) be unifiable in L. A substitution σ : x→ F is a transparent unifier

for φ in L if σ is a unifier for φ in L, ⊢L σφ, and, for x ∈ x

φ ⊢L (σ(x) ≡ x). (6)

The formula φ in (6) should be in the form that allows to generate a

congruence (e.g. idempotent), see [5], Sect. 2.4. We say that a logic L has

transparent unifiers if every unifiable formula in L has a transparent unifier.

Transparent unifiers have an advantage (here): they are preserved under

extensions. Unitary unification is not preserved ,,upwords”: the logic KC

of weak excluded middle has unitary unification [9] but some its extensions

have nullary unification.

.1 Substructural logics without negation ¬.

In the following theorem (i) is due to Blok and Pigozzi [3] and (ii) was

proved in [17] with the assistance of the automated reasoning program

Otter.

Theorem 1. Let (A, ·,⇒, 1) be a hoop and e an idempotent element of

A. Then the following equations hold for x, y ∈ A

(i) e⇒ (x⇒ y) = (e⇒ x) → (e⇒ y)

(ii) e⇒ (x · y) = (e⇒ x) · (e⇒ y)

Hence the map f(x)=e⇒ x, for x ∈ A, is an endomorphism of (A, ·,⇒, 1).

Moreover, f is a retraction, f ◦ f = f .
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Corollary 2. For any logic L of hoops, and an idempotent formula

φ ∈ F (x), σ(x) = φ → x, for x ∈ x, is a transparent unifier (hence a

mgu).1

Note that σ is ,,weakly transparent”, i.e., for any unifier τ for φ, we have

⊢L τ(σ(x)) ≡ τ(x), for x ∈ x; hence σ is a mgu for φ.

Corollary 3. Every logic in {&,→} or {&,∧,→} determined by any

class of k-potent hoops, k ≥ 1, has transparent unifiers; hence it has unitary

unification.

Corollary 4. Every idempotent formula of any logic in {&,∧,∨,⇒} of

basic hoops has a transparent unifier.

Corollary 5. Any logic in {&,∧,∨,⇒} of k-potent basic hoops (in

particular, of k-potent generalized BL-algebra [12]) has unitary unification.

The transparent unifier for φ has the form σ(x) = φk → x for x ∈ x.

Remark. If the assumption of prelinearity is dropped then unitary

unification is lost; example: the {∧,∨,→}-reduct of intuitionistic logic.

A (Hilber style) rule φ1, . . . , φn/ψ is admissible in L if, for every substitution

τ , ⊢L τφ1, · · · ⊢L τφn implies ⊢L τψ; it is derivable in L, if φ1, . . . , φn ⊢L ψ.

L is structurally complete if every structural (i.e. closed under substitution)

and admissible rule in L is derivable in L, see [15].

Corollary 6. Any logic L in {·,∧,→} (in {·,∧,∨,→}) of k-potent (ba-

sic) hoops is hereditarily Structurally Complete; in terms of algebra: every

subquasivariety of k-potent (basic) hoops is a variety, i.e. it is deductive,

[11].

.2 Substructural Logics with negation ¬

. In this part we consider logics with negation ¬ (or ⊥) and the algebras

with the least element 0. Recall that ¬x = x ⇒ 0 and ¬φ ≡ φ →⊥.

Allowing negation often changes unification type to ,,worse”.

Example: Consider reducts of intuitionistic logic in {∧,∨,→,¬}. Uni-

fication is: unitary in {→}-reduct (Prucnal 1972); not unitary in {→,¬}-

1Prucnal [16] used such a substitution in implicational fragment of intuitionistic logic.
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reduct (Wroński [18]), unitary in {→,∧} and {→,∧,¬}-reducts (Wroński

[18]); note that it is finitary (not unitary) in full {→,∧,∨,¬}, (Ghilardi [9]).

In any BL-algebra the set {0, 1} is closed under ·,⇒,∧,∨,¬, hence every

formula unifiable in BL has a ground unifier.

Lemma 7. Let A be a BL-algebra and e an idempotent element in A.

Then for every a, b ∈ A, the following equations hold

(i) e · a = e ∧ a,

(ii) ¬¬e = (¬¬e)2,

(iii) ¬¬e · [(e⇒ a) ⇒ (e⇒ b)] = [(e ⇒ a) ⇒ ¬¬e · (e⇒ b)],

(iv) [(e⇒ a) ⇒ (e⇒ b)] = [¬¬e · (e⇒ a) ⇒ ¬¬e · (e⇒ b)] =

[¬¬e · (e⇒ a) ⇒ (e⇒ b)].

The proof is omitted; for useful equations see [4],[6],[10].

Theorem 8. Let (A, ·,⇒,∧,∨, 0, 1) be a BL-algebra, e an idempotent

element of A and τ : A → {0, 1} a homomorphism, τ(e) = 1. Then the

map

f(x) = (e⇒ x) · (¬e⇒ τ(x)), for x ∈ A, (7)

is an endomorphism of (A, ·,⇒, 1). Moreover, f is a retraction, f ◦ f = f .

Proof. Let e be an idempotent element in A and τ : A → {0, 1} a

homomorphism such that τ(e) = 1. By induction on the length of a term

t in variables x we show that:

(⋆) f(t) =

{

e⇒ t, if τ(t) = 1,

(e⇒ t) · ¬¬e, if τ(t) = 0.

