REPORTS ON MATHEMATICAL LOGIC 43 (2008), 73–83

Wojciech DZIK

UNIFICATION IN SOME SUBSTRUCTURAL LOGICS OF BL-ALGEBRAS AND HOOPS

A b s t r a c t. Abstract. It is shown that substructural logics of k-potent BL-algebras and k-potent hoops have unitary unification (in fact, transparent unifiers) while Basic Fuzzy Logic, BL (the logic of BL-algebras), and ∞ -valued Łukasiewicz logic (the logic of MV-algebras) do not have unitary unification. It follows that every k-potent substructural logic containing BL is structurally complete in the restricted sense, but Basic Logic itself is not.

Given an equational theory E, equational unification or E-unification is concerned with finding a substitution σ of individual variables that makes two given terms t_1, t_2 equal, or unified, modulo the theory E, i.e. $\vdash_E \sigma t_1 = \sigma t_2$. Such a substitution is called a unifier for t_1 and t_2 ; if such a unifier exists then t_1 and t_2 are called unifiable. Given two unifiers of τ and σ , we say that σ is more general then τ , in symbols $\tau \leq \sigma$, if τ is an instance of σ , i.e. $\vdash_E \delta(\sigma(x)) = \tau(x)$, for some substitution δ . A unifier σ for t_1 and t_2 is a most general unifier, a mgu, if it is more general then any other unifier for t_1 and t_2 .

Received 7 May 2007

Unification type of a theory E, equivalently, of a variety \mathcal{V}_E , can be unitary, finitary, infinitary or nullary, according to a number of \leq -maximal E-unifiers of ,,the worst case" of t_1 and t_2 , see [1], [8].

Unification is basic to Resolution Theorem and Term Rewriting Systems. We consider logics of partially ordered algebras such that among the algebraic operations there is a pair (\cdot, \Rightarrow) called an *adjoint* or *residuated pair*, which satisfies the following condition of residuation:

$$c \le a \Rightarrow b \quad \text{iff} \quad a \cdot c \le b \tag{1}$$

in other words, \Rightarrow is a residuum of \cdot . (\cdot, \Rightarrow) are represented by the connectives $(\&, \rightarrow)$ of fusion and implication in the corresponding logics. In particular we consider the following classes of algebras which contain the residuated pair (\cdot, \Rightarrow) as a reduct: hoops, basic hoops, Wajsberg (or Łukasiewicz) hoops, BL-algebras, Gödel algebras, and corresponding to them, substructural logics which are related to fuzzy logics, see [7], [10], [6].

All of the above algebras belong to the class of FL_{ew} -algebras, i.e. commutative integral residuated lattices, corresponding to the substructural logics over FL_{ew} , Full Lambek calculus with weakening and exchange but without contraction, introduced by Ono, see [7], [13], [14].

Hoops originated in a manuscript by Büchi and Owens in the 70's. Later, they were considered by Blok and Pigozzi [3], Blok, Ferreirim [2] and others. Hoops capture a common $\{\&, \rightarrow\}$ fragment of all fuzzy logics.

BL-algebras or Basic Logic algebras have been introduced by P.Hájek [10] as an algebraic counterpart of Basic Fuzzy Logic, BL, which is a common generalization of the three main fuzzy logics: Gödel logic, Lukasiewicz logic and Product logic. Gödel algebras, Wajsberg algebras and product algebras are the algebraic counterparts of these logics, respectively. It was proved that the variety of BL-algebras is generated by all algebras $([0, 1], \star, \Rightarrow, 0, 1)$, where \star is a continuous *t*-norm on the real interval [0, 1] and \Rightarrow its residuum.

In case of algebras with 1 (*unit*) and with \Rightarrow , \cdot considered here, unification problem $t_1 = {}^? t_2$ in a class \mathcal{V} of algebras is equivalent to $t = {}^? 1$, for $t = (t_1 \Rightarrow t_2) \cdot (t_1 \Rightarrow t_2)$ or, in logical terms, to finding a substitution σ such that $\vdash_L \sigma \phi$, where L is a logic determined by \mathcal{V} . The subsumption preorder \preceq is related to \vdash_L , provability in L. The set of all formulas F_{Δ} is built up from variables x_1, x_2, \ldots by means of the connectives from a set Δ , where $\{\&, \rightarrow\} \subseteq \Delta \subseteq \{\&, \rightarrow, \land, \lor, \bot\}$, $(\bot = \text{constant falsity})$. Further connectives are defined: \top (constant truth) is $x \to x$, a negation $\neg \phi$ is $\phi \to \bot$ and $\phi \equiv \psi$ is $(\phi \to \psi)\&(\psi \to \phi)$.

