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UNIFICATION IN SOME SUBSTRUCTURAL
LOGICS OF BL-ALGEBRAS AND HOOPS

Abstract. Abstract. It is shown that substructural logics of k-
potent BL-algebras and k-potent hoops have unitary unification
(in fact, transparent unifiers) while Basic Fuzzy Logic, BL (the
logic of BL-algebras), and co-valued Lukasiewicz logic (the logic
of MV-algebras) do not have unitary unification. It follows that
every k-potent substructural logic containing BL is structurally
complete in the restricted sense, but Basic Logic itself is not.

Given an equational theory F, equational unification or E-unification
is concerned with finding a substitution ¢ of individual variables that
makes two given terms tq,to equal, or unified, modulo the theory FE, i.e.
Fg oty = ote. Such a substitution is called a unifier for ¢; and t9; if such
a unifier exists then t1 and to are called unifiable. Given two unifiers of 7
and o, we say that o is more general then T, in symbols 7 < o, if 7 is an
instance of o, i.e. Fg d(o(x)) = 7(x), for some substitution §. A unifier o
for t1 and to is a most general unifier, a mgu, if it is more general then any
other unifier for ¢; and ts.
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Unification type of a theory E, equivalently, of a variety Vg, can be uni-
tary, finitary, infinitary or nullary, according to a number of <-maximal
E-unifiers of ,,the worst case” of ¢; and tg, see [1], [8].

Unification is basic to Resolution Theorem and Term Rewriting Systems.

We consider logics of partially ordered algebras such that among the alge-
braic operations there is a pair (-,=-) called an adjoint or residuated pair,
which satisfies the following condition of residuation:

c<a=biff a-c<b (1)

in other words, = is a residuum of -. (-, =) are represented by the connec-
tives (&, —) of fusion and implication in the corresponding logics. In partic-
ular we consider the following classes of algebras which contain the residu-
ated pair (-, =) as a reduct: hoops, basic hoops, Wajsberg (or Lukasiewicz)
hoops, BL-algebras, Godel algebras, and corresponding to them, substruc-
tural logics which are related to fuzzy logics, see [7], [10], [6].

All of the above algebras belong to the class of F'L.,-algebras, i.e. com-
mutative integral residuated lattices, corresponding to the substructural
logics over F'L,,, Full Lambek calculus with weakening and exchange but
without contraction, introduced by Ono, see [7], [13], [14].

Hoops originated in a manuscript by Biichi and Owens in the 70’s.
Later, they were considered by Blok and Pigozzi [3], Blok, Ferreirim [2]
and others. Hoops capture a common {&, —} fragment of all fuzzy logics.

BL-algebras or Basic Logic algebras have been introduced by P.Hajek
[10] as an algebraic counterpart of Basic Fuzzy Logic, BL, which is a com-
mon generalization of the three main fuzzy logics: Godel logic, Lukasiewicz
logic and Product logic. Godel algebras, Wajsberg algebras and prod-
uct algebras are the algebraic counterparts of these logics, respectively. It
was proved that the variety of BL-algebras is generated by all algebras
([0,1],%,=,0,1), where * is a continuous t-norm on the real interval [0, 1]
and = its residuum.

In case of algebras with 1 (unit) and with =, considered here, unifi-
cation problem t; =’ t5 in a class V of algebras is equivalent to t =’ 1, for
t = (t1 = t2) - (t1 = t9) or, in logical terms, to finding a substitution o
such that 7 o¢, where L is a logic determined by V. The subsumption
preorder = is related to Fp, provability in L.
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The set of all formulas Fa is built up from variables 1, 22, ... by means
of the connectives from a set A, where {&, —} C A C{&,—,A,V, L}, (L
= constant falsity). Further connectives are defined: T (constant truth) is
xr — x, a negation —¢ is ¢ —L and ¢ = is (¢ — V)& (VY — ).

By a logic we mean a set of formulas closed on Modus Ponens and substi-
tution. I' k7, ¢ means that a formula ¢ is derivable from a set of formulas
I and from L by Modus Ponens. - ¢ means that ¢ is provable in L.

Let A = (A4,-,=,A,V,1,0) be a residuated lattice. A map € : {z;} — A
can be uniquely extended to a homomorphism (denoted by the same letter)
€: F— A, called a valuation, in such a way that: ¢(A&B) = €(A) - ¢(B),
€(A— B)=¢(A) = €(B),e(AVB) =€(A)Ve(B), e(ANB) = e(A) Ne(B),
e(L) = 0. By restriction of € to {&,—} we get a valuation in a hoop
(A, -, =).

