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A b s t r a c t. In this paper, Wójcicki’s characterization of selfex-

tensional logics as those logics that are endowed with a complete

local referential semantics is extended to a fully fledged duality

between atlas-models (i.e. generalized matrix models) and refer-

ential models of an arbitrary selfextensional logic S. This duality

serves as a general template where a wide range of Stone- and

Priestley-style dualities related with concrete logics can fit. The

first application of this duality is a characterization of the fully

selfextensional logics among the selfextensional ones. Fully selfex-

tensional logics form a subclass of particularly well-behaved selfex-

tensional logics, and only recently [1] this inclusion was shown to

be proper. In this paper, fully selfextensional logics are character-

ized as those selfextensional logics S whose algebraic counterpart

Alg(S) – seen as a category – is dually equivalent to the reduced

referential models of S. This implies that if S is fully selfexten-

sional, then every algebra in Alg(S) is isomorphic to an algebra of

sets.
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1 Introduction

Substitution-invariant consequence relations between sets of formulas and

formulas are taken as the primary logical objects in Abstract Algebraic

Logic (AAL). Logics so defined (see Section 2) may satisfy different replace-

ment properties, the strongest of which says that for any set of formulas Γ ,

any formulas ϕ, ψ, δ and any propositional variable p,

if Γ, ϕ `S ψ and Γ, ψ `S ϕ,

then Γ, δ(p/ϕ) `S δ(p/ψ) and Γ, δ(p/ϕ) `S δ(p/ψ),

δ(p/ϕ) and δ(p/ψ) being obtained by substituting ϕ for p and ψ for p in

δ respectively. This property is possessed by classical and intuitionistic

propositional logics (CPC and IPC respectively) and can be taken as a

formalization of Frege’s principle of compositionality for truth-values, or

extensionality principle. Logics satisfying it are called Fregean, after Suszko

[?]. Examples of important non-Fregean logics abound, for instance almost

all the logics of the modal family. Nevertheless non-Fregean logics, such

as the local consequence relation of the normal modal logic K (see below),

often satisfy the following weaker replacement property: for any formulas

ϕ, ψ, δ and any propositional variable p,

if ϕ `S ψ and ψ `S ϕ, then δ(p/ϕ) `S δ(p/ψ) and δ(p/ϕ) `S δ(p/ψ).

A logic is selfextensional if it satisfies this weaker replacement property. In

algebraic terms, this means that the relation of logical equivalence between

formulas, defined as ϕ `S ψ and ψ `S ϕ, is a congruence relation of the

formula algebra. To our knowledge, the term ‘selfextensional’ was coined

by Wójcicki [16].

Typical examples of selfextensional logics besides CPC and IPC are

determined by the local consequence relations associated with any normal

modal logic L, i.e. the deducibility relations associated with a Hilbert-style

calculus defined by taking the theorems of L as the set of its axioms, and

modus ponens as its sole rule of inference. It is well-known that consequence

00281 UB PG.

[2000] Mathematics Subject Classification: 03B22, 03B45, 03G10, 06D50, 06A15.

Keywords: Abstract algebraic logic, referential semantics, algebraic semantics, duality

theory.



REFERENTIAL SEMANTICS: DUALITY AND APPLICATIONS 65

relations defined in this way are exactly the local consequence relations

determined by the class of Kripke models of L.

Selfextensional logics constitute a class of important logics that cuts

across the Leibniz hierarchy defined within AAL; see [6, 10] for the defini-

tion and properties of the different classes of this hierarchy. Selfextensional

logics occur in any class of this hierarchy: CPC and IPC are instances

of selfextensional logics that are algebraizable; some selfextensional logics,

such as the local consequence of the normal modal logic K, are equivalential

but not algebraizable, some are protoalgebraic but not equivalential such

as the local consequence of the classical modal logic E, and finally some

are non-protoalgebraic, for instance positive modal logic [5], Belnap’s four-

valued logic [2, 8], the conjunction-disjunction fragment of classical propo-

sitional logic [11] and Visser’s logic [4, 14]. Moreover, non-selfextensional

logics occur in all these classes. This strategic position of selfextensional

logics adds to the interest that researchers in AAL have in them, because

it makes possible to devise proof strategies for results that involve pairs

of logics S and S ′ which may belong to different classes of the hierarchy,

but are connected by the condition Alg(S) = Alg(S ′): for in this case, if a

certain result holds for Alg(S) which depends on the hypothesis of S being

selfextensional, then it can be extended to S ′ even if S ′ is not selfexten-

sional.

Relational (Kripke-style) semantics established themselves as a power-

ful tool of investigation for a much wider range of logics than the intensional

ones which they have been originally developed for. Nowadays, when a new

logic is proposed it is a standard practice to endow it with this type of se-

mantics. Relational models for a propositional logic on a language1 L are

based on nonempty sets W of points, endowed with additional structure

which usually serves to define an L-algebra on some family A of subsets of

W ; frequently this family is the powerset of W . Formulas are then inter-

preted by assigning a set v(p) ∈ A to every propositional variable p, and

extending this assignment to every formula as a homomorphism v from the

algebra of formulas into the L-algebra carried by A. In this way, given an

assignment v to propositional variables, each formula ϕ obtains a truth-

value at every point w ∈W : true if w belongs to the set v(ϕ) assigned to

1‘Propositional language’ and ‘algebraic similarity type’ are treated as synonymous

expressions.
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ϕ and false otherwise. Using Frege’s insight that the reference of a sen-

tence is its truth-value, we can say that the interpreted formulas obtain a

reference at each point in W , and assuming this perspective the elements of

W can be called ‘reference points’. If we try and set forth what the Kripke

style semantics for all the different propositional logics have in common, we

find that it simply is what we emphasized: i) every relational structure is

based on a nonempty set W , ii) a designated collection of subsets A of W is

endowed with an algebraic structure of the same type as the algebra of for-

mulas, using resources from the structure (a relation, a monoid operation, a

partial order, etc.), and iii) formulas are interpreted using homomorphisms

from the algebra of formulas into A just in the way we described. In this

setting, the algebra A is frequently thought of as the algebra of propositions

of the structure under consideration. Looking at relational semantics from

this abstract perspective, we are thus left with structures of form 〈W,A〉,

such that W is a nonempty set and A is an algebra of subsets of W (the

algebra of propositions). These structures were studied by Wójcicki in [17]

and named referential algebras because they mainly consist of algebras built

on sets of reference points. Accordingly, a semantics of this type is called

a referential semantics and can be regarded as an abstract version of the

general-frame-style semantics of many intensional logics. For information

on referential semantics see also [6].

Wójcicki ([16, 17]) characterized selfextensional logics as the ones that

‘admit a referential semantics’: Given a propositional language L, let M

be a class of referential algebras of this type, i.e. objects in M are tuples

〈W,A〉 such that W is a nonempty set, and A is an L-algebra of subsets of

W . Then a consequence relation for formulas of type L, over a given set of

variables, can be defined as follows:

Γ |=M ϕ iff for every 〈W,A〉 ∈ M, every valuation v of the formulas on A,

and every point w ∈W , if for every ψ ∈ Γ it holds that w ∈ v(ψ),

then w ∈ v(ϕ).

The algebra of formulas of type L, endowed with the consequence relation

|=M, is a logic in the AAL sense, and we will refer to it as the local logic of

M. A logic S, however defined, has a complete local referential semantics if

there is a class M of referential algebras such that the consequence relation

of S coincides with |=M. Wójcicki [17] showed that selfextensional logics

are exactly the ones endowed with a complete local referential semantics.
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Fully selfextensional logics. Selfextensionality is a property that can be

defined by using consequence relation as the only primitive symbol. So it

is a metalogical property, and as such it falls within the area of interest of

AAL, a theory that was originally developed by Blok and Pigozzi for pro-

viding a setting in which metalogical properties of logics could be studied

and characterized in terms of algebraic properties of their associated classes

of algebras. It turns out that, in such a general setting, some metalogical

properties cannot be captured by properties of algebraic structures alone.

