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ON THE VARIETY GENERATED BY
INVOLUTIVE POCRIMS

A b s t r a c t. An involutive pocrim (a.k.a. an L0–algebra) is

a residuated integral partially ordered commutative monoid with

an involution operator, considered as an algebra. It is proved

that the variety generated by all involutive pocrims satisfies no

nontrivial idempotent Maltsev condition. That is, no nontrivial

〈∧,∨, ◦〉-equation holds in the congruence lattices of all involu-

tive pocrims. This strengthens a theorem of A. Wroński. The

result survives if we restrict the generating class to totally ordered

involutive pocrims.

.1 Involutive Pocrims and their Subreducts

The purely intensional fragments of affine linear logic (i.e., linear logic with

the weakening axiom p → (q → p)) are known to be algebraizable in the

sense of [1]. The equivalent algebraic semantics for these fragments are
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the quasivarieties of pocrims, of involutive pocrims, and of BCK–algebras.

These algebras can be defined as follows.

Consider a commutative monoid 〈A; ·, t〉 whose universe A is partially

ordered by a relation ≤. Suppose, moreover, that ≤ is compatible with ·,

i.e., for all a, b, c ∈ A, if a ≤ b then a · c ≤ b · c. The structure A = 〈A; ·, t;≤

〉 is said to be residuated if for any a, b ∈ A, there is a largest c ∈ A such

that a · c ≤ b. The largest c with this property is then denoted by a → b,

so 〈A; ·,→, t;≤〉 satisfies

x · z ≤ y ⇐⇒ z ≤ x→ y

and in particular, x ≤ y ⇐⇒ t ≤ x → y. If in addition, t is the greatest

element of 〈A;≤〉, we say that A is integral. In this case, the partial order

≤ is equationally definable by

x ≤ y ⇐⇒ t ≈ x→ y,

so A is first order definitionally equivalent to the algebra A = 〈A; ·,→, t〉.

An algebra A which arises in this way is called a pocrim. (This is an

acronym for ‘partially ordered commutative residuated integral monoid’.)

It is well known that the class POCR of all pocrims is axiomatized by the

identities

(M1) (x · y) → z ≈ y → (x→ z)

(M2) t→ x ≈ x

(M3) x→ t ≈ t

(M4) (x→ y) → ((y → z) → (x→ z)) ≈ t

together with the single quasi-identity

(M5) (x→ y ≈ t and y → x ≈ t) ⇒ x ≈ y

[15, 16], so POCR is a quasivariety. For a general study of pocrims, see [4].

An involutive pocrim is an algebra A = 〈A; ·,→,¬, t〉 such that 〈A; ·,→, t〉

is a pocrim, ¬ is a unary operation on A, and A satisfies

(M6) ¬¬x ≈ x

(M7) x→ ¬ y ≈ y → ¬x.
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The class IPOC of all involutive pocrims is therefore also a quasivariety.

Every involutive pocrim has a least element f = ¬ t and satisfies

x→ f ≈ ¬x, x · y ≈ ¬ (x→ ¬ y), x→ y ≈ ¬ (x ·¬ y).

Up to term equivalence, IPOC is just the class of all pocrims with a distin-

guished constant f satisfying (x→ f) → f ≈ x.

Involutive pocrims were introduced under the name pre-Boolean alge-

bras by Wroński and Krzystek in [39]. They were studied in [21], and

independently by Grishin [10], who called them L0-algebras. Every MV-

algebra in the sense of Chang [5] is termwise equivalent to an involutive

pocrim. It is known that

every pocrim A is a {·,→, t}–subreduct of an involutive pocrim,

i.e., A is a subalgebra of the pocrim reduct 〈B; ·,→, t〉 of some involutive

pocrim 〈B; ·,→,¬, t〉, see [38].

The quasivariety of pure {→, t}–subreducts of pocrims (or equivalently,

of involutive pocrims) turns out to be axiomatized by the laws (M2)–(M5).

Thus, it coincides with the older class of BCK–algebras of Iséki [14], which

we denote by BCKA. Proofs of this relationship appear in [30, 27, 7]; there

are some related results in [25, 13]. So, as observed in [30],

every BCK–algebra is a {→, t}–subreduct of an involutive pocrim

(and conversely).