The logic of A (i.e. a logic determined by A), denoted by L(A), is a
set of all formulas valid in A, i.e. ¢ € L(A) iff ¢(¢) = 1, for every valuation
e: F — A; that is L(A) consists of all A-tautologies. The logic of a class
of algebras V, is a set of all formulas ¢ such that ¢ € L(A), for all A € V.

We denote by z a finite set of variables x1,...,x,. We write ¢(x) to
express that a formula ¢ contains variables only from x. F'(z) denotes the
set of all formulas of the form ¢(x). A substitution o : z — F' is a unifier
for ¢(z) in L, if -1, 0¢; then ¢ is called unifiable. The most general unifier,
a mgu, for ¢ in L, is a unifier o for ¢ such that ¢ < 7 for any unifier 7 for
¢. A unifier of the type o : x — {L, T} is called ground.

Unification in L depends on the collection of connectives used in L. Hence
we write ,,a logic L in A”, where {&,—} C A C {&,—, A, V,—}, to mean
that L C Fa, i.e. all formulas in L contain only connectives from A.

We begin with logics of hoops in {&,—} and expand to logics of residuated
lattices in {&, A, V,—, (=)}, in two parts: I. without negation and II. with
negation, or constant L.

Hoops. A hoop is an algebra A = (4,-,=,1) of type (2,2,0) such
that (A,-,1) is a commutative monoid with the unit 1, (i.e. satisfying:
z-(y-z)=(x-y) - z,x-y=y-z, x-1=1) which satisfies the axioms:

Hl)z=2=1

H2)z= (y=2)=(z-y) ==z
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(H3) (z=y)-z=(y=1x)-y.

A relation < on any hoop (A4, -, =, 1) defined as follows: z <yiffx =y =1
is a partial order; then (A, <) is a A-semilattice. In fact, for any x,y € A:

Thy=z-(x=y) (2)

which is called divisibility. Hence the class of hoops form a variety.
A hoop (A4, -,=,1) is basic if it is prelinear, i.e. for z,y,z € A:

(r=y=2 < (y=2)=2) ==z (3)

In basic hoops we have zVy = ((x = y) = y)A((y = x) = x), i.e. the join
is definable. Hence any basic hoop (A4,-,=-,1) is definitionally equivalent
to a commutative integral divisible residuated lattice, with the greatest
element 1, (A, A, V,-,=,1), cf.[12]. Basic hoops are also called generalized
BL-algebras since they are subalgebras of O-free reducts of BL-algebras cf
[6].
A hoop (A, -,=,1) is a Wagsberg hoop or a Lukasiewicz hoop if, for z,y € A:
(r =y)=y=(y=z) = z. Every Wajsberg hoops is basic.
A bounded hoop is an algebra (A,-,=,0,1) such that (A4,-,=,1) is a hoop
and 0 < z, for all x € A. In such hoops negation is defined by -z = x = 0.
Bounded Wajsberg hoops are equivalent to Wajsberg algebras and to MV-
algebras, which are algebraic models of Lukasiewicz many-valued logics.
An FLey-algebra is an algebra (A,-,=,A,V,0,1) such that
(A,A,V,0,1) is a bounded (i.e. with 0 and 1) lattice, (A,-,=,1) is a com-
mutative monoid and the condition of residuation (1) holds.
A BL-algebra (a Basic Logic algebra) is a FLey-algebra satisfying
divisibility (2) and

(x=y)V(y=z)=1 (prelinearity). (4)

Note: (4) is equivalent to (3), and (2) implies distributivity in (A, A, V).
A hoop or a BL-algebra A is k-potent, if, for every x € A,

(Ex) ol = gk, (5)

An element x € A, is idempotent, if 2> = z; similarly, a formula ¢ is idem-
potent in L, if b7, ¢ = ¢. A logic L is k-potent if F ¢F — ¢F+1 for any
¢. If L is k-potent, then b1 (¢F)? = ¢F, for any ¢. By Blok and Pigozzi
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[3], a variety of hoops (BL-algebras) has Equationally Definable Principal
Congruences, EDPC, iff it is k-potent, for some k.

Transparent unifiers were defined by Wroniski [19] (see also [18]), for
quasivarieties of equivalence algebras as follows. Let K be a class of al-
gebras of the same type, F' be the set of all terms (F(x) terms built in

x respectively) of K, p(x),q(z) terms with variables in z = z1,..., 2. A
unifier o for p, q is transparent if =k (p = q = o(x) = z), for every z. In
view of the completeness theorem: g = F we arrive at the following
definition.

Let ¢(z) be unifiable in L. A substitution o : x — F'is a transparent unifier
for ¢ in L if o is a unifier for ¢ in L, b1, 0¢, and, for x € x

¢ (o(z) =2). (6)

The formula ¢ in (6) should be in the form that allows to generate a
congruence (e.g. idempotent), see [5], Sect. 2.4. We say that a logic L has
transparent unifiers if every unifiable formula in L has a transparent unifier.
Transparent unifiers have an advantage (here): they are preserved under
extensions. Unitary unification is not preserved ,,upwords”: the logic KC
of weak excluded middle has unitary unification [9] but some its extensions
have nullary unification.