This is the main reason why several kinds of algebra-based, enhanced struc-

tures were put in play. In particular, two more kinds of models for logics

were fruitfully used in AAL to develop a general and uniform procedure

for associating any logic S with its class of algebras AlgS (see Section 5),

and to characterize the level of the Leibniz hierarchy S belongs to. Mod-

els of the first kind are called logical matrices and are structures of the

form 〈A, F 〉 such that A is an algebra and F a subset of the carrier of A.

Models of the second kind are structures of the form 〈A,B〉 such that A

is an algebra and B a family of subsets of the carrier of A, and are called

generalized matrices by Wójcicki [16] and Czelakowski [6], and atlases by

Dunn & Hardegree [7]. We will use this latter terminology in this paper.

A particularly relevant kind of atlases are the abstract logics of Brown &

Suszko [3], which are the atlases such that B is a closure system (a.k.a.

topped intersection structure). Abstract logics were used in [9] to develop

a general algebraic semantics for propositional logics.

A logical matrix 〈A, F 〉 is a model of a logic S if A is of the type of S

and for every set of formulas Γ and every formula ϕ,

if Γ `S ϕ then for every h ∈ Hom(Fm,A) if h[Γ ] ⊆ F, then h(ϕ) ∈ F

(1)

In this case F is said to be an S-filter of A. The set of all S-filters of A

is denoted by FiSA. An atlas 〈A, C〉 is a model of S if A is of the type of

S and every element of C is an S-filter of A. Notice that atlases of form

〈A,FiSA〉 are abstract logics since FiSA is a closure system.

Fully selfextensional logics form a subclass of particularly well-behaved

selfextensional logics. For every logic S and every algebra A of the type of

S, consider the atlas 〈A,FiSA〉, which is clearly a model of S. In general,

the relation ΛAFiSA given by

〈a, b〉 ∈ ΛAFiSA iff ∀F ∈ FiSA (a ∈ F ⇔ b ∈ F )
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is not a congruence of A. A logic S is fully selfextensional if for every alge-

bra A the relation ΛAFiSA is a congruence of A. Part of [9] is devoted to

the study of fully selfextensional logics. Almost all known selfextensional

logics are fully selfextensional: sufficient conditions for a selfextensional

logic to be fully selfextensional are to possess a conjunction or an implica-

tion that satisfies modus ponens and deduction theorem [9]. The question

whether every selfextensional logic is fully selfextensional was raised as an

open problems in [9]. Babyonyshev [1] presented an ad hoc example of a

selfextensional logic that is not fully selfextensional.

In this paper, we characterize fully selfextensional logics among the

selfextensional ones by properties of their referential semantics. To this

purpose we set a general duality2 between certain categories of atlases and

of referential algebras that will be introduced in 2.2 and 3. This duality

can be seen as an abstraction of the well-known dualities between cate-

gories of algebras and of general Kripke frames for several propositional

logics, and analogously to those dualities, it establishes a formal connec-

tion between atlas semantics and referential semantics holding uniformly

for every selfextensional logic. This duality is the basic tool for characteriz-

ing fully selfextensional logics: they are exactly those selfextensional logics

S such that AlgS – seen as a category – is dually equivalent to the reduced

referential algebra S-models.

As for the structure of this paper, in Section 2, after giving the definition

of logic adopted in AAL, we formally introduce referential semantics, prove

Wójcicki’s theorem and define the category of reduced referential algebras of

a given algebraic similarity type. In Section 3 we present the atlas semantics

and define the category of Frege-reduced atlases for an arbitrary algebraic

similarity type. In Section 4 we establish the dual equivalence between

the category of reduced referential algebras of an arbitrary similarity type

and the category of Frege-reduced atlases of the same type. Section 5 is

the main section of the paper and contains some characterizations of fully

selfextensional logics in terms of properties of their (reduced) referential

semantics.

Notational convention. Objects that form part of a compound structure

that is labelled with a subindex will inherit the subindex without further

notice. For any category C, C(X1, X2) is the set of morphisms between

2Some first steps in establishing this duality were taken by Czelakowski.
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objects X1, X2 in C. The notation Hom(A1,A2) refers only to algebra ho-

momorphisms, whenever A1, A2 are arbitrary algebras. Set is the category

of sets and set-maps.

2 Selfextensional Logics and Referential Semantics

Let us fix an algebraic similarity type L and a denumerable set V ar of

propositional variables. A logic (or deductive system) of type L is a pair

S = 〈Fm,`S〉 such that Fm is the L-algebra of formulas over V ar and

`S is a substitution-invariant consequence relation on the universe Fm of

Fm, i.e. `S ⊆ P(Fm)×Fm satisfies the following conditions for all sets of

formulas Γ , ∆, every ϕ ∈ Fm and every substitution σ ∈ Hom(Fm,Fm):

1. If ϕ ∈ Γ , then Γ `S ϕ.

2. If Γ `S ϕ and for every ψ ∈ Γ , ∆ `S ψ, then ∆ `S ϕ.

3. If Γ `S ϕ, then σ[Γ ] `S σ(ϕ) (invariance under substitutions).

Conditions (1) and (2) yield that:

4. If Γ `S ϕ, then for any ψ, Γ ∪ {ψ} `S ϕ.

A logic S is finitary if the consequence relation `S is finitary, namely if for

every set of formulas Γ and every formula ϕ

5. if Γ `S ϕ, then ∆ `S ϕ for some finite ∆ ⊆ Γ .

A theory of a logic S, or S-theory, is a set of formulas that is closed

under the relation `S . An S-theory can be equivalently described as an

S-filter of the formula algebra. Let ThS be the set of theories of S. This

set is a closure system, i.e. it is closed under intersections of arbitrary

subfamilies3.

3If X is ranging in P(P(X)) for some set X, then we stipulate
⋂

X = X whenever

X = ∅.
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2.1 Referential semantics

An L-referential algebra is a structure F = 〈W,A〉 such that W is a non-

empty set and A is an L-algebra of subsets of W . The elements w in W are

called points, reference points, indices or states, etc. We say that 〈W,A〉

is a referential algebra based on W . Homomorphisms h ∈ Hom(Fm,A)

are called interpretations. For any point w ∈ W , a formula ϕ is true at w

under the interpretation h if w ∈ h(ϕ); otherwise, ϕ is false at w.

We present here Wójcicki’s characterization of selfextensional logics

with some detail since it is not widely known.

There are two substitution-invariant consequence relations on the L-

algebra of formulas Fm that are naturally induced by any L-referential

algebra F = 〈W,A〉: They are the local and the global consequences in-

duced by F , are denoted by `F and `g
F

respectively, and are defined by

the following clauses: for every set of formulas Γ and every formula ϕ,

Γ `F ϕ iff ∀h ∈ Hom(Fm,A),
⋂

ψ∈Γ

h(ψ) ⊆ h(ϕ);

Γ `g
F
ϕ iff ∀h ∈ Hom(Fm,A), if

⋂

ψ∈Γ

h(ψ) = W, then h(ϕ) = W.

Similarly, we define the local and global (substitution-invariant) consequence

relations on Fm, denoted `F and `g
F

respectively, for any class F of L-

referential algebras:

`F =
⋂

{ `F : F ∈ F} and `g
F

=
⋂

{ `g
F

: F ∈ F}.

We will see that selfextensional logics are exactly those that are de-

termined by the local consequences associated with classes of referential

algebras.

Proposition 2.1. For every class F of L-referential algebras, the local

logic SF = 〈Fm,`F〉 is selfextensional.