In general, the variety generated by a class K of similar algebras will be

denoted by V(K). Wroński [37] proved that BCKA is not a variety. Krzys-

tek’s unpublished 1983 dissertation [21] established the stronger fact that

IPOC is not a variety, i.e., its homomorphic closure V(IPOC) does not sat-

isfy (M5). Independently, Grishin [10] gave a different proof that IPOC is

not a variety. It follows that POCR is not a variety; this was shown directly

by Higgs in [11].

The aim of the present note is to point out a stronger conclusion, viz.:

No nontrivial equation in the signature ∧,∨, ◦ holds in the con-

gruence lattices of all involutive pocrims.
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Here ◦ corresponds to the relational product operation—see Section 2

for precise definitions. The analogous results for pocrims and for BCK–

algebras turn out to be corollaries (in view of Theorem 2 below).

The following result was already proved in [38]:

Theorem 1. (Wroński) An equation in the language ∧,∨ holds in the

congruence lattice of every BCK-algebra only if it holds in every lattice.

In general, a variety satisfying no nontrivial congruence equation in ∧,∨

may still satisfy a nontrivial congruence equation in ∧,∨, ◦. The standard

example is the variety of semilattices (see the remarks after Corollary 8).

The absence of congruence equations in IPOC and its subreduct classes

contrasts with the desirable relative congruence properties of these qua-

sivarieties. (For a stipulated quasivariety K, the relative congruences of

an algebra A ∈ K are the congruences θ such that A/θ ∈ K. They form

an algebraic lattice.) For instance, IPOC etc. are relatively congruence

distributive and relatively point regular at t, whence every variety that

consists of [involutive] pocrims is congruence distributive [29] and congru-

ence n–permutable for some finite n ≥ 2: see the references in [4]. In [38],

Wroński exhibited BCK–algebras whose congruences are neither modular

nor n–permutable for any finite n ≥ 2. (These examples are not reducts

of pocrims. In general, when we extend a BCK–algebra to an [involutive]

pocrim, the size of the congruence lattice may be reduced, as for instance

in [2].)

.2 Congruence Conditions

Definition 1. A congruence equation is a formal equation in the binary

symbols ∧,∨, ◦. It is satisfied by an algebra A if it becomes true whenever

we interpret the variables of the equation as congruence relations of A, and

for arbitrary binary relations θ and φ on A, we interpret θ ∧ φ, θ ∨ φ and

θ ◦ φ as the intersection, the congruence of A generated by the union, and

the relational product of θ and φ, respectively.

A congruence equation is satisfied by a class of similar algebras if it is

satisfied by every member of the class.

A congruence equation is called nontrivial if some algebra fails to satisfy

it.
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If a congruence equation is satisfied by a quasivariety K then it is sat-

isfied by the variety V(K) also. (This follows from the Correspondence

Theorem of universal algebra, extended in the obvious way to handle re-

lational products of congruences.) Note that congruence n-permutability

defines a nontrivial congruence equation, and so does congruence modular-

ity. These are examples of nontrivial idempotent Mal’cev conditions. The

general definition is as follows.

Definition 2. We say that a variety V satisfies a nontrivial idempotent

Maltsev condition if some idempotent finitely based variety of finite signa-

ture can be interpreted into V and cannot be interpreted into every variety

(or equivalently, into the variety of sets).

Recall here that an idempotent variety is one that satisfies α(x, x, . . . , x) ≈

x for each of its fundamental operation symbols α. An idempotent variety

U can be interpreted into a variety V (of possibly different signature) if

there is a homomorphism from the clone of term operations of the free

ℵ0–generated algebra in U to the corresponding clone of V. Such a map is

required to preserve composition of terms and to fix all projections.

A variety that satisfies a nontrivial congruence equation must satisfy

a nontrivial idempotent Maltsev condition. This follows by a standard

argument that can be found in [32, 36]. The converse was proved more

recently in [19]. Thus, conditions (i) and (ii) in the next theorem are

equivalent. The equivalence of (ii) and (iii) is a direct consequence of [34,

Cor. 5.3].

Theorem 2. (Kearnes and Szendrei ; Taylor) For any variety V, the

following conditions are equivalent.

(i) V satisfies a nontrivial congruence equation.