1. Substructural logics without negation —.

In the following theorem (i) is due to Blok and Pigozzi [3] and (i7) was
proved in [17] with the assistance of the automated reasoning program
Otter.

Theorem 1. Let (A,-,=,1) be a hoop and e an idempotent element of
A. Then the following equations hold for z,y € A

(1) e=>(x=y) = (e=2x)—(e=y)
(i) e=>(x-y) = (e=>x) (e=y)

Hence the map f(x)=e = x, forx € A, is an endomorphism of (A,-,=,1).
Moreover, f is a retraction, fo f = f.
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Corollary 2. For any logic L of hoops, and an idempotent formula
¢ € Flz), o(x) = ¢ — x, for x € z, is a transparent unifier (hence a
mgu,).!

Note that o is ,,weakly transparent”, i.e., for any unifier 7 for ¢, we have
Fr 7(o(x)) = 7(z), for € z; hence ¢ is a mgu for ¢.

Corollary 3. Every logic in {&,—} or {&,\,—} determined by any
class of k-potent hoops, k > 1, has transparent unifiers; hence it has unitary
unification.

Corollary 4. Every idempotent formula of any logic in {&,N\,V,=} of
basic hoops has a transparent unifier.

Corollary 5. Any logic in {&,N\,V,=} of k-potent basic hoops (in
particular, of k-potent generalized BL-algebra [12]) has unitary unification.
The transparent unifier for ¢ has the form o(z) = ¢F — = for x € z.

Remark. If the assumption of prelinearity is dropped then unitary
unification is lost; example: the {A,V,—}-reduct of intuitionistic logic.
A (Hilber style) rule ¢4, ..., ¢, /1 is admissible in L if, for every substitution
T, b 7é1, - b T¢, implies b T; it is derivable in L, if ¢1,..., ¢, FL .
L is structurally complete if every structural (i.e. closed under substitution)
and admissible rule in L is derivable in L, see [15].

Corollary 6. Any logic L in {-,\,—} (in {-,\,V,—}) of k-potent (ba-
sic) hoops is hereditarily Structurally Complete; in terms of algebra: every
subquasivariety of k-potent (basic) hoops is a variety, i.e. it is deductive,

[11].

2. Substructural Logics with negation —

. In this part we consider logics with negation — (or L) and the algebras
with the least element 0. Recall that —x = z = 0 and —¢ = ¢ — L.
Allowing negation often changes unification type to ,,worse”.

Example: Consider reducts of intuitionistic logic in {A,V,—,—}. Uni-
fication is: unitary in {— }-reduct (Prucnal 1972); not unitary in {—,—}-

'Prucnal [16] used such a substitution in implicational fragment of intuitionistic logic.
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reduct (Wronski [18]), unitary in {—,A} and {—, A, =}-reducts (Wronski
[18]); note that it is finitary (not unitary) in full {—, A, Vv, =}, (Ghilardi [9]).

In any BL-algebra the set {0, 1} is closed under -, =, A, V, —, hence every
formula unifiable in BL, has a ground unifier.

Lemma 7. Let A be a BL-algebra and e an idempotent element in A.
Then for every a,b € A, the following equations hold

(i) e-a=eAa,
(i) e = (e,
(iii) =—e-[(e = a) = (e=b)] =[(e = a) = ——e- (e = b)],

(iv) [(e = a) = (e=Db)]=[-e - (e=a)= e - (e=Db)]=
[-—e- (e = a)= (e = D).

The proof is omitted; for useful equations see [4],[6],[10].

Theorem 8. Let (A,-,=,A,V,0,1) be a BL-algebra, e an idempotent
element of A and 7 : A — {0,1} a homomorphism, 7(e) = 1. Then the
map

f(x)=(e=2x) (me=71(x)), forz € A, (7)

is an endomorphism of (A,-,=,1). Moreover, f is a retraction, fo f = f.

Proof. Let e be an idempotent element in A and 7 : A — {0,1} a
homomorphism such that 7(e) = 1. By induction on the length of a term
t in variables x we show that:

e=t, if T(t) =1,
) 1= { (e =t)-——e, if 7(t) =0.