Proof. Let us denote `F simply by `. Assume that ϕ a` ψ. Then, for

every 〈W,A〉 ∈ F and every h ∈ Hom(Fm,A), h(ϕ) = h(ψ). Therefore,

for every variable p and every formula δ, h(δ(p/ϕ)) = h(δ(p/ψ)). Hence,

δ(p/ϕ) a` δ(p/ψ). 2

For every logic S of type L, an L-referential algebra F = 〈W,A〉 is

a local S-model if `S ⊆ `F , i.e, if Γ `S ϕ and h ∈ Hom(Fm,A) imply
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that
⋂
ψ∈Γ h(ψ) ⊆ h(ϕ). Similarly, F = 〈W,A〉 is a global S-model if

`S ⊆ `g
F

, i.e. if Γ `S ϕ, h ∈ Hom(Fm,A) and
⋂
ψ∈Γ h(ψ) = W imply that

h(ϕ) = W .

A class F of L-referential algebras is a complete local referential seman-

tics for a logic S of type L if `S = `F, and in this case we say that S admits

a complete local referential semantics. With these concepts at hand we can

state Wójcicki’s theorem:

Theorem 2.2 (Wójcicki). A logic S is selfextensional iff it admits a

complete local referential semantics.

Proof. Proposition 2.1 gives the implication from right to left. As for

the converse, let us assume that S is selfextensional, and base the canonical

referential algebra Fc on the set ThS of S-theories. Now notice that the

following clause

η(ϕ) = {T ∈ ThS : ϕ ∈ T}

defines a map η from Fm into the powerset of ThS.

Then Fc = 〈ThS, η(Fm)〉 is obtained by defining the algebra η(Fm)

of subsets of ThS as follows:

1. The carrier of η(Fm) is the set η[Fm] = {η(ϕ) : ϕ ∈ Fm}.

2. For every n-ary operation symbol ? of L, we set

?(η(ϕ1), . . . , η(ϕn)) = η(?(ϕ1 . . . ϕn)).

The selfextensionality of S guarantees that this definition is independent of

the choice of representatives, and so we also get that η∈Hom(Fm, η(Fm)).

We claim that `Fc
= `S . If Γ `Fc

ϕ, then
⋂
ψ∈Γ η(ψ) ⊆ η(ϕ). Let T =

CS(Γ ). Clearly T ∈
⋂
ψ∈Γ η(ψ), so T ∈ η(ϕ), hence Γ `S ϕ. Assume now

that Γ `S ϕ. Let h ∈ Hom(Fm, η(Fm)) and T ∈
⋂
ψ∈Γ h(ψ). For every

variable p, let δp ∈ Fm such that h(p) = η(δp), and let σ be the substitution

defined by σ(p) = δp for every propositional variable p. Then a proof

by induction shows that, for every formula δ, h(δ) = η(σ(δ)), therefore

T ∈
⋂
ψ∈Γ η(σ(ψ)), i.e. σ[Γ ] ⊆ T , and as the assumption Γ `S ϕ implies

that σ[Γ ] `S σ(ϕ), we get that σ(ϕ) ∈ T , i.e. T ∈ η(σ(ϕ)) = h(ϕ). This

proves that Γ `Fc
ϕ. 2
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Remark 2.3. We could have based the canonical referential algebra

of the proof above, instead of on the whole collection ThS of S-theories,

on one of the bases of ThS, i.e. on a smaller collection of S-theories that

generates ThS by closure under arbitrary intersections. Thus there are as

many canonical referential algebras as there are bases of ThS.

Since this paper is mainly focused on referential algebras as local S-

models, we will drop this adjective from now on. Sometimes we will refer

to referential algebras that are S-models as S-referential algebras.

2.2 Reduced Referential Algebras

For any referential algebra F = 〈W,A〉 the following clause

〈u, v〉 ∈ RF iff (∀X ∈ A)(u ∈ X ⇔ v ∈ X)

defines the equivalence relation RF on W that identifies the points of F

which can not be separated by elements of A. Then F is reduced if RF

is the identity relation on W . When this is the case, any two distinct

points of W can be separated by some element of A. This is analogous to

the separation property T0 of topological spaces or to the characterizing

property of differentiated general Kripke frames.

Any referential algebra F = 〈W,A〉 can be reduced, i.e. can be asso-

ciated with a reduced referential algebra that induces the same local and

global consequence relations as F , and that is obtained by identifying ele-

ments of W by the relation RF : indeed, if π is the projection map from W

onto W/RF , we can base a referential algebra F/RF on the quotient set

W/RF by endowing the set {π[X] : X ∈ A} with the algebraic structure of

type L inherited from A: if f ∈ L is n-ary,

fA/RF (π[X1], . . . π[Xn]) = π[fA(X1, . . . , Xn)]

for every X1, . . . , Xn ∈ A. This stipulation is sound because the definition

of RF easily implies that for every X,Y ∈ A, π[X] = π[Y ] iff X = Y .

Abusing of notation, we denote the algebra just defined by A/RF . It is easy

to see that the referential algebra F/RF = 〈W/RF ,A/RF 〉 so obtained is

reduced. F/RF will be called the reduction of F and sometimes will be

denoted by F∗.



REFERENTIAL SEMANTICS: DUALITY AND APPLICATIONS 73

Referential algebra morphisms

A morphism f : F1 −→ F2 between L-referential algebras is a set map

f ∈ Set(W1,W2) such that the assignment Y 7−→ f−1[Y ] defines a homo-

morphism f−1 ∈ Hom(A2,A1). A morphism f : F1 −→ F2 is strict if

A1 = {f−1[Y ] : Y ∈ A2}, i.e if f−1 ∈ Hom(A2,A1) is surjective.

For every algebraic similarity type L, the composition of composable

(strict) referential algebra morphisms is a (strict) referential algebra mor-

phism and the identity map is a strict referential algebra morphism. Hence

L-referential algebras and their morphisms form a category RAL, of which

referential algebras and strict morphisms form a subcategory sRAL. Re-

duced referential algebras of type L form a full subcategory RA∗
L of RAL.

Remark 2.4. The construction of F ∗ can be extended to a functor ( )∗ :

sRAL −→ RA∗
L: Indeed if f ∈ RAL(F1,F2) is strict, then the assignment

f∗([w]) = [f(w)] for every w ∈W1 defines a morphism f ∗ ∈ RA∗
L(F∗

1 ,F
∗
2 ).

Example 2.5. The notion of referential algebra, abstract as it is, is

very powerful and versatile, and can encode information of both algebraic

and topological nature: for example let us show how Priestley spaces, Stone

spaces and descriptive general frames can be encoded into this setting with-

out loss of information: Let L be the similarity type of bounded lattices.

The category Pri of Priestley spaces and continuous and monotone maps

is isomorphic to a full subcategory of RAL: indeed, for every Priestley

space H = 〈X,≤, τ〉, the collection CU(H) of the clopen up-sets of H is

a distributive lattice, so we can associate H with the referential algebra

FH = 〈X,CU(H)〉 which, by total order-disconnectedness, is reduced. Un-

der this assignment we get:

Pri(H1,H2) = RAL(FH1
,FH2

).

This identity says that the embedding of categories we defined is full. Con-

versely, for every reduced L-referential algebra F = 〈W,A〉 such that A is

a subalgebra of the powerset lattice P(W ), the triple 〈W,≤, τ〉, such that

≤ is the specialization order induced by A and τ is the topology obtained

by taking {Y, (W \ Y ) | Y ∈ A} as a subbase, is a Priestley space.

Now let L be the Boolean (BAO) similarity type. Like the previous

case, the category Stn (DGF) of Stone spaces and continuous maps (de-

scriptive general frames and p-morphisms) is isomorphic to a full subcate-

gory of RAL: indeed, for every Stone space X = 〈X, τ〉, (descriptive general
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frame X = 〈X,R, τ〉) the collection Cl(X ) of the clopen subsets of X is a

Boolean algebra (a BAO), so we can associate X with the referential alge-

bra FX = 〈X,Cl(X )〉 which, by total disconnectedness, is reduced. Under

this assignment we get:

Stn(X1,X2) = RAL(FX1
,FX2

) (DGF(X1,X2) = RAL(FX1
,FX2

)).