Assume that (⋆) holds for t1 and t2. Let t = t1 ⇒ t2. We have the

cases: 1) τt1 = 1, τt2 = 0, i.e. τt = 0, then, by Theorem 1 and by Lemma

7, (iii), (⋆) holds ; 2) τt1 = 0, τt2 = 0 and 3) τt1 = 0, τt2 = 1 follows

similarly by Lemma 7, (iv); and 4) τt1 = 1, τt2 = 1, by Theorem 1, (i).

For t = t1 · t2, (⋆) holds, by Theorem 1, (ii) and Lemma 7. For t = 0 we

have f(0) = ¬¬t · ¬t = 0. The other operations are definable. �
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Theorem 9. For every logic L containing Basic Logic BL, if φ ∈ F (x)

is a formula idempotent and unifiable in L, with a ground unifier τ , than

it has the transparent of the form:

σφ(x) = (φ→ x)&(¬φ→ τ(x)), for x ∈ x.

In particular, for every k-potent logic L containing Basic Logic BL, if

φ ∈ F (x) is unifiable in L, than it has the transparent unifier of the form:

σφ(x) = (φk → x)&(¬φk → τ(x)), for x ∈ x,

where τ is a ground unifier for φ. Hence unification in L is unitary.

Proof. Let φ be a unifiable and idempotent formula in L and τ a

ground unifier for φ. By induction on the length of ψ ∈ F (x) we show that:

(⋆) σφ(ψ) ≡

{

φ→ ψ, if τ(ψ) ≡ ⊤,

(φ→ ψ)&¬¬φ, if τ(ψ) ≡ ⊥ .

In particular, σφ(φ) ≡ φ→ φ, σφ is a unifier for φ. Moreover, since φ is

idempotent, σφ is transparent, i.e., ⊢L φ→ [(σφ(x) → x)&(x→ σφ(x))]. �

Remark. It follows that unification is unitary in Gödel logic (Wroński’s

result, cf. [18]) and in finite-valued  Lukasiewicz logics.

If k-potency, or EDPC, is dropped, then unitary unification is lost.

Lemma 10. In  Lukasiewicz logic  L∞ the following holds:

(Dis) If ⊢ L∞ φ ∨ ¬φ, then ⊢ L∞ φ or ⊢ L∞ ¬φ.

Proof. Recall that  Lukasiewicz logic  L∞ is characterized by the Wa-

jsberg algebra W[0,1] = ([0, 1], ·,→, 0, 1), where: ¬x = 1 − x and x →

y = min{1, 1 − x + y} are continuous real functions; their compositions

(corresponding to formulas) are continuous functions [0, 1]k → [0, 1]. Now

observe that, by the Darboux property of continuous functions, for every

formula φ:

φ ∨ ¬φ is valid in W[0,1] iff φ is valid in W[0,1] or ¬φ is valid in W[0,1]. �

Corollary 11. Unification in  Lukasiewicz logic  L∞ is not unitary.



UNIFICATION IN SUBSTRUCTURAL LOGICS OF BL-ALGEBRAS AND HOOPS 81

Proof. The formula x ∨ ¬x has two unifiers σ0(x) =⊥ and σ1(x) = ⊤

in  L∞. Assume to the contrary, that  L∞ has unitary unification; let σ

be a mgu for x ∨ ¬x. i.e. ⊢ L∞ σ(x) ∨ ¬σ(x). By the property (Dis) we

have ⊢ L∞ σ(x) or ⊢ L∞ ¬σ(x), i.e. σ is equivalent either to σ1 or to σ0, a

contradiction. �

Conjecture. Unification in  Lukasiewicz logic  L∞ is infinitary or nullary.

Theorem 12 (Glivenko property). (Cignoli, Torrens [4])

(i) ⊢BL ¬¬φ iff ⊢ L∞ φ

(ii) ⊢BL ¬φ iff ⊢ L∞ ¬φ

Lemma 13. In Basic Logic BL the following holds:

(Dis) If ⊢BL ¬φ ∨ ¬¬φ, then ⊢BL ¬φ or ⊢BL ¬¬φ.

Corollary 14. If BL ⊆ L ⊆  L∞, then unification in L is not unitary.

Recall that every structural rule, in Hilbert style, can be represented

as a join of rules with basic sequents, i.e. such that there is a sequent

φ1(x), . . . , φn(x)/ψ(x) such that any application of the rule is an instance of

φ1(x), . . . , φn(x)/ψ(x). A rule with the basic sequent φ1(x), . . . , φn(x)/ψ(x)

has unifiable premises, if φ1(x)& . . .&φn(x) is unifiable; e.g. for Modus

Ponens: x1 → x2, x1/x2, the formula (x1 → x2)&x1 is unifiable. Applying

the transparent unifier for φ1(x)& . . .&φn(x) we get:

Corollary 15. Every k-potent logic L containing Basic Logic BL is

structurally complete in the following restricted sense: every structural and

admissible rule with unifiable premises in L is derivable in L.

Remarks. In  Lukasiewicz logics and in Basic Logic not all consistent

formulas are unifiable (the converse is true). Example: ψ(x1) → ¬ψ(x1),

where ψ(x1) is any formula such that for any valuation v in a linear Wa-

jsberg algebra we have v(ψ(x1)) = 1, for v(x1) ∈ {0, 1} and v(ψ(x1)) = 0,

otherwise.

Corollary 16. The logics  L∞ and BL are not structurally complete,

even in the restricted sense.
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Proof. Consider the following rule with the basic sequent:

¬¬[(x ∨ ¬x)2] ∨ ¬[(x ∨ ¬x)2] / ¬¬[(x ∨ ¬x)2].

The premise is unifiable. By the property (Dis) the rule is admissible, but

it is not derivable in  L∞ (and in BL). �
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