Assume that (%) holds for ¢; and to. Let t = t; = t5. We have the
cases: 1) 7t; =1, 7t = 0, i.e. 7t = 0, then, by Theorem 1 and by Lemma
7, (iii), (x) holds ; 2) 7t; = 0, 7ta = 0 and 3) 7t; = 0, 7t2 = 1 follows
similarly by Lemma 7, (iv); and 4) 7t; = 1, 7ty = 1, by Theorem 1, (i).
For t = t; - t9, (%) holds, by Theorem 1, (ii) and Lemma 7. For ¢ = 0 we
have f(0) = ==t - —t = 0. The other operations are definable. O
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Theorem 9. For every logic L containing Basic Logic BL, if ¢ € F(z)
is a formula idempotent and unifiable in L, with a ground unifier 7, than
it has the transparent of the form:

05(2) = (¢ = 2)&(=¢ — 7(x)), forz €.

In particular, for every k-potent logic L containing Basic Logic BL, if
¢ € F(x) is unifiable in L, than it has the transparent unifier of the form:

oo(x) = (¢ — 2)e(~¢" — r(x)), forz e,
where T is a ground unifier for ¢. Hence unification in L is unitary.

Proof. Let ¢ be a unifiable and idempotent formula in L and 7 a
ground unifier for ¢. By induction on the length of ¢ € F'(z) we show that:

. - _ ¢ — Y, if TW) =T,
( ) d>(1/’) = { (¢ N 7/))&_‘_‘@5’ if 7—@;) = | .

In particular, 04(¢) = ¢ — ¢, 04 is a unifier for ¢. Moreover, since ¢ is
idempotent, oy is transparent, i.e., Fr ¢ — [(04(z) — 2)&(x — o4(x))]. O

Remark. It follows that unification is unitary in Godel logic (Wronski’s
result, cf. [18]) and in finite-valued Lukasiewicz logics.
If k-potency, or EDPC, is dropped, then unitary unification is lost.

Lemma 10. In Lukasiewicz logic Lo the following holds:
(Dis) If Fp_ ¢V ¢, then bp ¢ or bp —¢.

Proof. Recall that Lukasiewicz logic £, is characterized by the Wa-
jsberg algebra W = ([0,1], -,—,0,1), where: -z = 1~ 2 and v —
y = min{l,1 — x 4+ y} are continuous real functions; their compositions
(corresponding to formulas) are continuous functions [0,1]* — [0,1]. Now
observe that, by the Darboux property of continuous functions, for every
formula ¢:
¢V ¢ is valid in W 1) iff ¢ is valid in Wy 1) or —¢ is valid in Wy 3. O

Corollary 11. Unification in Lukasiewicz logic Lo is not unitary.
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Proof. The formula = V -z has two unifiers o¢(z) =L and o1(z) = T
in L. Assume to the contrary, that f£.. has unitary unification; let o
be a mgu for z V —z. ie. by o(x)V ~o(z). By the property (Dis) we
have -y o(x) or g —o(x), i.e. o is equivalent either to oy or to o9, a
contradiction. O

Conjecture. Unification in Lukasiewicz logic L is infinitary or nullary.
Theorem 12 (Glivenko property). (Cignoli, Torrens [4])
(i) FeL == iff g ¢
(ii) b —¢ i Fp_ ¢
Lemma 13. In Basic Logic BL the following holds:
(Dis) If b, ~¢V ==, then bpgp, —¢ or bpgr, ——o.
Corollary 14. If BL C L C L, then unification in L is not unitary.

Recall that every structural rule, in Hilbert style, can be represented
as a join of rules with basic sequents, i.e. such that there is a sequent
d1(x), ..., ¢n(x)/Y(z) such that any application of the rule is an instance of
d1(x), ..., ¢on(x)/Y(z). A rule with the basic sequent ¢1(x), ..., dn(z)/1(x)
has unifiable premises, if ¢1(z)&...& ¢, (z) is unifiable; e.g. for Modus
Ponens: z1 — x9,x1/x9, the formula (x1 — x9)&z; is unifiable. Applying
the transparent unifier for ¢1(z)& ... &o, () we get:

Corollary 15. Every k-potent logic L containing Basic Logic BL is
structurally complete in the following restricted sense: every structural and
admissible rule with unifiable premises in L is derivable in L.

Remarks. In Lukasiewicz logics and in Basic Logic not all consistent
formulas are unifiable (the converse is true). Example: ¢(xz1) — —)(x1),
where ¥ (z1) is any formula such that for any valuation v in a linear Wa-
jsberg algebra we have v(¢(z1)) = 1, for v(z1) € {0,1} and v(¢(x1)) = 0,
otherwise.

Corollary 16. The logics Lo, and BL are not structurally complete,
even in the restricted sense.
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Proof. Consider the following rule with the basic sequent:
[z v -a)? v all@ v -2)?] ) (@ Vo).

The premise is unifiable. By the property (Dis) the rule is admissible, but
it is not derivable in Lo, (and in BL). O
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