Conversely, for every reduced L-referential algebra F = 〈W,A〉 such

that A is a subalgebra of the Boolean algebra (BAO) P(W ), the structure

〈W, τ〉, such that τ is the topology obtained by taking {Y | Y ∈ A} as

a base, is a Stone space (that becomes a descriptive general frame when

augmented with the relation R defined by setting R[w] =
⋂
{U ∈ A | w ∈

2U} for every w ∈W ).

Some facts on morphisms of referential algebras are collected in the

propositions below. The proof of the first one is straightforward.

Proposition 2.6. If f ∈ RAL(F1,F2) is strict and F1 is reduced, then

f is injective.

Proposition 2.7. For every f ∈ RAL(F1,F2),

1. if f is strict, then `F2
⊆ `F1

;

2. if f is surjective, then `F1
⊆ `F2

and `g
F1
⊆ `g

F2
;

3. if f is strict and surjective, then `F1
= `F2

and `g
F1

= `g
F2

.

Proof. (1) Assume Γ `F2
ϕ, let h ∈ Hom(Fm,A1) and show that⋂

ψ∈Γ h(ψ) ⊆ h(ϕ). As f is strict, then f−1(A2,A1) is surjective, so there

exists h′ ∈ Hom(Fm,A2) such that h = f−1 ◦ h′. By assumption, we get

that
⋂
ψ∈Γ h

′(ψ) ⊆ h′(ϕ). Therefore,
⋂
ψ∈Γ f

−1[h′(ψ)] ⊆ f−1[h′(ϕ)], and

we obtain the desired result. (2) For every h ∈ Hom(Fm,A2), let h′ ∈

Hom(Fm,A1) be defined by h′ = f−1 ◦ h. If Γ `F1
ϕ, then

⋂
ψ∈Γ h

′(ψ) ⊆

h′(ϕ), hence
⋂
ψ∈Γ f

−1[h(ψ)] ⊆ f−1[h(ϕ)], and since f is onto A2, this

implies that
⋂
ψ∈Γ h(ψ) ⊆ h(ϕ), so Γ `F2

ϕ. As for the second part, if

Γ `g
F1

ϕ and h ∈ Hom(Fm,A2) such that h(ψ) = W2 for every ψ ∈ Γ ,

then h′(ψ) = f−1[h(ψ)] = f−1[W2] = W1, and so by assumption we get

that W1 = h′(ϕ) = f−1[h(ϕ)], which implies, by surjectivity, that W2 =

f [W1] = h(ϕ).
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The first part of (3) follows from (1) and (2). As for the second part,

we are only left to show that `g
F2
⊆ `g

F1
, so assume that Γ `g

F2
ϕ and

and h ∈ Hom(Fm,A1) such that h(ψ) = W1 for every ψ ∈ Γ . As f is

strict, then f−1(A2,A1) is surjective, so there exists h′ ∈ Hom(Fm,A2)

such that h = f−1 ◦ h′. Hence, W1 = f−1[h′(ψ)], and as f is surjective,

then W2 = f [W1] = h′(ψ) for every ψ ∈ Γ . By assumption this implies

that W2 = h′(ϕ), i.e. W1 = f−1[W2] = f−1[h′(ϕ)] = h(ϕ). 2

Corollary 2.8. For every logic S and every f ∈ RAL(F1,F2),

1. if f is strict and F2 is an S-model then F1 is an S-model;

2. if f is surjective and F1 is a (global) S-model then F2 is a (global)

S-model;

3. if f is strict and surjective, then F1 is a (global) S-model iff F2 is.

Proposition 2.9. For every referential algebra F , the local and global

consequence relations induced by F and by F/RF coincide, i.e. `F = `F/RF

and `g
F

= `g
F/RF

Proof. The canonical projection π from F onto its reduction F/RF is

a strict and surjective morphism. 2

3 Atlases

We are about to introduce the other type of model-structures for proposi-

tional logics that will be involved in the duality: For any algebraic similarity

type L, L-atlases are pairs A = 〈A,B〉 such that A is an L-algebra and B

is a family of subsets of the carrier A of A.

An L-atlas A = 〈A,B〉 induces the following substitution-invariant con-

sequence relation `A on the L-algebra of formulas Fm: for every set of

formulas Γ and every formula ϕ,

Γ `A ϕ iff ∀h ∈ Hom(Fm,A),∀X ∈ B if h[Γ ] ⊆ X, then h(ϕ) ∈ X.

Similarly, we can associate the following substitution-invariant consequence

relation `K on Fm with any class K of L-atlases:

`K =
⋂

{ `A : A ∈ K}.
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For every logic S of type L, an L-atlas A is an S-model if `S ⊆ `A, i.e.

if Γ `S ϕ, h ∈ Hom(Fm,A), X ∈ B and h(Γ ) ⊆ X imply that h(ϕ) ∈ X.

This is equivalent to saying that every element of B is an S-filter of A. So

A is an S-model iff B ⊆ FiSA. S is complete w.r.t. a class K of L-atlases if

`S = `K.

Remark 3.1. Every logic S is complete w.r.t. the class of atlases K =

{〈Fm,ThS〉}. This atlas is usually called the Lindenbaum generalized

matrix (or Lindenbaum atlas) of S. Any class of atlas-models of S that

includes 〈Fm,ThS〉 is a complete atlas semantics for S.

We already saw that every referential algebra can be reduced, i.e. can

be transformed into a reduced referential algebra that induces the same

local and global consequence relations on Fm. An analogous construction

can be performed on the atlas side: For any atlas A = 〈A,B〉, let the Frege

relation ΛA (or ΛA(B)) be the following equivalence relation on A:

〈a, b〉 ∈ ΛA iff (∀X ∈ B)(a ∈ X ⇔ b ∈ X).

If ΛA is a congruence, then we say that A is congruential, or that it sat-

isfies the congruence property, and if ΛA is the identity relation then A is

Frege-reduced (or simply reduced, when this is not ambiguous). So an atlas

〈A,B〉 is Frege-reduced iff any two distinct elements of the algebra can be

separated by an element of B, which is a separation property analogous to

the one satisfied by reduced referential algebras.

For every congruential atlas A, let π ∈ Hom(A,A/ΛA) be the canonical

projection. Then the reduction of A is the atlas

A
∗ = 〈A/ΛA,B/ΛA〉,

such that B/ΛA = {π[X] : X ∈ B}, and it is easy to see that it is Frege-

reduced.

Remark 3.2. If S is selfextensional, then the atlas 〈Fm,ThS〉 is con-

gruential. This implies that every selfextensional logic S is complete with

respect to the class of the reductions of its congruential atlas-models. The

reduction of 〈Fm,ThS〉 can be called the Lindenbaum-Tarski atlas of S.
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Atlas morphisms

A morphism h : A1 −→ A2 between atlases is a homomorphism h ∈

Hom(A1,A2) such that

{h−1[Y ] | Y ∈ B2} ⊆ B1.

An atlas morphism h : A1 −→ A2 is strict if B1 = {h−1[Y ] : Y ∈ B2}.

For every algebraic similarity type L, the composition of composable

(strict) atlas morphisms is a (strict) atlas morphism and the identity map

is a strict atlas morphism, hence L-atlases and their morphisms form a

category AtlL, of which atlases and strict morphisms form a subcategory

sAtlL. We will be mainly interested in the category CAL of congruential

L-atlases, and in its full subcategory CA∗
L of reduced congruential L-atlases.

Remark 3.3. Let sCAL be the category of congruential atlases and

strict morphisms. The construction of A
∗ can be extended to a functor ( )∗ :

sCAL −→ CA∗
L: Indeed if f ∈ CAL(A1,A2) is strict, then the assignment

f∗([a]) = [f(a)] for every a ∈ A1 defines a morphism f ∗ ∈ CA∗
L(A∗

1,A
∗
2).