By a logic we mean a set of formulas closed on Modus Ponens and substitution. $\Gamma \vdash_L \phi$ means that a formula ϕ is derivable from a set of formulas Γ and from L by Modus Ponens. $\vdash_L \phi$ means that ϕ is provable in L.

Let $\mathbf{A} = (A, \cdot, \Rightarrow, \land, \lor, 1, 0)$ be a residuated lattice. A map $\epsilon : \{x_i\} \to A$ can be uniquely extended to a homomorphism (denoted by the same letter) $\epsilon : F \to A$, called a valuation, in such a way that: $\epsilon(A\&B) = \epsilon(A) \cdot \epsilon(B)$, $\epsilon(A \to B) = \epsilon(A) \Rightarrow \epsilon(B)$, $\epsilon(A \lor B) = \epsilon(A) \lor \epsilon(B)$, $\epsilon(A \land B) = \epsilon(A) \land \epsilon(B)$, $\epsilon(\bot) = 0$. By restriction of ϵ to $\{\&, \to\}$ we get a valuation in a hoop (A, \cdot, \Rightarrow) .

The logic of **A** (i.e. a logic determined by **A**), denoted by $L(\mathbf{A})$, is a set of all formulas valid in **A**, i.e. $\phi \in L(\mathbf{A})$ iff $\epsilon(\phi) = 1$, for every valuation $\epsilon : F \to A$; that is $L(\mathbf{A})$ consists of all **A**-tautologies. The logic of a class of algebras \mathcal{V} , is a set of all formulas ϕ such that $\phi \in L(\mathbf{A})$, for all $\mathbf{A} \in \mathcal{V}$.

We denote by \underline{x} a finite set of variables x_1, \ldots, x_n . We write $\phi(\underline{x})$ to express that a formula ϕ contains variables only from \underline{x} . $F(\underline{x})$ denotes the set of all formulas of the form $\phi(\underline{x})$. A substitution $\sigma : \underline{x} \to F$ is a *unifier* for $\phi(\underline{x})$ in L, if $\vdash_L \sigma \phi$; then ϕ is called *unifiable*. The most general unifier, a mgu, for ϕ in L, is a unifier σ for ϕ such that $\sigma \preceq \tau$ for any unifier τ for ϕ . A unifier of the type $\sigma : \underline{x} \to \{\bot, \top\}$ is called *ground*.

Unification in L depends on the collection of connectives used in L. Hence we write ,,a logic L in Δ ", where $\{\&, \rightarrow\} \subseteq \Delta \subseteq \{\&, \rightarrow, \land, \lor, \neg\}$, to mean that $L \subseteq F_{\Delta}$, i.e. all formulas in L contain only connectives from Δ .

We begin with logics of hoops in $\{\&, \rightarrow\}$ and expand to logics of residuated lattices in $\{\&, \land, \lor, \rightarrow, (\neg)\}$, in two parts: I. without negation and II. with negation, or constant \bot .

Hoops. A hoop is an algebra $\mathbf{A} = (A, \cdot, \Rightarrow, 1)$ of type (2, 2, 0) such that $(A, \cdot, 1)$ is a commutative *monoid* with the unit 1, (i.e. satisfying: $x \cdot (y \cdot z) = (x \cdot y) \cdot z$, $x \cdot y = y \cdot x$, $x \cdot 1 = 1$) which satisfies the axioms:

- (H1) $x \Rightarrow x = 1$
- (H2) $x \Rightarrow (y \Rightarrow z) = (x \cdot y) \Rightarrow z$

(H3) $(x \Rightarrow y) \cdot x = (y \Rightarrow x) \cdot y$.

