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A FINITE FRAGMENT OF S3

A b s t r a c t. It is shown that the pure (strict) implication

fragment of the modal logic [3] has finitely many non-equivalent

formulae in one variable. The exact number of such formulae is

not known. We show that this finiteness result is the best possible,

since the analogous fragment of S4, and therefore of [3], in two

variables has infinitely many non-equivalent formulae.

.1 Introduction

Meyer [3] raises the question of the number of distinct (non-equivalent)

formulae in one variable in the relevant logic E→, while answering it for

the stronger logic R→. The answer in the latter case is 6, while in the

former case it is still not known whether the number is finite or infinite.1

Over the last four decades, several related results have appeared. S4→,

the pure (strict) implication fragment of the modal logic S4, has exactly 9

Received 1 October 2006
1The latest count, produced by brute force enumeration, showing non-equivalence by

testing in small models, stands at over 6 million.
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non-equivalent formulae in one variable [2], while the fragment of E with

both implication and negation has infinitely many zero-variable formulae

built up from the sentential constant f [4]. A little weaker than E→ is

T→, for which the question is also open, and between E→ and S4→ lies

the non-normal modal logic S3→. The purpose of the present paper is to

investigate the one-variable fragment of S3→. We show that the free S3→

algebra with one generator is finite, and thus that there are only finitely

many non-equivalent formulae in S3→. We then examine the two-variable

fragment of S4, showing that it is infinite and therefore that finiteness does

not extend beyond the one-variable case.

.2 The problem

Consider propositional logics with just one connective, an impliction → .

The system T→ of “ticket entailment”, defined by Anderson and Belnap

[1], has as rule of inference detachment, and as axioms all instances of the

schemes:

a1. A→A

a2. (A→B)→((C→A)→(C→B))

a3. (A→B)→((B→C)→(A→C))

a4. (A→(A→B))→(A→B)

We consider several systems resulting by adding further axioms:

a5. ((A→A)→B)→B

a6. (A→B)→(C→C)

a7. A→(B→B)

a8. A→((A→B)→B)

a9. A→(B→A)

To strengthen T→ to E→ add a5. To strengthen E→ to S3→ add a6 as well,

and to get S4→ replace this by the more general a7. R→ is conveniently

axiomatised as T→ plus the axiom of “assertion” a8. Finally, intuitionist

pure implication J→, which is stronger than any of the above systems, is

obtained by adding a9 to T→.

It has long been known [1] that the logic of implicational formulae of E

(that is, the logic whose “variables” are the implicational formulae of E) is

just R. In particular, the E theorem
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((A→B)→((C→D)→E))→((C→D)→((A→B)→E))

says that in compound implications, antecedents which are themselves im-

plications may be permuted. In the same way, and for the same reason,

the logic of implicational formulae of S4, and indeed of S3, is exactly in-

tuitionist logic.

We are concerned in this paper with the simplest natural fragment of

these logics: that with only one atom p. In this fragment, of course, all

formulae are implications except for p itself. The question we wish to

address is the number of such formulae, up to provable equivalence, in

particular in the logic S3→. We switch freely between thinking of them as

formulae in the logic and as elements in an S3→ algebra, which we take

to be an object 〈Σ,→≤〉 where 〈Σ,≤〉 is a poset and 〈Σ,→〉 is a groupoid

with a distinguished element I, such that for all a, b, c ∈ Σ:

p1. a→b = I iff a ≤ b

p2. a→b ≤ (c→a)→(c→b)

p3. a→b ≤ (b→c)→(a→c)

p4. a→(a→b) ≤ a→b

p5. I→a ≤ a

p6. a→b ≤ I

To correspond to the one-variable fragment of logic, of course, the algebra

should have a single generator g. We note that the subalgebra obtained

by simply omitting g is a Hilbert algebra – the implicational reduct of a

Brouwerian algebra.

Meyer’s question for S3→ is whether the free S3→ algebra with one

generator is finite.

.3 The one-variable fragment is finite

The situation in S4→is simpler than that in S3→. Every one-variable

formula is equivalent to one of the following nine:

1. p 4. 1→3 7. 5→1

2. 1→1 i.e. p→p 5. 4→1 8. 7→4

3. 2→1 i.e. �p 6. 1→5 9. 8→6

The implication matrix is:
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Figure 1: Hasse diagram of one-variable S4→

→ 1 2 3 4 5 6 7 8 9

1 2 2 4 4 6 6 7 8 9

2 3 2 3 4 5 6 7 8 9

3 2 2 2 2 2 2 2 2 2

4 5 2 5 2 5 2 2 2 2

5 7 2 7 7 2 2 7 2 2

6 3 2 3 7 5 2 7 2 2

7 5 2 5 8 5 8 2 8 2

8 3 2 3 7 5 9 7 2 9

9 3 2 3 4 5 8 7 8 2

An algebra such as this can be represented as a Kripke model quite easily:

the worlds of the Kripke frame may be identified with the up-closed subsets

of Σ, and for worlds X and Y , let R(X,Y ) mean that for all elements a

and b, if a→b ∈ X and a ∈ Y then b ∈ Y .

S3 frames are like those for S4 except for the possible presence of non-

normal worlds in which all implications are false. For the one-variable

fragment, this means there are, up to equivalence, just two non-normal

worlds: the one in which p is true and every other formula false, and the one

in which all formulae are false. The latter cannot make a difference to the

value of any formula at any other world, so it can be dropped without loss,

leaving only the one non-normal world (at most) in any frame. Any world

not reachable from the base world (where truth is evaluated) can also be

dropped, of course. Obviously, then, by the transitivity of the accessibility

relation, if the non-normal world is present at all, it is accessible to the
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base world of the frame.