(ii) V satisfies a nontrivial idempotent Maltsev condition.

(iii) There exist an integer n > 1, an n-ary term α that is idempotent over

V and a choice of (not necessarily distinct) variables xij , yij(1 ≤ i, j ≤

n) such that xii 6= yii for each i and V satisfies

α(x11, . . . , x1n) ≈ α(y11, . . . , y1n) ;

· · · · · ·

α(xn1, . . . , xnn) ≈ α(yn1, . . . , ynn) .
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Recall that a variety V is said to be locally finite if its finitely generated

members are finite algebras. In particular, every variety generated by a

finite set of finite algebras is locally finite. An n–finite variety is one in

which all n–generated algebras are finite.

The lattice D1 of all convex subsets of a totally ordered three-element

set is depicted below. Observe that D1 has a pentagon sublattice and

so cannot be embedded into any modular (in particular, any distributive)

lattice.
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Figure 1. The Lattice D1

Theorem 3. (Kearnes and Kiss) A variety V satisfies no nontrivial

idempotent Maltsev condition iff D1 is a sublattice of the congruence lattice

of some algebra B ∈ V.

For the case of locally finite varieties V, Theorem 3 was proved earlier

by Hobby and McKenzie [12, Thm. 9.6]. Moreover, when a locally finite

variety satisfies the equivalent conditions of Theorem 3 then B can be

chosen finite. This follows from the proof of [12, Thm. 7.9].

The arguments in [12] made definite use of local finiteness, but Kearnes

and Kiss [18] have shown that this assumption can be eliminated1 and

that various other small lattices can play the role of D1. Using a direct

universal algebraic argument, they establish that if V satisfies a nontrivial

idempotent Maltsev condition then the congruence lattices of all algebras

in V satisfy

(x ∧ y ≈ w and x ∧ z ≈ w and x[2] ≈ w) =⇒ x ∧ (y ∨ z) ≈ w,

where x[2] : = x ∧ (y ∨ z) ∧ [(y ∧ (x ∨ z)) ∨ (z ∧ (x ∨ y))]. To see that D1

violates this quasi-identity, take {x, y, z} to be the unique three-element

1 announced in [17]
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generating set for D1, with x as the meet-reducible generator. Theorem 3

is powerful because containing D1 is a purely lattice-theoretic demand,

whereas the relational product operation ◦ is not redundant in the claim

that no nontrivial congruence equation is satisfied (witness the variety of

semilattices).

Recall that every finite lattice can be embedded in the partition lattice

ΠX of a finite set X [33]. Of course when |X | ≤ |Y | then ΠX can

be embedded into ΠY . In particular, D1 is isomorphic to a sublattice of

Π4 (see [12, p. 23] for the Hasse diagram of Π4). So Theorem 3 has the

following consequence:

Corollary 4. For any variety V, if Πκ embeds in Con A for some

A ∈ V and some cardinal κ ≥ 4, then V satisfies no nontrivial idempotent

Maltsev condition.

The converse is an open problem posed in [18]; it is open even for locally

finite varieties.

.3 Congruence Conditions and IPOC

Since the subvarieties of IPOC have desirable congruence properties, the

claim that V(IPOC) satisfies no nontrivial congruence equation strengthens

the claim that IPOC is not a variety. An algebraic proof of either claim

must involve infinite algebras, in view of the following result, essentially

established in [6].

Theorem 5. If a locally finite variety is generated by involutive pocrims

then it consists of involutive pocrims, and is therefore congruence distribu-

tive.

The proof of Theorem 5 uses the fact that in a variety generated by

a class K of similar algebras, the free algebras belong to the quasivariety

generated by K, hence they are involutive pocrims if K ⊆ IPOC. Further,

since IPOC satisfies xn+1 ≤ xn for all n ∈ ω (where x0 : = t and xn+1 : =

xn
· x), it follows that every finite involutive pocrim satisfies xn ≈ xn+1

for some n ∈ ω. So, in a variety V generated by involutive pocrims, if the

1–generated free algebra is finite, then V satisfies xn ≈ xn+1 for some finite
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n. Now any involutive pocrim satisfying xn ≈ xn+1 also satisfies

(x→ y) →n (y → x) →n x ≈ (y → x) →n (x→ y) →n y

(where x →0 y : = y and x →n+1 y : = x → (x →n y)), see [6]. As the

2–generated free algebra in V belongs to IPOC, the above equation holds

throughout V, and it clearly entails (M5), whence V consists of involutive

pocrims. Finally, as we observed in Section 1, every variety of involutive

pocrims is congruence distributive.