A relation \leq on any hoop $(A, \cdot, \Rightarrow, 1)$ defined as follows: $x \leq y$ iff $x \Rightarrow y = 1$ is a partial order; then (A, \leq) is a \wedge -semilattice. In fact, for any $x, y \in A$:

$$x \wedge y = x \cdot (x \Rightarrow y),\tag{2}$$

which is called *divisibility*. Hence the class of hoops form a variety. A hoop $(A, \cdot, \Rightarrow, 1)$ is *basic* if it is *prelinear*, i.e. for $x, y, z \in A$:

$$(x \Rightarrow y) \Rightarrow z \leq ((y \Rightarrow x) \Rightarrow z) \Rightarrow z.$$
(3)

In basic hoops we have $x \lor y = ((x \Rightarrow y) \Rightarrow y) \land ((y \Rightarrow x) \Rightarrow x)$, i.e. the join is definable. Hence any basic hoop $(A, \cdot, \Rightarrow, 1)$ is definitionally equivalent to a commutative integral divisible residuated lattice, with the greatest element 1, $(A, \land, \lor, \cdot, \Rightarrow, 1)$, cf.[12]. Basic hoops are also called *generalized BL-algebras* since they are subalgebras of 0-free reducts of BL-algebras cf [6].

A hoop $(A, \cdot, \Rightarrow, 1)$ is a Wajsberg hoop or a Lukasiewicz hoop if, for $x, y \in A$: $(x \Rightarrow y) \Rightarrow y = (y \Rightarrow x) \Rightarrow x$. Every Wajsberg hoops is basic.

A bounded hoop is an algebra $(A, \cdot, \Rightarrow, 0, 1)$ such that $(A, \cdot, \Rightarrow, 1)$ is a hoop and $0 \le x$, for all $x \in A$. In such hoops negation is defined by $\neg x = x \Rightarrow 0$. Bounded Wajsberg hoops are equivalent to Wajsberg algebras and to MValgebras, which are algebraic models of Lukasiewicz many-valued logics.

An **FL**_{ew}-algebra is an algebra $(A, \cdot, \Rightarrow, \land, \lor, 0, 1)$ such that $(A, \land, \lor, 0, 1)$ is a bounded (i.e. with 0 and 1) lattice, $(A, \cdot, \Rightarrow, 1)$ is a commutative monoid and the condition of residuation (1) holds.

A **BL-algebra** (a Basic Logic algebra) is a FL_{ew} -algebra satisfying divisibility (2) and

$$(x \Rightarrow y) \lor (y \Rightarrow x) = 1$$
 (prelinearity). (4)

Note: (4) is equivalent to (3), and (2) implies distributivity in (A, \land, \lor) .

A hoop or a BL-algebra A is k-potent, if, for every $x \in A$,

$$(E_k) x^{k+1} = x^k. (5)$$

An element $x \in A$, is *idempotent*, if $x^2 = x$; similarly, a formula ϕ is *idempotent* in L, if $\vdash_L \phi^2 \equiv \phi$. A logic L is k-potent if $\vdash_L \phi^k \to \phi^{k+1}$ for any ϕ . If L is k-potent, then $\vdash_L (\phi^k)^2 \equiv \phi^k$, for any ϕ . By Blok and Pigozzi

[3], a variety of hoops (BL-algebras) has Equationally Definable Principal Congruences, EDPC, iff it is k-potent, for some k.

Transparent unifiers were defined by Wroński [19] (see also [18]), for quasivarieties of equivalence algebras as follows. Let **K** be a class of algebras of the same type, F be the set of all terms $(F(\underline{x})$ terms built in \underline{x} respectively) of **K**, $p(\underline{x}), q(\underline{x})$ terms with variables in $\underline{x} = x_1, \ldots, x_k$. A unifier σ for p, q is transparent if $\models_{\mathbf{K}} (p = q \Rightarrow \sigma(x) = x)$, for every x. In view of the completeness theorem: $\models_{\mathbf{K}} = \vdash_L$ we arrive at the following definition.

Let $\phi(\underline{x})$ be unifiable in L. A substitution $\sigma : \underline{x} \to F$ is a *transparent* unifier for ϕ in L if σ is a unifier for ϕ in L, $\vdash_L \sigma \phi$, and, for $x \in \underline{x}$

$$\phi \vdash_L (\sigma(x) \equiv x). \tag{6}$$

77

The formula ϕ in (6) should be in the form that allows to generate a congruence (e.g. idempotent), see [5], Sect. 2.4. We say that a *logic L has transparent unifiers* if every unifiable formula in *L* has a transparent unifier. Transparent unifiers have an advantage (here): they are preserved under extensions. Unitary unification is not preserved "upwords": the logic KC of weak excluded middle has unitary unification [9] but some its extensions have nullary unification.

