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INVARIANCE AND SET-THEORETICAL
OPERATIONS IN FIRST ORDER

STRUCTURES

A b s t r a c t. We present a generalization of a theorem of Krasner

showing how to construct relations invariant by automorphisms of

a first order structure, by means of suitable set-theoretical opera-

tions.

.1 Introduction

M. Krasner [2], rightly considered a forerunner of the introduction of infini-

tary languages in model theory (Karp [1], Introduction), showed, in 1938,

how to generate all relations invariant under the action of the group of auto-

morphisms of a first order structure by means of set-theoretical operations

applied to the primitive elements of the structure.

Although Krasner, in his paper [2], makes no reference to infinitary lan-

guages, his set-theoretical operations are the interpretations of the syntactic
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rules of definition of formulas of a suitable infinitary language, as himself

recognized much latter (see [3] and the other papers in the references).

However, his operations are neither easily described nor very manageable.

A significant feature of this work is the introduction of two natural

operators (operators ξ∗ and (ξ∗)−1, section 2) on relations of a first or-

der structure. These operators are not the immediate interpretation of the

syntactic rules of definition of formulas but they behave very nicely with re-

spect to composition and extensions to relations of bijections of the domain

of the structure. Relying on these nice algebraic properties we substantially

simplified and conceptually improved Krasner’s arguments. We consider,

in the universe Uµ(D) (section 2), relations whose arities are infinite or-

dinals. This is not an empty generalization; for instance, we are able to

give a smaller bound than Krasner’s to the arity µ of the universe Uµ(D)

where one has to operate in order to construct all invariant relations. If d

is the power of the domain D, for Krasner µ is the first cardinal greater

than d whereas for us it is the ordinal d + 2 (theorem 3.3). On the other

hand, proves are exactly the same whether arities are cardinals or ordinals

numbers.

.2 The closure of first order structures

Given a nonempty set D and an ordinal γ, a γ-tuple of elements of D is a

map from γ into D. The set of all γ-tuples of elements of D will be denoted

by Dγ . A γ-ary relation of elements of D is a subset of Dγ . Let µ be an

infinite ordinal and let Uµ(D) be the set of all γ-ary relations of D for all

γ < µ.

A first order structure of arity µ is a triple E = 〈D,µ,R〉 where R is

a subset of Uµ(D) which contains the diagonal ∆ of D2. The elements of

R are the primitive relations of the structure and Uµ(D) is the universe of

E. We shall refer to elements of Dγ as points of arity γ of E.

Let A,B and D be sets and let ξ : A → B be any map. ξ induces

in a natural way a map ξ∗ : DB → DA. By definition, if f ∈ DB, then

ξ∗(f) = f ◦ ξ. Let ℘(DA) and ℘(DB) be the power sets of DA and DB ,

respectively. We shall denote with the same notation ξ∗ the extension of

the map ξ∗ : DB → DA to the power sets ℘(DB) and ℘(DA), and we

shall write ξ∗ : ℘(DB) → ℘(DA). Moreover, (ξ∗)−1 : ℘(DA) → ℘(DB)
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denotes the usual inverse map of ξ∗ : DB → DA. If η maps B into C, then

(η ◦ ξ)∗ = ξ∗ ◦ η∗ and if ξ is a bijection, then ξ∗ is also a bijection and

(ξ∗)−1 = (ξ−1)∗. In most cases, A and B will be ordinal numbers δ and γ

and ξ∗ will map points of Dγ into points of Dδ.

For each ordinal γ < µ, let Cγ : ℘(Dγ) → ℘(Dγ) be the map which

maps R ∈ ℘(Dγ) into its complement with respect to Dγ , i.e., Dγ \ R.

Corresponding to all possible choices of δ, γ < µ, let K be the set of all

maps ξ∗, (ξ∗)−1 and Cγ , where ξ is any map from δ into γ.

Definition 2.1. We say that a set of relations S ⊆ Uµ(D) is E-closed

if:

1) R ⊆ S;

2) For all R ∈ S and f ∈ K such that f(R) is defined, f(R) ∈ S;

3) If S′ is a subset of S, then
⋂

S′ ∈ S.