Clearly, there are, in addition to p and p→p, three types of formula in

a one-variable implicational logic. A formula is either:

1. A→p, where A is itself an implication, or

2. p→A, where A is itself an implication, or

3. A→B, where both A and B are themselves implications.

In generating non-equivalent formulae of S3→, formulae of type 1, with

the exception of �p, can be ignored, since A→p is provably equivalent to

�(A→p) (that is, (p→p)→(A→p)) which, by permutation of antecedents,

is equivalent to A→�p, which is of type 3 and will occur in the enumeration

of formulae even if A→p is dropped, because both its antecedent and its

consequent are generated earlier than A→p.

Formulae of type 2 do not generally have equivalents of type 3, but they

do have the property that any two of them which are non-equivalent in S3→

are also non-equivalent in S4→. To see this, consider any two such formulae

p→A and p→B and an S3 frame which shows them to be distinct. There

must be a world w in which one of them holds while the other does not. w

must be a normal world, because the non-normal one makes neither of them

true, so w might as well be the base world and the frame consist just of it

and its descendents under R. The non-normal world cannot be accessible

to w, because p holds in it while A and B do not, so neither p→A nor

p→B can hold in any world that can “see” the non-normal one. Therefore

there is no non-normal world in the frame, which is therefore an S4 frame,

showing that p→A and p→B are distinct in S4→. By inspection of the

matrix given above, we may note that S4→ distinguishes only five such

formulae.

The free S3→ algebra with a single generator g therefore consists of

g together with the Hilbert algebra generated by six elements: I→g and

the five corresponding to the distinct type 2 formulae of S4→. It is thus

a finitely generated Hilbert algebra. But Hilbert algebras are locally finite

[5], so this one is finite, and hence so is the one-variable fragment of S3→.
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.4 The two-variable fragment is infinite

The above argument reducing the finiteness question for S3→ to that for

S4→ does not depend on the number of variables: it is easily generalised

to show that the n-variable fragment of S3→ is finite iff the n-variable

fragment of S4→ is finite. This raises the hope that S3→might be shown

to be locally finite, by showing the local finiteness of S4→. We now show

that such a hope is vain, since the two-variable fragment of S4→ is already

infinite.

We construct an infinite S4 algebra on two generators, making use of

the fact that topological spaces are models of S4. Consider X = (N,T ),

with N being the natural numbers and T the family of down-closed subsets

of N: i.e. U ∈ T iff for all i and j, if j ∈ U and i < j then i ∈ U).

Lemma 1. X is a topological space; in fact, an Alexandroff space.

Proof. Clearly, ∅ and N belong to T . Any union of down-closed sets

of naturals is also down-closed and hence belongs to T . Similarly, any

intersection of members of T is again a member of T . �

Where i is any natural number, let γi be the set {0, . . . , i}. Let α be

the set of even numbers and let β be the set of odd numbers.

For any subsets S, T of N we define S→T to be int (S ∪ T ), where S

stands for N \ S and int U for {k : γk ⊆ U}. Since the Boolean algebra

℘(N) with int as the modal (box) operator is an S4 algebra, the operation

→ is just the strict implication in this algebra. Note that α = β, β = α,

int β = ∅ and int α = {0}.

Lemma 2. The following hold:

1. α→β = ∅

2. β→α = γ0

3. α→γ2k = γ2k+1, for k ≥ 0

4. β→γ2k+1 = γ2k+2, for k ≥ 0

Proof. Since α = β as just noted, α ∪ β = β, so α→β = int β = ∅,

establishing (1).

Similarly, β→α = int (β ∪ α) = int α = {0}, establishing (2).
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Figure 2: Hasse diagram of the infinite S4→ model

To prove (3) note that α→γ2k = int (β ∪ γ2k). Now 2k + 1 ∈ β but

2k + 2 /∈ β, so int (β ∪ γ2k) = {0, . . . , 2k} ∪ {2k + 1} = γ2k+1.

The proof of (4) is similar: β→γ2k+1 = int (α∪ γ2k+1) = γ2k+1 ∪{2k +

2} = γ2k+2. �

Lemma 3. The algebra generated by α and β is infinite.

Proof. Each γk is generated from α and β. Since (γk)
∞

k=0 is a strictly

ascending chain of subsets of N, the claim is proved. �

The theorem that the two-variable fragment of S4→ is infinite is imme-

diate. As a corollary, note that since β is nothing but α, the one-variable

fragment of S4 in (strict) implication and (boolean) negation is also infinite.

.5 Conclusion

It has been shown that S3→ and S4→ are finite in the one-variable fragment

but infinite with two or more variables. The free S3→ algebra with one

generator, despite being finite, is still not known in much detail. We have

computed an approximation to it by generating the S3→ algebras (modulo

isomorphism) with up to 8 elements, selecting those with one generator,

selecting from those the subdirectly irreducible ones, and then finding the

subalgebra of their direct product generated by the vector of their single

generators. This algebra has 517 elements, meaning that there are at least

517 pairwise non-equivalent one-variable formulae in S3→. We have no

reason to think that these 517 exhaust the possibilities, but equally no

direct evidence that they do not. The main remaining open question is to
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determine the number of non-equivalent formulae exactly: on this, we have

nothing but the lower bound of 517 to offer.
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