1. Substructural logics without negation \neg .

In the following theorem (i) is due to Blok and Pigozzi [3] and (ii) was proved in [17] with the assistance of the automated reasoning program Otter.

Theorem 1. Let $(A, \cdot, \Rightarrow, 1)$ be a hoop and e an idempotent element of A. Then the following equations hold for $x, y \in A$

$$\begin{array}{rll} (i) & e \Rightarrow (x \Rightarrow y) & = & (e \Rightarrow x) \to (e \Rightarrow y) \\ (ii) & e \Rightarrow (x \cdot y) & = & (e \Rightarrow x) \cdot (e \Rightarrow y) \end{array}$$

Hence the map $f(x) = e \Rightarrow x$, for $x \in A$, is an endomorphism of $(A, \cdot, \Rightarrow, 1)$. Moreover, f is a retraction, $f \circ f = f$. **Corollary 2.** For any logic L of hoops, and an idempotent formula $\phi \in F(\underline{x}), \ \sigma(x) = \phi \rightarrow x$, for $x \in \underline{x}$, is a transparent unifier (hence a mgu).¹

Note that σ is ,,weakly transparent", i.e., for any unifier τ for ϕ , we have $\vdash_L \tau(\sigma(x)) \equiv \tau(x)$, for $x \in \underline{x}$; hence σ is a mgu for ϕ .

Corollary 3. Every logic in $\{\&, \rightarrow\}$ or $\{\&, \wedge, \rightarrow\}$ determined by any class of k-potent hoops, $k \ge 1$, has transparent unifiers; hence it has unitary unification.

Corollary 4. Every idempotent formula of any logic in $\{\&, \land, \lor, \Rightarrow\}$ of basic hoops has a transparent unifier.

Corollary 5. Any logic in $\{\&, \land, \lor, \Rightarrow\}$ of k-potent basic hoops (in particular, of k-potent generalized BL-algebra [12]) has unitary unification. The transparent unifier for ϕ has the form $\sigma(x) = \phi^k \to x$ for $x \in \underline{x}$.

Remark. If the assumption of prelinearity is dropped then unitary unification is lost; example: the $\{\land, \lor, \rightarrow\}$ -reduct of intuitionistic logic. A (Hilber style) rule $\phi_1, \ldots, \phi_n/\psi$ is admissible in L if, for every substitution $\tau, \vdash_L \tau \phi_1, \cdots \vdash_L \tau \phi_n$ implies $\vdash_L \tau \psi$; it is derivable in L, if $\phi_1, \ldots, \phi_n \vdash_L \psi$. L is structurally complete if every structural (i.e. closed under substitution) and admissible rule in L is derivable in L, see [15].

Corollary 6. Any logic L in $\{\cdot, \wedge, \rightarrow\}$ (in $\{\cdot, \wedge, \vee, \rightarrow\}$) of k-potent (basic) hoops is hereditarily Structurally Complete; in terms of algebra: every subquasivariety of k-potent (basic) hoops is a variety, i.e. it is deductive, [11].

2. Substructural Logics with negation \neg

. In this part we consider logics with negation \neg (or \bot) and the algebras with the least element 0. Recall that $\neg x = x \Rightarrow 0$ and $\neg \phi \equiv \phi \rightarrow \bot$. Allowing negation often changes unification type to ,,worse".

Example: Consider reducts of intuitionistic logic in $\{\land, \lor, \rightarrow, \neg\}$. Unification is: unitary in $\{\rightarrow\}$ -reduct (Prucnal 1972); **not** unitary in $\{\rightarrow, \neg\}$ -

¹Prucnal [16] used such a substitution in implicational fragment of intuitionistic logic.

reduct (Wroński [18]), unitary in $\{\rightarrow, \land\}$ and $\{\rightarrow, \land, \neg\}$ -reducts (Wroński [18]); note that it is finitary (not unitary) in full $\{\rightarrow, \land, \lor, \neg\}$, (Ghilardi [9]).

