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A NOTE ON TRANSITIVE SETS WITHOUT
THE FOUNDATION AXIOM

A b s t r a c t. We construct a model of set theory without

the foundation axiom in which there exists a transitive set whose

intersection is not transitive.

.1 Introduction

We say that a set A is transitive if it satisfies condition ∀x, y x ∈ y ∈ A ⇒

x ∈ A. This is obviously equivalent to
⋃

A ⊆ A. Transitive sets are a

fundamental notion for axiomatic set theory (see [2]).

The Foundation Axiom (sometimes called the Axiom of Regularity) is

the following statement

∀x 6= ∅ ∃y ∈ x x ∩ y = ∅.
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It is immediate from the definition, that for every transitive set A also
⋃

A is transitive. One could think that for a nonempty transitive set A

also its intersection, i.e.

⋂

A = {x ∈
⋃

A : ∀y ∈ A x ∈ y},

is transitive. This easily follows from the Foundation Axiom, because this

axiom implies that, whenever A 6= ∅ is transitive, ∅ ∈ A. Then, for every

nonempty transitive set A,
⋂

A is empty, thus transitive. The purpose of

this note is to show that the Foundation Axiom is essentially needed in

this proof, i.e. that the assertion does not follow from the other axioms of

Zermelo–Fraenkel set theory.

The interest in this particular question is motivated by the fact, that

in [1] the task of showing that the intersection of every transitive set is

transitive is given to the reader as an exercise (ex. 2.4d, ch. 7), without

mentioning the Foundation Axiom as one of the axioms of set theory.

Most of the set-theoretic notation used in this paper is standard and

can be found in [2]. The symbol ω denotes the set of natural numbers. We

identify the natural number n with the set of the natural numbers smaller

than n. In particular, n < m ⇔ n ∈ m ⇔ n ( m and n ≤ m ⇔ n ⊆ m.

By ZFC− we denote the Zermelo–Fraenkel set theory with the Axiom of

Choice, but without the Foundation Axiom. Whenever we speak about a

model of ZFC−, we mean a set M with a binary relation E satisfying the

axioms of ZFC−. We will deal mainly with non-standard models, which

means that E is not a restriction of “true membership relation” ∈ to M .

Some ambiguities may be caused by the fact that we will consider

models of set theory sharing the same universe but with different mem-

bership relations. We will use the following convention concerning de-

fined notions. When we deal with structures M = 〈M,E〉 and M′ =

〈M,E′〉 and a defined notion such as ω (i.e. the first non-zero limit or-

dinal), we use symbol ωM to denote such an element x ∈ M that M |=

“x is the first non-zero limit ordinal”. Similarly, ωM
′

denotes the element

of M satisfying the definition of ω interpreted with respect to E ′. Analo-

gous superscript notation is used for other defined notions, such as pairs,

etc.
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.2 The result

First, let us remind an old technique of consistency proofs concerning the

axiom of foundation. The following theorem can be found in [2].

Theorem 2.1. Suppose that M = 〈M,E〉 is a model of ZFC−. Let

F : M −→ M be a bijection definable in M, i.e. a bijection from M to M

such that

∀x, y ∈ M (y = f(x) ⇔ M |= ϕ(x, y))

for some formula ϕ of language of set theory. Define E ′ ⊆ M × M by

xE′y ⇔ xEf(y).

Then

M′ = 〈M,E′〉 |= ZFC−.

The following theorem is the main result of this paper.

Theorem 2.2. Assume Con(ZFC−). Then

Con
(

ZFC− + “there exists a transitive set

whose intersection is not transitive”
)

.

Proof. Assume Con(ZFC−); let M = 〈M,E〉 be a model of ZFC−. Let

ϕ(x, y) be the formula which says

y =



































x + 2 if x ∈ ω,

0 if x = ω + 1,

1 if x = ω + 2,

x − 2 if ω + 3 ≤ x < ω + ω,

x otherwise.

Define f : M −→ M as follows:

y = f(x) ⇔ M |= ϕ(x, y). (2.1)

Clearly f is a function and it is definable in M , because we have just written

its defininition. It is also easy to see that f is a bijection. Thus, working
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in V, we may define E ′ by the formula xE ′y ↔ xEf(x). From theorem 2.1

we obtain

M′ = 〈M,E′〉 |= ZFC−. (2.2)

Obviously, in M we have the element ωM ∈ M such that M |= “ωM is

the first non-zero limit ordinal”. We will show that

M′ |= ”ωM is transitive” (2.3)

but

M′ |= ”(
⋂

ωM) is not transitive”. (2.4)

Observe that f(ωM) = ωM and for n ∈ M we have nEωM ⇒ f(n)EωM.

We will check that ωM is transitive in M′. First observe that, as f(ωM) =

ωM, E′-elements of ωM are precisely E-elements of ωM. Now, if M′ |= x ∈
⋃

ωM then there exists n ∈ M such that nE ′ωM and xE′n. This means

that nEωM and xEf(n). But then f(n)EωM and from the transitivity of

ωM in M we get that xEωM; equivalently, xE ′ωM. Thus

M′ |=
⋃

ωM ⊆ ωM, (2.5)

which precisely means that

M′ |= ”ωM is transitive”. (2.6)

Now we will compute
⋂

ωM in M′. First observe that M′ |= 0M ∈ ωM.

This ensures that ωM is not equal to ∅M
′

, so our computation makes sense.

We are looking for the elements of M which are in E ′-relation with

every E′-member of ωM. We easily get that

M′ |=
⋂

ωM = {0M, 1M}. (2.7)

Statement 2.7 may require some additional explanation. It may be

unclear what we mean by {0M, 1M} because the meaning of {x, y} depends

on the membership relation being considered. The formula 2.7 is intended

to say: 0M, 1M are the only elements, which are in relation E ′ with all

E′-elements of ωM.

We will now check that {0M, 1M}M
′

is not transitive in M′. Observe

that we have 2ME′1M, because f(1M) = 3M and 2ME3M. Thus

M′ |= 2M ∈
⋃

{0M, 1M}. (2.8)
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On the other hand,

M′ |= 2M 6∈ {0M, 1M} (2.9)

because 2M 6= 0M and 2M 6= 1M. This finishes the proof. �

.3 A note added in proof

Anna Wojciechowska pointed to us that the existence of a transitive set

whose intersection is not transitive follows also from the existence of a set

C such that C = {C, {C}} and C 6= {C}. To construct a model with such

a set one can employ the same technique of constructing ill-founded models

of set theory as we used in our proof.
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