Example 3.4. We saw that Pri,Stn and DGF can be embedded into

full subcategories of referential algebras: we can perform the analogous

move on the atlas side, by associating any object A in any of the categories

BDL, Bool and BAO, of bounded distributive lattices, Boolean algebras

and Boolean algebras with operators respectively, with the atlas AA =

〈A, P r(A)〉 (Pr(A) being the collection of the prime filters of the lattice-

reduct of A), which by Birkhoff-Stone theorem is Frege-reduced. Under

this assignment we get:

Hom(A1,A2) = CA∗
L(AA1

,AA2
).

Below we state some facts on atlas morphisms, that are similar to the

ones stated for referential algebra morphisms.

Proposition 3.5. If h ∈ AtlL(A1,A2) and A1 is Frege-reduced, then h

is injective.

Proposition 3.6. For every h ∈ AtlL(A1,A2),

1. if h is strict, then `A2
⊆ `A1

;
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2. if h is surjective, then `A1
⊆ `A2

;

3. if h is strict and surjective, then `A1
= `A2

.

Proof. (1) Assume Γ `A2
ϕ and let X ∈ B1 and g ∈ Hom(Fm,A1)

such that g[Γ ] ⊆ X. As h is strict, then X = h−1[Y ] for some Y ∈ B2,

and so h[g[Γ ]] ⊆ Y . By assumption, this implies that h(g(ϕ)) ∈ Y , i.e.

g(ϕ) ∈ h−1[Y ] = X. This proves that Γ `A1
ϕ. (2) Assume Γ `A1

ϕ and

let Y ∈ B2, g ∈ Hom(Fm,A2) such that g[Γ ] ⊆ Y . As h is surjective, there

exists g′ ∈ Hom(Fm,A1) such that g = h◦g′. Hence, g′[Γ ] ⊆ h−1[Y ] ∈ B1,

so by assumption, g′(ϕ) ∈ h−1[Y ], so g(ϕ) = h(g(ϕ)) ∈ Y . This proves that

Γ `A2
ϕ. (3) follows from (1) and (2). 2

Corollary 3.7. For every logic S and every h ∈ AtlL(A1,A2),

1. if h is strict and A2 is an S-model, then A1 is an S-model;

2. if h is surjective and A1 is an S-model, then A2 is an S-model;

3. if h is strict and surjective, then A1 is an S-model iff A2 is an S-

model.

Proposition 3.8. For every congruential atlas A, `A = `A∗.

Proof. The projection of A onto its reduction is strict and surjective.

2

On the preservation of the congruence property by atlas morphisms, we

have :

Proposition 3.9. For every h ∈ AtlL(A1,A2),

1. ΛA1 ⊆ h−1[ΛA2] or equivalently, h[ΛA1] ⊆ ΛA2;

2. if h is strict, then h−1[ΛA2] = ΛA1;

3. if h is strict and surjective, then A2 is congruential iff A1 is congru-

ential.

Proof. (1) If 〈a, b〉 ∈ ΛA1, then for any Y ∈ B2, h(a) ∈ Y iff a ∈ h−1[Y ]

iff b ∈ h−1[Y ] iff h(b) ∈ Y , i.e. 〈h(a), h(b)〉 ∈ ΛA2. (2) Let 〈a, b〉 ∈ h−1[ΛA2].

As h is strict, it is enough to show that for every Y ∈ B2, a ∈ h−1[Y ] iff

b ∈ h−1[Y ]. By assumption we get that 〈h(a), h(b)〉 ∈ ΛA2, hence for every
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Y ∈ B2, a ∈ h−1[Y ] iff h(a) ∈ Y iff h(b) ∈ Y iff b ∈ h−1[Y ]. (3) If ΛA2

is a congruence, then h−1[ΛA2] is a congruence, and as h is strict, then by

(2), ΛA1 is a congruence. Assume now that ΛA1 is a congruence. As h is

strict, then by (2), h−1[ΛA2] is a congruence. Using the assumption that h

is surjective, one verifies by direct computation that ΛA2 is a congruence.

2

4 Duality

Let us fix a similarity type L throughout the section (and drop the cor-

responding sub-indices). The aim of this section is to show that CA∗ (re-

duced congruential atlases) is dually equivalent to RA∗ (reduced referential

algebras), so in the next subsections we define the contravariant functors

( )+ : CA −→ RA and ( )+ : RA −→ CA, and show that the restrictions of

these functors to the respective subcategories of reduced objects establish

the duality. The back-and-forth correspondence for objects was already

noticed in [6].

4.1 The functor ( )+ : CA −→ RA

Let A = 〈A,B〉 be a congruential atlas. Then the referential algebra A+

will be based on B. Now notice that the clause

η(a) = {X ∈ B : a ∈ X}

defines a map η ∈ Set(A,P(B)). Then A+ = 〈B, η(A)〉 is obtained by

defining the algebra η(A) of subsets of B as follows:

1. the universe of the algebra η(A) is the set η[A] = {η(a) : a ∈ A}

2. for every n-ary symbol f ∈ L define the following n-ary operation on

η[A]:

fη(A)(η(a1), . . . , η(an)) = η(fA(a1, . . . , an))

for every a1, . . . , an ∈ A.

The assumption that A is congruential guarantees that the operation f η(A)

is well-defined for every f ∈ L. Moreover, the definition of η(A) guarantees

that the map η defines a surjective homomorphism η ∈ Hom(A, η(A)).

Proposition 4.1. For every congruential atlas A,
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1. A+ is a reduced referential algebra;

2. `A= `A+
;

3. For every logic S, A is an S-model iff A+ is an S-model;

4. if A is reduced, then η is an isomorphism between A and η(A).

Proof. The proof of (1) is immediate. To prove (2), assume first that

Γ `A ϕ. Let h ∈ Hom(Fm, η(A)) and X ∈ B such that X ∈
⋂
h[Γ ]. Since

η ∈ Hom(A, η(A)) is surjective, there exists h′ ∈ Hom(Fm,A) such that

h = η ◦ h′, so X ∈ η(h′(ψ)), for every ψ ∈ Γ . Hence h′[Γ ] ⊆ X, which

implies h′(ϕ) ∈ X and so X ∈ η(h′(ϕ)) = h(ϕ). This proves that Γ `A+
ϕ.

Assume that Γ `A+
ϕ. Let h ∈ Hom(Fm,A) and X ∈ B be such that

h[Γ ] ⊆ X. Then, X ∈
⋂
η[h[Γ ]], and as η ◦ h ∈ Hom(Fm, η(A)), then

X ∈ η(h(ϕ)); thus h(ϕ) ∈ X. This shows that Γ `A ϕ. (3) follows from

(2). As for (4), if A is reduced and a, b are distinct elements of A, then

they are separated by some element of B. Hence η is injective. 2

Let us define ( )+ on morphisms: by definition, if h ∈ Atl(A1,A2), then

h−1[Y ] ∈ B1 for every Y ∈ B2. So the assignment Y 7−→ h−1[Y ] defines a

set map h+ ∈ Set(B2,B1).

Remark 4.2. Clearly, if h ∈ Atl(A1,A2) and j ∈ Atl(A2,A3), then

(j ◦ h)+ = h+ ◦ j+ ∈ Set(B3,B1).

Proposition 4.3. For every h ∈ CA(A1,A2),

1. h+ ∈ RA∗((A2)+, (A1)+);

2. if h is surjective, then h+ is strict.

3. if h is strict, then h+ is surjective.

Proof. We claim that for every a ∈ A1,

(h+)−1[η(a)] = η(h(a)).

Indeed, for every X ∈ B1, X ∈ (h+)−1[η(a)] iff h+(X) ∈ η(a) iff a ∈ h−1[X]

iff h(a) ∈ X iff X ∈ η(h(a)).

(1) The claim implies that (h+)−1[η[A1]] ⊆ η[A2], and that for every

n-ary function symbol f in L and a1, . . . , an ∈ A1,
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(h+)−1[fη(A1)(η(a1), . . . , η(an))] = (h+)−1[η(fA1(a1, . . . , an))]

= η(h(fA1(a1, . . . , an))

= η(fA2(h(a1), . . . , h(an))

= fη(A2)(η(h(a1)), . . . , η(h(a1)))

= fη(A2)(h−1
+ [η(a1)], . . . , h−1

+ [η(a1)]).