In any BL-algebra the set $\{0, 1\}$ is closed under $\cdot, \Rightarrow, \wedge, \vee, \neg$, hence every formula unifiable in BL has a ground unifier.

Lemma 7. Let \mathbf{A} be a *BL*-algebra and e an idempotent element in \mathbf{A} . Then for every $a, b \in A$, the following equations hold

(i)
$$e \cdot a = e \wedge a$$
,

$$(ii) \neg \neg e = (\neg \neg e)^2,$$

 $(iii) \neg \neg e \cdot [(e \Rightarrow a) \Rightarrow (e \Rightarrow b)] = [(e \Rightarrow a) \Rightarrow \neg \neg e \cdot (e \Rightarrow b)],$

 $(iv) \ [(e \Rightarrow a) \Rightarrow (e \Rightarrow b)] = [\neg \neg e \cdot (e \Rightarrow a) \Rightarrow \neg \neg e \cdot (e \Rightarrow b)] = [\neg \neg e \cdot (e \Rightarrow a) \Rightarrow (e \Rightarrow b)].$

The proof is omitted; for useful equations see [4], [6], [10].

Theorem 8. Let $(A, \cdot, \Rightarrow, \land, \lor, 0, 1)$ be a BL-algebra, e an idempotent element of A and $\tau : A \to \{0, 1\}$ a homomorphism, $\tau(e) = 1$. Then the map

$$f(x) = (e \Rightarrow x) \cdot (\neg e \Rightarrow \tau(x)), \text{ for } x \in A,$$
(7)

is an endomorphism of $(A, \cdot, \Rightarrow, 1)$. Moreover, f is a retraction, $f \circ f = f$.

Proof. Let e be an idempotent element in A and $\tau : A \to \{0, 1\}$ a homomorphism such that $\tau(e) = 1$. By induction on the length of a term t in variables <u>x</u> we show that:

$$(\star) \qquad f(t) = \begin{cases} e \Rightarrow t, & \text{if} \quad \tau(t) = 1, \\ (e \Rightarrow t) \cdot \neg \neg e, & \text{if} \quad \tau(t) = 0. \end{cases}$$

Assume that (\star) holds for t_1 and t_2 . Let $t = t_1 \Rightarrow t_2$. We have the cases: 1) $\tau t_1 = 1$, $\tau t_2 = 0$, i.e. $\tau t = 0$, then, by Theorem 1 and by Lemma 7, (iii), (\star) holds; 2) $\tau t_1 = 0$, $\tau t_2 = 0$ and 3) $\tau t_1 = 0$, $\tau t_2 = 1$ follows similarly by Lemma 7, (iv); and 4) $\tau t_1 = 1$, $\tau t_2 = 1$, by Theorem 1, (i). For $t = t_1 \cdot t_2$, (\star) holds, by Theorem 1, (ii) and Lemma 7. For t = 0 we have $f(0) = \neg \neg t \cdot \neg t = 0$. The other operations are definable.

Theorem 9. For every logic L containing Basic Logic BL, if $\phi \in F(\underline{x})$ is a formula idempotent and unifiable in L, with a ground unifier τ , than it has the transparent of the form:

$$\sigma_{\phi}(x) = (\phi \to x) \& (\neg \phi \to \tau(x)), \text{ for } x \in \underline{x}.$$

In particular, for every k-potent logic L containing Basic Logic BL, if $\phi \in F(\underline{x})$ is unifiable in L, than it has the transparent unifier of the form:

$$\sigma_{\phi}(x) = (\phi^k \to x) \& (\neg \phi^k \to \tau(x)), \text{ for } x \in \underline{x}.$$

where τ is a ground unifier for ϕ . Hence unification in L is unitary.

Proof. Let ϕ be a unifiable and idempotent formula in L and τ a ground unifier for ϕ . By induction on the length of $\psi \in F(\underline{x})$ we show that:

(*)
$$\sigma_{\phi}(\psi) \equiv \begin{cases} \phi \to \psi, & \text{if} \quad \tau(\psi) \equiv \top, \\ (\phi \to \psi) \& \neg \neg \phi, & \text{if} \quad \tau(\psi) \equiv \bot. \end{cases}$$

In particular, $\sigma_{\phi}(\phi) \equiv \phi \rightarrow \phi$, σ_{ϕ} is a unifier for ϕ . Moreover, since ϕ is idempotent, σ_{ϕ} is transparent, i.e., $\vdash_L \phi \rightarrow [(\sigma_{\phi}(x) \rightarrow x)\&(x \rightarrow \sigma_{\phi}(x))]$. \Box

Remark. It follows that unification is unitary in Gödel logic (Wroński's result, cf. [18]) and in finite-valued Lukasiewicz logics. If k-potency, or EDPC, is dropped, then unitary unification is lost.