The set of subsets of Uµ(D) which are E-closed is not empty because

Uµ(D) is E-closed. Hence, we may define the closure of E, denoted by Ê,

to be the intersection of all E-closed subsets of Uµ(D).

If S is E-closed and S′ ⊆ S is a subset of relations of same arity γ, then

the conditions Cγ ∈ K and (3) above implie that
⋃

S′ ∈ S.

Let γ < µ be an ordinal and let P = (Pk)k∈I be a partition of γ, that

is,
⋃

k∈I Pk = γ and Pk ∩ Pk′ = ∅, if k 6= k′. We denote by D(P) the set of

points p ∈ Dγ such that p(i) = p(j) for all i, j ∈ Pk and for all k ∈ I. We

say that D(P) is the diagonal of Dγ defined by the partition P. Similarly,

we define D̄(P) to be the set of points p ∈ Dγ such that p(i) 6= p(j) for all

i ∈ Pk and j ∈ Pk′ and all k, k′ ∈ I, k 6= k′.

Proposition 2.2. D(P), D̄(P) ∈ Ê.

Proof. Let ∆ be the diagonal of D2 and let ∆̄ = C2(∆). For i, j ∈ γ,

i < j let ξij : 2 = {0, 1} → γ be the map ξij(0) = i, ξij(1) = j. Then, D(P)

is the intersection of the sets (ξ∗ij)
−1(∆) for all i, j ∈ Pk and for all k ∈ I.

Similarly, D̄(P) is the intersection of all sets (ξ∗ij)
−1(∆̄) for all i ∈ Pk and

j ∈ Pk′ and all k, k′ ∈ I, k 6= k′. Since, by definition of E, ∆ ∈ R, it follows

from the definition of Ê that D(P), D̄(P) ∈ Ê. �



210 A. A. M. RODRIGUES, R. C. M. FILHO AND E. G. DE SOUZA

.3 Invariant relations and the closure of E

Any map g : D → D extends naturally to a map gγ : Dγ → Dγ , p 7→

gγ(p) = g ◦ p. This last map extends itself to a map from ℘(Dγ) into

℘(Dγ). We shall use the same notation to denote the extended map. If

h : D → D is another map then, (g ◦ h)γ = gγ ◦ hγ and, if g is a bijection,

(g−1)γ = (gγ)−1.

An automorphism of E is a bijection g : D → D such that for any

primitive relation R ∈ R of arity γ, gγ(R) = R. Let G be the group of

automorphisms of E. An invariant relation of E is a relation R ∈ Uµ(D)

which is kept fixed by G, that is, gγ(R) = R for all g ∈ G, γ being the

arity of R. By definition, the primitive relations are invariant. We denote

by I(E) the set of invariant relations of E.

Proposition 3.1. For any maps ξ : δ → γ and g : D → D, we have

that

gδ ◦ ξ∗ = ξ∗ ◦ gγ .

Proof. The proposition is an immediate consequence of definitions. �

Proposition 3.2. Ê ⊆ I(E).

Proof. It suffices to show that I(E) is E-closed. By definition, R ⊆

I(E), and it is trivial to verify that I(E) is closed under action of all maps

Cγ , γ < µ, and also that it is closed under the intersection of subsets of

I(E). That I(E) is closed under the actions of ξ∗ and (ξ∗)−1 follows from

proposition 3.1. �

Our next theorem shows that, for sufficiently large µ, all invariant re-

lations belong to the closure Ê.

Theorem 3.3. Let δ be the cardinal of D and assume µ ≥ δ+2. Then,

Ê = I(E).

The proof of theorem 3.3 is made clearer introducing previously 3 lem-

mas.

Lemma 3.4. Assume µ ≥ δ + 2 and let N1, N2, N be the sets of points

p ∈ Dδ such that the map p : δ → D is respectively injective, surjective and

bijective. Then, N1, N2, N ∈ Ê and N 6= ∅.
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Proof. Let P = (Pi)i∈δ be a partition of δ such that Pi = {i} for all

i < δ. Then, N1 = D̄(P). Hence, by proposition 2.2, N1 ∈ Ê.