Hence (h+)−1 ∈ Hom(η(A1), η(A2)).

(2) Assume that h is surjective, then for every b ∈ A2, b = h(a) for

some a ∈ A1, hence the claim implies that η(b) = η(h(a)) = (h+)−1[η(a)].

As η(b) for b ∈ A2 is the form of an arbitrary element of η(A2), this shows

that h+ is strict. (3) If h is strict and X ∈ B1, then X = h−1[Y ] = h+(Y )

for some Y ∈ B2. Thus h+ is surjective. 2

Corollary 4.4. For every h ∈ CA(A1,A2), if h is surjective, then h+

is injective.

Proof. By the proposition above, h+ is strict and (A2)+ is a reduced

referential algebra. Therefore, by Proposition 2.6, h+ is injective. 2

Recall that, for every congruential atlas A, A
∗ ∈ CA∗ is its Frege-reduction.

Corollary 4.5. For every congruential atlas A, A+ and (A∗)+ are iso-

morphic.

Proof. The projection atlas morphism π from A into A
∗ is strict and

surjective. Therefore, by the proposition and corollary above, π+ is surjec-

tive and one-to-one. Thus it is an isomorphism. 2

So the functor ( )+ : CA −→ RA and its restriction to CA∗ have the

same range (up to isomorphism).

4.2 The functor ( )+ : RA −→ CA

Let F = 〈W,A〉 be a referential algebra. Then the F+ is the atlas 〈A,W+〉

such that

W+ = {ε(v) : v ∈W} and for every v ∈W, ε(v) = {Y ∈ A : v ∈ Y }.

Proposition 4.6. For every referential algebra F ,

1. F+ is a Frege-reduced atlas;
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2. `F = `F+;

3. For every logic S, F is an S-model iff F+ is an S-model;

4. if F is reduced, then the map ε ∈ Set(W,W+) is bijective.

Proof. The proof of (1) is immediate. (2) Γ `F+ ϕ holds iff for every

h ∈ Hom(Fm,A) and every w ∈ W , if h[Γ ] ⊆ ε(w), then w ∈ h(ϕ). This

is equivalent to say that for every h ∈ Hom(Fm,A) and every w ∈ W , if

w ∈
⋂
h[Γ ], then w ∈ h(ϕ), i.e. that for every h ∈ Hom(Fm,A),

⋂
h[Γ ] ⊆

h(ϕ), i.e. that Γ `F ϕ. (3) follows from (2). (4) The map ε is clearly

surjective by definition. F is reduced means that any two distinct point

v, w are separated by some element of A, hence injectivity follows. 2

Remark 4.7. Item (2) of the proposition above implies that any ref-

erential algebra F = 〈W,A〉 is a model of a logic S iff ε(w) is an S-filter of

A for every w ∈W .

Let us define ( )+ on morphisms: by definition, if f ∈ RA(F1,F2), then

the assignment Y 7−→ f−1[Y ] defines f+ ∈ Hom(A2,A1).

Remark 4.8. If f ∈ RA(F1,F2) and g ∈ RA(F2,F3), then (g ◦ f)+ =

f+ ◦ g+ ∈ Hom(A3,A1).

Proposition 4.9. For every f ∈ RA(F1,F2),

1. f+ ∈ CA∗((F2)+, (F1)+);

2. if f is surjective, then f+ is strict;

3. if f is strict, then f+ is surjective.

Proof. We claim that, for every w ∈W1,

(f+)−1[ε(w)] = ε(f(w)) :

for every Z ∈ A1, Z ∈ (f+)−1[ε(w)] iff w ∈ f+(Z) iff w ∈ f−1[Z] iff

Z ∈ ε(f(w)).

(1) We saw that f+ ∈ Hom(A2,A1). Claim implies that (f+)−1[W+
1 ] ⊆

W+
2 , which concludes the proof.

(2) If f is surjective then every element in W2 is of form f(w) for some

w ∈ W1, and so by claim, every element in W+
2 is of form ε(f(w)) =

(f+)−1[ε(w)] for some w ∈W1, which proves that f+ is strict.



REFERENTIAL SEMANTICS: DUALITY AND APPLICATIONS 83

(3) If f is strict, then A1 = {f−1[X] : X ∈ A2} = f+[A2], i.e. f+ is

surjective. 2

Corollary 4.10. For every f ∈ RA(F1,F2), if f is surjective, then f+

is injective.

Proof. f+ ∈ CA((F2)+, (F1)+) is strict and (F2)+ is Frege-reduced,

hence by Proposition 3.5, f+ is injective. 2

Recall that for every referential algebra F , F ∗ ∈ RA∗ is its reduction.

Corollary 4.11. For every referential algebra F , F+ and (F∗)+ are

isomorphic.

Proof. The canonical projection π ∈ RA(F ,F ∗) is strict and surjective.

Then, by the proposition and corollary above, π+ ∈ CA((F∗)+,F+) is

surjective and injective, i.e. it is an iso. 2

So, similarly to ( )+, the functor ( )+ : RA −→ CA and its restriction to

RA∗ have the same range (up to isomorphism).

4.3 The duality theorem

The results in Subsections 4.1 and 4.2 establish, among other things, a

back-and-forth correspondence given by the contravariant functors

( )+ : CA∗ −→ RA∗ and ( )+ : RA∗ −→ CA∗.

The aim of this section is to show that

Theorem 4.12. CA∗ and RA∗ are dually equivalent categories through

( )+ and ( )+.

For every reduced referential algebra F = 〈W,A〉, the map εF ∈Set(W,W+)

is defined by putting, for every w ∈W ,

εF (w) = {Y ∈ A : w ∈ Y }.

For every reduced congruential atlas A = 〈A,B〉, ηA ∈ Hom(A, η(A)) is

defined by putting, for every a ∈ A,

ηA(a) = {X ∈ B : a ∈ X}.
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Recall that (F+)+ is the reduced referential algebra 〈W+, ηF+
(A)〉 such

that W+ = {εF (w) : w ∈ W} and the elements of ηF+
(A) are sets of the

form

ηF+(Y ) = εF [Y ] = {εF (w) : w ∈ Y },

for Y ∈ A.

Proposition 4.13. For every F ∈ RA∗, εF ∈ RA∗(F , (F+)+) is strict

and bijective. Hence F and (F+)+ are isomorphic.

Proof. As F is reduced, then εF is bijective. Let ε = εF and η = ηF+ .

Then, for every X ∈ A, ε−1[η(X)] = ε−1[ε[X]] = X.

So if we show that ε−1 ∈ Hom(η(A),A), then the claim would imply

that ε is strict and the proof will be complete. For every n-ary symbol f

and every X1, . . . , Xn ∈ A,

ε−1[fη(A)(η(X1), . . . , η(Xn))]

= ε−1[η(fA(X1, . . . , Xn))] (def. of f η(A))

= fA(X1, . . . , Xn)

= fA(ε−1[η(X1)], . . . , ε−1[η(Xn)]) (claim).

2

Proposition 4.14. For every A ∈ CA∗, ηA ∈ CA∗(A, (A+)+) is strict

and bijective. Hence A and (A+)+ are isomorphic.

Proof. As A is Frege-reduced, then ηA ∈ Hom(A, η(A)) is bijective.

Let ηA = η and εA+
= ε. For every X ∈ B, η−1[ε(X)] = X: indeed,

a ∈ η−1[ε(X)] iff η(a) ∈ ε(X) iff X ∈ η(a) iff a ∈ X. This implies that

η ∈ CA∗(A, (A+)+) and it is strict. 2

The following facts follow straightforwardly from the definitions involved.

They show that ε and η are the requiered natural transformations we need

to finish the proof of Theorem 4.14.

Proposition 4.15.