In [10], Grishin gave an algebraically non-constructive and quite com-

plex proof that IPOC is not a variety. The argument shows that the free

1–generated involutive pocrim F must map onto a certain four-element alge-

bra G that violates (M5), but almost nothing is known about the structure

of the infinite algebra F. Krzystek’s proof of the same result is algebraically

constructive and elegant, but the reference [21] does not seem to be well

known. The possibility of a really simple proof is blocked by the following

still-open problem:

Problem 1. Are the varieties V(IPOC), V(POCR) and V(BCKA) finitely

based?

These questions were raised for V(POCR) and V(BCKA) in [11, 20, 31].

A generalization of the argument from [21] is presented below. The

extra generality will allow us to explain the main result about congruence

equations in a direct way. Our adaptation of [21] is in the spirit of the

‘distension’ construction from [38].

Let Z, Z− and Z+ denote the respective sets of all integers, of all non-

positive integers, and of all non-negative integers. Given a nonzero ordinal

τ ≤ ω and distinct entities ⊥,> /∈ Z ∪ τ , we shall construct an involutive

pocrim Aτ with universe

Aτ = ({⊥} × Z+) ∪ (τ × Z) ∪ ({>} × Z−).

We shall use i, j, k to denote integers, α, β to denote elements of τ , and

x, y to denote elements of Aτ . Let ≤ be the partial order of Aτ depicted in

Figure 2 and note that

〈α, i〉 ≤ 〈β, j〉 iff i+ |α− β | ≤ j.
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We define

¬ 〈>, i〉 = 〈⊥,−i〉, ¬ 〈α, j〉 = 〈α,−j〉, ¬ 〈⊥, k〉 = 〈>,−k〉 (i ≤ 0 ≤ k).

The operation · on Aτ is defined thus:

x · y = y · x

〈>, i〉 · 〈>, j〉 = 〈>, i+ j〉 (i, j ≤ 0)

〈>, i〉 · 〈α, j〉 = 〈α, i + j〉 (i ≤ 0)

〈>, i〉 · 〈⊥, j〉 = 〈⊥, max {0, i+ j}〉 (i ≤ 0 ≤ j)

〈α, i〉 · 〈β, j〉 = 〈⊥, max {0, i+ j + |α− β |}〉

〈α, i〉 · 〈⊥, j〉 = 〈⊥, k〉 · 〈⊥, j〉 = 〈⊥, 0〉 (0 ≤ j, k)

This makes 〈Aτ ; ·, 0〉 a commutative monoid which is residuated with re-

spect to the partial order ≤.
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Figure 2. Hasse Diagram of 〈Aτ ;≤〉
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The resulting pocrim 〈Aτ ; ·,→, 〈>, 0〉〉 has the following residuation prop-

erties:

x ≤ y iff x→ y = 〈>, 0〉

〈>, i〉 → 〈>, j〉 = 〈>, min {0, j − i}〉 (i, j ≤ 0)

〈>, i〉 → 〈α, j〉 = 〈α, j − i〉 (i ≤ 0)

〈>, i〉 → 〈⊥, j〉 = 〈⊥, j − i〉 (i ≤ 0 ≤ j)

〈α, i〉 → 〈β, j〉 = 〈>, min {0, j − i− |α− β |}〉

〈α, i〉 → 〈⊥, j〉 = 〈α, j − i〉 (0 ≤ j)

〈⊥, i〉 → 〈⊥, j〉 = 〈>, min {0, j − i}〉 (0 ≤ i, j)

Clearly Aτ = 〈Aτ ; ·,→,¬, 〈>, 0〉〉 ∈ IPOC. The algebra A2 appears in

[21].

Let 0τ and 1τ be the finest and coarsest partitions of τ , respectively.