Lemma 10. In Lukasiewicz logic L_{∞} the following holds:

 $(Dis) \qquad \textit{If} \ \vdash_{L_{\infty}} \phi \lor \neg \phi, \ \textit{then} \ \vdash_{L_{\infty}} \phi \ \textit{or} \ \vdash_{L_{\infty}} \neg \phi.$

Proof. Recall that Lukasiewicz logic L_{∞} is characterized by the Wajsberg algebra $\mathfrak{W}_{[0,1]} = ([0,1], \cdot, \rightarrow, 0, 1)$, where: $\neg x = 1 - x$ and $x \rightarrow y = min\{1, 1 - x + y\}$ are continuous real functions; their compositions (corresponding to formulas) are continuous functions $[0,1]^k \rightarrow [0,1]$. Now observe that, by the Darboux property of continuous functions, for every formula ϕ :

 $\phi \lor \neg \phi$ is valid in $\mathfrak{W}_{[0,1]}$ iff ϕ is valid in $\mathfrak{W}_{[0,1]}$ or $\neg \phi$ is valid in $\mathfrak{W}_{[0,1]}$. \Box

Corollary 11. Unification in Lukasiewicz logic L_{∞} is not unitary.

Proof. The formula $x \vee \neg x$ has two unifiers $\sigma_0(x) = \bot$ and $\sigma_1(x) = \top$ in L_{∞} . Assume to the contrary, that L_{∞} has unitary unification; let σ be a mgu for $x \vee \neg x$. i.e. $\vdash_{L_{\infty}} \sigma(x) \vee \neg \sigma(x)$. By the property (*Dis*) we have $\vdash_{L_{\infty}} \sigma(x)$ or $\vdash_{L_{\infty}} \neg \sigma(x)$, i.e. σ is equivalent either to σ_1 or to σ_0 , a contradiction. \Box

Conjecture. Unification in Łukasiewicz logic L_{∞} is infinitary or nullary.

Theorem 12 (Glivenko property). (Cignoli, Torrens [4])

- $(i) \vdash_{\mathrm{BL}} \neg \neg \phi \ i\!f\!f \vdash_{L_{\infty}} \phi$
- $(ii) \vdash_{\mathrm{BL}} \neg \phi \ iff \vdash_{L_{\infty}} \neg \phi$

Lemma 13. In Basic Logic BL the following holds:

 $(Dis) \qquad If \vdash_{\mathrm{BL}} \neg \phi \lor \neg \neg \phi, \ then \vdash_{\mathrm{BL}} \neg \phi \ or \vdash_{\mathrm{BL}} \neg \neg \phi.$

Corollary 14. If $BL \subseteq L \subseteq L_{\infty}$, then unification in L is not unitary.

Recall that every structural rule, in Hilbert style, can be represented as a join of rules with basic sequents, i.e. such that there is a sequent $\phi_1(\underline{x}), \ldots, \phi_n(\underline{x})/\psi(\underline{x})$ such that any application of the rule is an instance of $\phi_1(\underline{x}), \ldots, \phi_n(\underline{x})/\psi(\underline{x})$. A rule with the basic sequent $\phi_1(\underline{x}), \ldots, \phi_n(\underline{x})/\psi(\underline{x})$ has unifiable premises, if $\phi_1(\underline{x})\&\ldots\&\phi_n(\underline{x})$ is unifiable; e.g. for Modus Ponens: $x_1 \to x_2, x_1/x_2$, the formula $(x_1 \to x_2)\&x_1$ is unifiable. Applying the transparent unifier for $\phi_1(\underline{x})\&\ldots\&\phi_n(\underline{x})$ we get:

Corollary 15. Every k-potent logic L containing Basic Logic BL is structurally complete in the following restricted sense: every structural and admissible rule with unifiable premises in L is derivable in L.