1. If f ∈ RA∗(F ,F ′), then for every w ∈W , (f+)+(ε(w)) = ε′(f(w)).

2. If h ∈ CA∗(A,A′), then for every a ∈ A, (h+)+(η(a)) = η′(h(a)).
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5 A characterization of fully selfextensional logics

The aim of this section is to obtain a characterization of fully selfextensional

logics within the selfextensional ones. To this purpose, we will apply the

duality in Section 4: for every logic S, we will consider a designated category

of atlases that is isomorphic to AlgS. Whenever S is fully selfextensional,

we will be able to apply the duality to this category, and obtain the desired

characterization.

Let us fix an algebraic similarity type L throughout this section and

drop any reference to it. Recall that AlgS is the class of algebras canoni-

cally associated with any logic S, and can be defined in several ways. In the

context of this paper we opt for one that involves the following remark: Ev-

ery algebra A can be endowed with an atlas structure A
S
A

= 〈A,FiSA〉, so

that A
S
A

is an S-model and is called the basic S-atlas on A
4. In general, for

an arbitrary logic S and any algebra A, the relation ΛA
S
A

is not necessarily

a congruence of A. However the greatest congruence of A that it is included

in it always exists. It is called the Tarski congruence of A
S
A

(cf. [9]). Actu-

ally, the Tarski congruence can be defined for any atlas A = 〈A,B〉 as the

greatest congruence of A that is included in ΛA, and as such, it is intrinsic

to A. If the Tarski congruence of an atlas A is the identity, then the atlas

is Tarski-reduced. Notice that for an arbitrary logic S there might exist

Tarski-reduced atlas-models of S that are not Frege-reduced. The class of

algebras AlgS is defined by:

AlgS = {A : 〈A,FiSA〉 is Tarski-reduced}.

The elements of AlgS are usually called S-algebras. Recall that a logic S is

fully selfextensional (or an fs-logic for short) if for every algebra A, ΛA
S
A

is

a congruence. This is equivalent to saying that for every A ∈ AlgS, A
S
A

is

Frege-reduced. So the distinction between the Tarski- and Frege- notions

drops for fs-logics. Recall also that every fs-logic is selfextensional. Given

an fs-logic S, consider the following full subcategories of RA and of CA

respectively:

RA∗
S reduced referential algebra S-models

CA∗
S reduced atlas S-models

BA∗
S reduced basic atlas S-models

4Structures of this kind are called basic full models in [10].
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Since being an S-filter is preserved under taking inverse images of algebra

homomorphisms, BA∗
S and AlgS (seen as a category) are isomorphic under

the assignments A 7−→ 〈A,FiSA〉 and 〈A,FiSA〉 7−→ A. Then, by the

Duality Theorem 4.12 restricted to BA∗
S , we get:

AlgS ≡ BA∗
S ≡op CS ,

for some full subcategory CS of RA∗
S . These remarks can be turned into a

characterization of fs-logics.

Theorem 5.1. A logic S is fully selfextensional iff a dual equivalence

can be established between AlgS and a full subcategory CS of RA∗
S in such a

way that the dual functor CS −→ AlgS is given by ( )+ composed with the

assignment 〈A,B〉 7−→ A.

Proof. The ‘only if’ direction is given by the discussion above. As for

the ‘if’ direction, the assumptions imply that for every algebra A ∈ AlgS,

there exists a family B of subsets of A such that 〈A,B〉 = F+ (up to

isomorphism) for some F ∈ CS ⊆ RA∗
S . As F is an S-model, so is 〈A,B〉,

i.e. B ⊆ FiSA, and as 〈A,B〉 is Frege-reduced, then so is 〈A,FiSA〉. This

shows that S is an fs-logic. 2

The two remaining subsections will be devoted to finding a characteri-

zation of CS , for every fs-logic S. The duality implies that the referential

algebras in CS are isomorphic to reduced referential algebras of the form

〈FiSA, η(A)〉, where η = η
AS

A

.

Before focusing on CS , we present a second characterization of fs-logics

among the selfextensional ones, which is given in Theorem 5.4 below. The

first part of the equivalence is an abstract representation theorem of AlgS

for every fs-logic S and will be highlighted in a separate theorem. We

will see that fs-logics are exactly those selfextensional logics for which this

representation theorem holds.

For every logic S, let us define

AlgRefS = {A : for some 〈W,A〉 ∈ RA∗
S},

i.e. AlgRefS is the class of the algebraic reducts of the reduced S-referential

algebras.

Remark 5.2. For every logic S, AlgRefS ⊆ AlgS.
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Proof. If 〈W,A〉 is a reduced S-referential algebra, then its dual

〈A,W+〉 is a reduced congruential S-atlas. Hence, W+ ⊆ FiSA and so

〈A,FiSA〉 is Frege-reduced, hence A ∈ AlgS. 2

We are ready to give the abstract representation theorem for fs-logics:

Theorem 5.3. For every fs-logic S, AlgS = I(AlgRefS).

Proof. One inclusion is implied by the remark above. As for the

converse inclusion, if A ∈ AlgS, by Theorem 5.1 there exists a family B of

subsets of A such that 〈A,B〉 = F+ (up to isomorphism) for some reduced

S-referential algebra F = 〈W,A′〉. Since A ∼= A′, and A′ ∈ AlgRefS, then

A ∈ I(AlgRefS). 2

The abstract representation theorem above can be strengthened to the fol-

lowing characterization of fs-logics:

Theorem 5.4. The following statements are equivalent for every logic

S:

1. S is fully selfextensional;

2. AlgS ⊆ I(AlgRefS);

3. AlgS = I(AlgRefS).

Proof. The abstract representation theorem gives that (1) implies (3),

so we are only left to show that (2) implies (1). If A ∈ AlgS, then by

assumption A ∼= A for some 〈W,A〉 ∈ RA∗
S . Then 〈A,W+〉 is a Frege-

reduced S-atlas, which implies that W+ ⊆ FiSA, hence Id ⊆ ΛA(FiSA) ⊆

ΛA(W+) = Id, and so, using the isomorphism A ∼= A, we conclude that

ΛA(FiSA) is the identity relation. This shows that S is an fs-logic. 2

5.1 Perfect S-referential algebras

The aim of this section is to characterize the category CS of Theorem 5.1 for

any fs-logic S. Our starting point is that for every fs-logic S and every alge-

bra A, the atlas A
S
A

= 〈A,FiSA〉 is congruential and so it can be associated

with the reduced referential algebra FA = FS
A

= (AS
A

)+ = 〈FiSA, η(A)〉.

Our next move will be defining perfect S-referential algebras as the abstract

versions of FA, and showing that the full subcategory PRAS ⊆ RA∗
S they
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form is dually equivalent to AlgS. This will provide the desired character-

ization of CS .

For every referential algebra 〈W,A〉, let ≤A be the specialization pre-

order on W induced by A:

w ≤A w′ iff for every U ∈ A, if w ∈ U , then w′ ∈ U,

Then, for every fs-logic S, an S-referential algebra F = 〈W,A〉 is perfect if

1. 〈W,≤A〉 is a complete lattice;

2. AF = A is an algebra of subsets of the form w↑ for some w ∈W ;

3. the set {w′ : w′↑ ∈ A} is join-dense in W , i.e. every w ∈ W is the

join of elements of {w′ : w′↑ ∈ A};

4. for every X ⊆ A and every w↑ ∈ A, if
⋂

X ⊆ w↑ then w↑ ∈ CA
S

(X ),

CA
S

(X ) being the least S-filter of A that includes X .

Condition (1) implies that any perfect S-referential algebra is reduced, so

perfect S-referential algebras form a full subcategory PRAS of RA∗
S . So, as

an immediate consequence of this remark, we get:

Lemma 5.5. For every perfect S-referential algebra F , AF ∈ AlgS.

Notice that an equivalent restatement of condition (3) is that for every

w ∈W ,

w =
∨

{w′ : w′ ≤ w and w′↑ ∈ A}.