That is, 0τ = {{α} : α ∈ τ} and 1τ = {τ}. For any partition π of τ ,

{{⊥} × Z+, {>} × Z−} ∪ {Y × Z : Y ∈ π}

is the set of equivalence classes of a congruence θ(π) of Aτ . It follows

easily that the function π 7→ θ(π) is an injective lattice homomorphism

from the partition lattice Πτ of τ into the interval sublattice [θ(0τ ), θ(1τ )]

of ConAτ . (The main point is that joins are preserved, by definition of

θ(π), because the congruence lattice of an algebra is always a sublattice of

the equivalence lattice of its universe.) So the lattice Πτ also embeds into

this interval of ConAτ . Choosing τ ≥ 4, we may deduce from Corollary 4

that

Theorem 6. The variety V(IPOC) satisfies no nontrivial idempotent

Maltsev condition, i.e., it satisfies no nontrivial congruence equation (in

∧,∨, ◦).

Corollary 7. V(IPOC) is not congruence meet semi-distributive, i.e.,

it is not congruence neutral.

Recall that a variety V is said to be congruence meet semi-distributive if the

quasi-identity x∧y ≈ x∧z =⇒ x∧y ≈ x∧ (y∨z) holds in the congruence
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lattices of all algebras from V. This is equivalent to congruence neutrality,

i.e., the demand that [x, y] = x ∩ y should hold in the congruence lattices

of all algebras in V, where [ , ] is the TC commutator: see [19, 23]. When

these equivalent conditions hold then V satisfies a nontrivial idempotent

Maltsev condition; see [35] for a direct proof of this.

Corollary 8. No semilattice operation is termwise definable over all

involutive pocrims.

Here a semilattice operation is not assumed to be compatible with the

pocrim order or operations. The corollary follows because semilattices form

a congruence meet semi-distributive variety (although they do not satisfy

a nontrivial congruence equation in ∧,∨ only) [9]. Among the 2–finite

varieties, the congruence meet semi-distributive ones are just those that

satisfy the congruence equation θ ∧ (φ ◦ ψ) ⊆ φ ∨ (θ ∧ (ψ ∨ (θ ∧ φ))), see

[19].

We have noted that congruence n–permutable varieties satisfy nontrivial

idempotent Maltsev conditions, so Theorem 6 entails the next corollary.

Corollary 9. There is no integer n ≥ 2 such that all involutive pocrims

are congruence n-permutable.

In fact, Lipparini [22] has shown that for each integer n ≥ 2, every

congruence n-permutable variety satisfies a nontrivial congruence equation

in ∧,∨ (without ◦). See [24] and its bibliography for alternative proofs,

and [18] for generalizations of this result.

Imitating an argument from [38], we can easily see directly that for every

n ≥ 2, the involutive pocrim Aω fails to be congruence n-permutable. And

when 4 ≤ τ ≤ ω then Aτ is not congruence modular, because its own

congruence lattice contains a copy of Π4 (and therefore D1).

Of course these results witness the fact that IPOC is not a variety. More

directly, for τ ≥ 2, the algebra Bτ = Aτ/θ(0τ ) belongs to V(IPOC) but not

to IPOC. Indeed, {>} × Z− interprets t in Bτ , and if τ ≥ 2 then

a := {0} × Z and b := {1} × Z

are distinct elements of Bτ with a → b = t and b → a = t, so Bτ violates

(M5). This, for τ = 2, is the proof given in [21] that IPOC is not a variety.

The four-element algebra G ∈ V(IPOC) \ IPOC exhibited by Grishin in

[10] is different from B2. In B2, we have ¬ a = a and ¬ b = b, whereas ¬
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has no fixed point in G. Apparently this makes it harder to construct a

transparent involutive pocrim that maps onto G.

The 〈→〉-reduct of Aτ has just the same congruences as Aτ . Thus, The-

orem 6 through Corollary 9 hold for the varieties V(POCR) and V(BCKA)

as well, and this is predictable from Theorem 2.

.4 Alternative Proofs and Ramifications

In the particular case of V(BCKA), one can give a syntactic proof of the

absence of congruence equations in ∧,∨, ◦.

We adopt the convention that x → y → z abbreviates x → (y → z).