Consider now the partition P′ = (P′

i)i<2 of δ+1 where P′

0 = δ,P′

1 = {δ}

and let ξ be the map ξ : i ∈ δ 7→ i ∈ δ + 1. We shall prove that:

N2 = Cδξ
∗(D̄(P′)).

In fact, p ∈ D̄(P′) if and only if p(i) 6= p(δ + 1) for all i ∈ δ. Hence,

ξ∗(D̄(P′)) is the set of p ∈ Dδ for which there exists a ∈ D and i ∈ δ with

p(i) 6= a. Therefore, Cδξ
∗(D̄(P′)) is the set of p ∈ Dδ for which, for all

a ∈ D, there exists i ∈ δ such that p(i) = a. This proves our assertion. It

follows that N2 ∈ Ê. Finally, N = N1 ∩ N2 ∈ Ê. Since δ is the cardinal of

D, there exists a bijection from δ onto D. Hence, N 6= ∅. �

Lemma 3.5. Let q ∈ N be a point and let R ∈ Ê be a relation of arity

γ. There exists a relation MR ∈ Ê of arity δ such that for every bijection

g : D → D, gδ(q) ∈ MR ⇔ gγ(R) ⊆ R.

Proof. For every point p ∈ R there exists a map ξ : γ → δ such that

ξ∗(q) ∈ R. In fact, it is enough to take ξ = q−1 ◦ p. Let ΘR be the set of

all maps ξ : γ → δ such that ξ∗(q) ∈ R and define:

MR =
⋂

ξ∈ΘR

(ξ∗)−1(R).

By definition, MR ∈ Ê and, by proposition 3.1,

gδ(q) ∈ MR ⇔ ∀ξ ∈ ΘR(gδ(q) ∈ (ξ∗)−1(R))

⇔ ∀ξ ∈ ΘR(ξ∗(gδ(q)) ∈ R)

⇔ ∀ξ ∈ ΘR(gγ(ξ∗(q)) ∈ R)

⇔ gγ(R) ⊆ R.

This completes the proof. �

Lemma 3.6. For every point q ∈ N , the orbit Oq of q in Dδ, with

respect to the group of automorphisms G, belongs to Ê.

Proof. If R is a relation of arity γ, let us denote by R′ its complement

in Dγ and consider the relation:

M =
⋂

R∈R

MR ∩
⋂

R∈R

MR′ ∩ N.
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By lemmas 3.4 and 3.5, M ∈ Ê. We shall show that M = Oq. Let

g : D → D be a bijection. Since gδ(q) clearly belongs to N , by lemma

3.5, gδ(q) ∈ M if and only if for all R ∈ R of arity γ, gγ(R) ⊆ R and

gγ(R′) ⊆ R′. Since gγ : Dγ → Dγ is a bijection, the last assertion is

equivalent to gγ(R) = R for all R ∈ R of arity γ. Hence, gδ(q) ∈ M if and

only if g ∈ G. Moreover, for every p ∈ M , the bijection g = p◦q−1 : D → D

is such that g ∈ G and gδ(q) = p. Therefore, M is the orbit of q in Dγ . �

Proof of theorem 3.3. Since every invariant relation R is the union

of orbits of G, it is enough to prove the theorem when R is an orbit of G.

Let R be an orbit of arity γ and let q ∈ N . Then, for ξ ∈ ΘR and for g ∈ G,

ξ∗(gδ(q)) = gγ(ξ∗(q)). Hence, ξ∗(Oq) = R. Theorem 3.3 follows now from

lemma 3.6 and the definition of Ê. �
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[7] M. Krasner, Polythéorie de Galois abstraite dans le cas infini general, Ann. Sci.

Clermont, Sér. Math., fasc 13, (1976), pp. 87–91.



INVARIANCE AND SET OPERATIONS IN FIRST ORDER STRUCTURES 213

University of São Paulo

Department of Mathematics

aamrod@terra.com.br

Federal University of Bahia

Department of Physics

University of São Paulo

Department of Philosophy

ricmir@ufba.br

Pontifical Catholic University of São Paulo

Program of Graduated-Studies in Philosophy

Department of Philosophy

edelcio@pucsp.br