It is well-known that for any logic S and every algebra A, the lattice

〈FiSA,⊆〉 is a complete lattice. Recall that η = η
AS

A

is defined by η(a) =

{F ∈ FiSA : a ∈ F} for every a ∈ A. For every algebra A, let CA

S
be the

closure operator associated with the closure system FiSA. So CA
S is the

closure operator of S-filter generation, i.e. for X ⊆ A, CA

S
(X) is the least

S-filter that includes X. Notice that, for every a ∈ A, η(a) = {F ∈ FiSA :

CA

S
(a) ⊆ F}. Thus η(a) is the principal filter of the lattice 〈FiSA,⊆〉

generated by CA

S
(a).

Lemma 5.6. For every logic S,

1. if 〈A,FiSA〉 is Frege-reduced, then for every X ∪ {a} ⊆ A,
⋂
η[X] ⊆ η(a) iff η(a) ∈ C

η(A)
S

(η[X]).
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2. For every F,G ∈ FiSA,

F ⊆ G iff (∀a ∈ A)(F ∈ η(a) ⇒ G ∈ η(a)).

Proof. (1) Assume that
⋂
η[X] ⊆ η(a). If F is an S-filter of η(A)

such that η[X] ⊆ F , then η−1[F ] is an S-filter of A such that X ⊆ η−1[F ],

hence η−1[F ] ∈
⋂
η[X], which implies by assumption that η−1[F ] ∈ η(a),

i.e. a ∈ η−1[F ], i.e. η(a) ∈ F . This proves the ‘only if’. Conversely,

assume that η(a) ∈ C
η(A)
S

(η[X]). If F ∈
⋂
η[X], then X ⊆ F , hence

η[X] ⊆ η[F ]. Since 〈A,FiSA〉 is Frege-reduced, then η ∈ Hom(A, η(A))

is an isomorphism, so η[F ] ∈ FiSη(A), which implies by assumption that

η(a) ∈ η[F ], so by injectivity of η we get a ∈ F , i.e. F ∈ η(a). (2) follows

immediately from the definition of η. 2

So the lemma above readily implies the following

Proposition 5.7. For every fs-logic S and every A ∈ AlgS, FA =

〈FiSA, η(A)〉 ∈ PRAS .

Proposition 5.8. For every F ∈ PRAS , ε ∈ PRAS(F ,FAF
) is an

isomorphism.

Proof. Lemma 5.5 implies that ε ∈ RA∗
S(F , (F+)+) is an isomorphism,

i.e. it is strict and bijective, so let us show that W + = FiSA. By definition,

F is an S-model and this implies that W+ is a set of S-filters of A. As

for the converse inclusion, let us show that, if F ∈ FiSA, then F = ε(w)

for w =
∨
{w′ ∈ W : w′↑ ∈ F}. Clearly F ⊆ ε(w). If v↑ ∈ ε(w), then

v ≤
∨
{w′ ∈ W : w′↑ ∈ F}, and this implies that

⋂
F ⊆ v↑. Then

condition (4) implies that v↑ ∈ CA
S

(F ) = F . 2

Theorem 5.9. For every fs-logic S, AlgS and PRAS are dually equiv-

alent.

Proof. The results above together with propositions 4.14 and 4.15

imply that the assignments 〈A 7→ FA;h 7→ h+〉 and 〈F 7→ AF ; f 7→ f+〉

establish a dual equivalence. 2

There is a family of well-known substructural and substructural-related

logics which includes the relevance logic R and  Lukasiewicz’s infinite-valued

logic, whose Hilbert-style formulations are not selfextensional, and so the
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theorem above is not directly applicable to their associated classes of alge-

bras: residuated lattices, MV-algebras, and so on. But every logic S in this

family is endowed with a fully selfextensional logic companion, that is a fully

selfextensional logic S ′ for which it holds in particular that AlgS ′ = AlgS

(see [13]), to which the theorem above applies, and so we obtain a dual-

ity between AlgS and the class of perfect referential algebras of its fully

selfextensional companion. If S is one of these logics, it has a conjunction

∧. Then the results in [13] imply that for every algebra A ∈ AlgS the set

of points of the corresponding perfect referential algebra is the set of all

∧-semilattice filters of A.

5.2 Topologizing S-filters

The discussion in the previous section can be specialized to the case in

which S is a finitary fs-logic. For any partially ordered set (poset for short)

〈X,≤〉, a subset Y of X is an up-set if for every a, b ∈ X, a ∈ Y and a ≤ b

imply that b ∈ Y .

An ordered topological space is a triple 〈X,≤,O〉 such that 〈X,≤〉 is a

poset and 〈X,O〉 is a topological space. Let OT be the category of ordered

topological spaces and continuous and order-preserving maps. Recall that

a Priestley space is an ordered topological space 〈X,≤,O〉 such that 〈X,O〉

is a Boolean (or Stone) space and the following total order-disconnectedness

condition holds: if x, y ∈ X and x 6≤ y, then there exists a clopen up-set V

such that x ∈ V and y 6∈ V .

For an arbitrary logic S and any algebra A ∈ AlgS, recall that η = η
AS

A

is defined by η(a) = {F ∈ FiSA : a ∈ F} for every a ∈ A. Then let

η(a)c = FiSA \ η(a), and define T as the topology on FiSA generated by

taking the following family as subbasic open subsets:

{η(a) : a ∈ A} ∪ {η(a)c : a ∈ A}.

Hence 〈FiSA,⊆, T 〉 is an ordered topological space.

It is well-known that for any finitary logic S and every algebra A, the

lattice 〈FiSA,⊆〉 is a complete algebraic lattice.

The following theorem is due to Czelakowski.

Theorem 5.10. If S is finitary, then for every algebra A the space

〈FiSA,⊆, T 〉 is a Priestley space.
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Proof. Clearly, every η(a) is a clopen up-set, hence total order-discon-

nectedness holds, for if F 6⊆ G, there exists a ∈ F \G and so F ∈ η(a) and

G 6∈ η(a). Let us show compactness. By Alexander’s subbase theorem it

is enough to show that any cover by elements of the subbase has a finite

subcover, so suppose for contradiction that

C = {η(a) : a ∈ I} ∪ {η(b)c : b ∈ J}

covers the space but has no finite subcover. This implies in particular that

I ∩ J = ∅. Let F = CS(J) ∈ FiSA; in order to complete the proof it is

enough to show that F ∩I = ∅, for this implies that F 6∈
⋃
C, contradicting

the assumption that C is a covering. Suppose that a ∈ F ∩ I and recall

that the finitarity of S implies that the consequence operation of S-filter

generation on A is finitary. So a ∈ CS(J) implies that a ∈ CS(J ′) for some

finite J ′ ⊆ J . The family {η(b)c : a ∈ J ′}∪ {η(a)} does not cover the space

because it is finite, so there exists G ∈
⋂
b∈J ′ η(b)∩η(a)c, which means that

J ′ ⊆ G and a 6∈ G, contradicting a ∈ CS(J ′) ⊆ G. 2

For every reduced referential algebra F = 〈W,A〉, consider the ordered

topological space XF = 〈W,≤A, TA〉 such that ≤A is the specialization

preorder on W induced by A and TA is the topology defined by taking the

family A ∪ {W \ U : U ∈ A} as a subbase. By definition, XF is totally

order-disconnected, and moreover,

RA(F1,F2) = OT(XF1
,XF2

).

Putting together all the results in this and the previous section, we

obtain:

Theorem 5.11. The finitary fs-logics are exactly those logics S such

that the referential algebras in PRAS satisfy the following conditions:

1. XF = 〈W,≤A, TA〉 is a Priestley space;

2. 〈W,≤A〉 is an algebraic lattice;

3. AF = A is an algebra of clopen subsets of form w↑ for some compact

w ∈W ;

4. the set {w′ : w′↑ ∈ A} is join-dense in W , i.e. every w ∈ W is the

join of elements of {w′ : w′↑ ∈ A};
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5. for every w1↑, . . . , wn↑, w↑ ∈ A, if
⋂n
i=1 wi↑ ⊆ w↑

then w↑ ∈ CA
S

(w1↑, . . . , wn↑).
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