The identity (M1) and the associativity and commutativity of · invite us

to define

(Πi<n αi) → y := α0 → α1 → . . .→ αn−1 → y (1)

for any variable y, any n ∈ ω and any 〈→〉-terms αi, i < n. If n = 0 we

interpret the left hand side of (1) as y. We call y the right-most variable

of the term in (1). Clearly every 〈→〉-term is of this form. The following

result, conjectured by Wroński, was proved in [26].

Lemma 10. (Nagayama) Let α ≈ β be a 〈→〉-equation that is satisfied

by every BCK-algebra. Then either the terms α and β have the same right-

most variable or every BCK-algebra satisfies α ≈ t (and therefore β ≈ t).

This, together with Theorem 2, gives a different proof of

Theorem 11. The variety V(BCKA) satisfies no nontrivial idempotent

Maltsev condition.

Proof. Since t is definable over V(BCKA) as x → x, it is enough to

prove the result for the variety V of t-free reducts of members of V(BCKA).

Suppose V satisfies a nontrivial idempotent Maltsev condition. Then V

satisfies a scheme of equations as displayed in Theorem 2 (iii) for some

n > 1, some term α(z1, . . . , zn) (in distinct variables z1, . . . , zn) that is

idempotent over V and some choice of variables xij, yij , 1 ≤ i, j ≤ n, where

xii 6= yii for each i. Now we must have

α(z1, . . . , zn) = (Πk<m βk(z1, . . . , zn)) → zj
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for some fixed j ∈ {1, . . . , n} and some finite family {βk : k < m} of

〈→〉-terms. The j-th equation in the scheme is therefore

(Πk<m βk(x1j , . . . , xnj)) → xjj ≈ (Πk<m βk(y1j , . . . , ynj)) → yjj.

The right-most variables xjj and yjj in this equation are different, by as-

sumption. Therefore, by Lemma 10, the term on the left hand side of

the equation is equal to t in all BCK-algebras. Of course this remains

true when all of its variables are set equal, i.e., all BCK-algebras satisfy

α(x, x, . . . , x) ≈ t. This contradicts the idempotence of α over V(BCKA).

2

For pocrim terms we have no normal forms and no notion of ‘right-

most variable’, so no useful variant of Lemma 10 can be expected. Thus,

the above proof is not adaptable to V(POCR) or V(IPOC).

A polynomial time algorithm implemented in the Algebra Calculator

Program [8] computes the ‘type set’ of any finite algebra A. This is a non-

empty subset of {1,2,3,4,5}. (The program also computes the type set of

any free algebra in V(A) on finitely many free generators.) The following

result is [12, Thm. 9.6].

Theorem 12. (Hobby and McKenzie) A locally finite variety V satisfies

no nontrivial idempotent Maltsev condition iff 1 belongs to the type set of

some finite algebra in V.

Applying this result to V(IPOC) and to the finite algebra B2 from the

previous section, we get a very swift (but less transparent) proof of The-

orem 6, since the type set of B2 is {1,3}. The same is true of Grishin’s

algebra G, and likewise the reducts of these algebras that retain →.

Definition 3. An [involutive] pocrim is said to be representable if it is

a subdirect product of totally ordered [involutive] pocrims.

The class of all representable involutive pocrims is the quasivariety ax-

iomatized relative to IPOC by the identity

((x→ y) → z) → ((y → x) → z) → z ≈ t (2)

(see [28]). Another analogy with [38] is that the subalgebra of A2 gener-

ated by {〈0, 0〉, 〈1, 1〉} is a totally ordered involutive pocrim with the same
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significant properties as A2. Factoring out the restriction of θ(02), we get

an algebra isomorphic to B2 again. So, from the type set of B2 and Theo-

rem 12, we can deduce the following strengthening of Theorem 6.

Theorem 13. The variety generated by all representable involutive

pocrims satisfies no nontrivial idempotent Maltsev condition.

The use of Algebra Calculator Program in Theorem 13 could be elimi-

nated. Along the lines of [3, pp. 73–74], we can construct a finite subdirect

power of B2 whose congruence lattice contains the partition lattice of a

four-element set.
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[39] A. Wroński, P.S. Krzystek, On pre-Boolean algebras (preliminary report),

manuscript, circa 1982.

School of Mathematical Sciences,

University of KwaZulu-Natal,

Westville Campus, Private Bag X54001, Durban 4000, South Africa

raftery@ukzn.ac.za