Remarks. In Łukasiewicz logics and in Basic Logic not all consistent formulas are unifiable (the converse is true). Example: $\psi(x_1) \to \neg \psi(x_1)$, where $\psi(x_1)$ is any formula such that for any valuation v in a linear Wajsberg algebra we have $v(\psi(x_1)) = 1$, for $v(x_1) \in \{0,1\}$ and $v(\psi(x_1)) = 0$, otherwise.

Corollary 16. The logics L_{∞} and BL are not structurally complete, even in the restricted sense.

Proof. Consider the following rule with the basic sequent:

$$\neg \neg [(x \lor \neg x)^2] \lor \neg [(x \lor \neg x)^2] / \neg \neg [(x \lor \neg x)^2].$$

The premise is unifiable. By the property (Dis) the rule is admissible, but it is not derivable in L_{∞} (and in BL).

References

- F. Baader, W. Snyder, Unification Theory. In: A. Robinson, A. Voronkov, (eds.) Handbook of Automated Reasoning, Elsevier Science Publisher, 2001, Ch. 8, pp. 445–533.
- [2] W. Blok, I. Ferreirim, On the structure of hoops, Algebra Universalis 43 (2000), pp. 233–257.
- W. Blok, D. Pigozzi, On the structure of varieties with equationally definable principal congruences III, Algebra Universalis 32 (1994), pp. 545–608.
- [4] R. Cignoli, A. Torrens, Hajek basic fuzzy logic and Lukasiewicz infinite-valued logics, Arch. Math. Logic, 42, (2003), pp. 361–370.
- [5] W. Dzik, Unification Types in Logic, Wydawnictwo Uniwersytetu Śląskiego, Katowice 2007.
- [6] F. Esteva, L. Godo, P. Hajek, F. Montagna, *Hoops and Fuzzy Logic*, J. of Logic and Computation 13, N.4 (2003), pp. 531–555.
- [7] N. Galatos, P. Jipsen, T. Kowalski, H. Ono, Residuated Lattices. An Algebraic Glimpse At Substructural Logics Elsevier, Netherlands 2007.
- [8] S. Ghilardi, Unification through Projectivity, J. of Symbolic Computation 7 (1997), pp. 733–752.
- [9] S. Ghilardi, Unification in Intuitionistic Logic, J. of Symbolic Logic 64 (1999), pp. 859–880.
- [10] P. Hájek, Metamathematics of fuzzy logic, Kluwer Academic Press, Dordrecht 1998.
- [11] L. Hogben, C. Bergman, Deductive varieties of modules and universal algebras, Trans. of the Amer. Math. Soc. 289 (1985), 303–320.
- [12] P. Jipsen, C. Tsinakis A survey of residuated lattices, Ordered Algebraic Structures (J.Martinez, ed.), Kluwer Academic Press, Dordrecht, 1998.
- [13] H. Ono, Logics without contraction rule and residuated lattices I. To appear in the book for the Festschrift of Prof. R. K. Meyer.
- [14] H. Ono, Substructural logics and residuated lattices an introduction. In F.V. Hendricks, J. Malinowski (eds.): Trends in Logic: 50 Years of Studia Logica, 2003, pp. 177–212.

- [15] Pogorzelski, W.A., Structural Completeness of the Propositional Calculus, Bulletin de l'Academie Polonaise des Sciences, Ser. Sci. Math., Astron., Phys., 19 (1971), pp. 349-351.
- [16] Prucnal, T., Structural Completeness of some Pure Implicational Propositional Calculi, Studia Logica, 30 (1972), pp. 45-52.
- [17] R. Veroff, M. Spinks, On a homomorphism property of hoops Bull. of the Section of Logic **33** (2004), pp. 135–142.
- [18] A. Wroński, Transparent Unification Problem, Reports on Mathematical Logic 29 (1995), pp. 105-107.
- [19] A. Wroński, Unitary Unification for Equivalential Algebras and other structures related to Logic, Volume of Abstracts, 11th Internat. Congress of Logic, Methodology, Phil. of Sci., Cracow, Poland, 1999, pp. 63-76.

Institute of Mathematics, Silesian University, Katowice, Poland

dzikw@silesia.top.pl