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Roland HINNION

INTENSIONAL POSITIVE SET THEORY

A b s t r a c t. This paper shows that, via a simple kind of forcing,

one can construct a pure term model for intensional positive set

theory, where sets are defined by positive formulas and identifica-

tions are ruled by equivalence of the defining formulas. Further

one can also construct a model that “contains ZF".

.1 Introduction

Positive set theory is at present a subject on its own, from the initial work

of R.J. Malitz [16], to the further developments including topological models

[6], [7], and very strong variants, in particular Esser’s theory GPK+
∞ where

the class of all well-founded sets interprets ZF [3], [4].

In another direction, namely in languages allowing terms, does positive set

theory appear as a weakening of partial set theory, linked to the concept

of partial information; this actually follows the line initiated in Gilmore’s
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pioneer work [8], [11], [15].

The fact that this presents incompatibilities with extensionality appeared at

once [8], [11].

More recently Gilmore himself prefered the λ-calculus approach, with very

convincing arguments in favour of intensionality in place of extensional-

ity [9], [10].

This paper shows that intensional worlds modelizing positive set theory are

possible. In the models constructed here, every element (set) has a name

(this name is a term, actually a generalized term in those models that “con-

tain ZF"), and this name reveals the “meaning" of that set. Further the

identification process of terms is ruled by intensionality rather than by ex-

tensionality, i.e. two sets will be equal if they have “reasonably" the same

meaning (naturally this will be made precise).

In [14] we suggested that alternative set theories should be modelisable in

reasonable extensions of ZF , and also allow models where some transitive

class (or even set) interprets ZF . This is indeed the case here : we get a

true pure term model for intensional positive set theory; and a (generalized)

term model containing ZF (in the sense of [12], [14]), this time modulo the

assumption of the existence of an uncountable inaccessible cardinal. Re-

spectively the consistency of the concerned theories can actually be deduced

from the known consistency results for GPK and GPK+
∞ [4], [6], but the

difference is that the models here are term models (sometimes generalized

term models), and that, in the second case, the price to pay concerns an

uncountable inaccessible cardinal instead of an uncountable weakly compact

cardinal (as in [4], [6]).

In order to separate the different problems, the paper is structured like this :

• section 2 is devoted to the description of the theories that we want to

modelize, and motivates the choice of the kind of involved language,

• section 3 explains the construction of a pure term model, satisfying

abstraction and intensionality,

• section 4 shows how one can get an analogue model of generalized

terms, where some transitive set interprets ZF (modulo the assump-

tion of the existence of an uncountable inaccessible cardinal),

• section 5 mentions further links with “partial information".
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Our metatheory will be ZF , i.e. Zermelo-Fraenkel with the axiom of choice,

enriched (in section 4 only) with a large cardinal assumption.

.2 Abstraction and intensionality

L will denote the usual first-order set-theoretical language, with primitive

symbols ∈ and =.

Lτ is the stronger language, using ∈ and =, but also the abstractor { | }; Lτ

is built up via the following rules :

1. any variable (the variables will be letters x, y, z, . . .) is a positive

term,

2. if τ, τ ′ are positive terms (we will use τ, τ ′, τ ′′, . . . for terms), then

τ ∈ τ ′, τ = τ ′ are positive formulas

3. if ϕ, ψ are positive formulas, then so are ϕ∨ψ, ϕ∧ψ, ∃x ϕ, ∀x ϕ,

4. ⊥, > (respectively “false" and “true") are positive formulas,

5. if ϕ is a positive formula, then {x|ϕ} is a positive term,

6. if ϕ is a formula, then so is ¬ϕ (¬ is the negation symbol).

Notice that we allow “general" formulas, but only positive terms. Actually

is L the fragment of Lτ obtained by just renouncing to the abstraction, i.e.

to rule 5. The “natural" behaviour of (positive) sets in a langage L with

abstractor is ruled by the “abstraction scheme for L" :

Abst(L) : ∀~y ∀x (x ∈ {t|ϕ(t, ~y)} ↔ ϕ(x, ~y)),

for any positive formula ϕ(x, ~y) in L.

While the “natural" behaviour of (positive) sets, in the first-order language

L, is ruled by the usual “comprehension scheme" :

Comp(L) :

∀~y ∃z ∀x (x ∈ z ↔ ϕ(x, ~y)),

for any positive formula ϕ(x, ~y) in L (where z is not free in ϕ).

Naturally: ~y represents some n-tuple of variables y1, y2, . . . , yn;

ψ(v1, v2, . . . , vk) indicates that any free variable of ψ is in the list v1, v2, . . .,vk;
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the free variables of a term {x|ϕ} are those of ϕ, minus “x"; a sentence is a

formula without free variables; a closed term is a term without free variables.

Now is it known since [11] that Abst(Lτ ) disproves the extensionality axiom

EXT :≡ ∀x∀y((∀t(t ∈ x↔ t ∈ y)) → x = y).

The reader can easily check this by reproducing Russell’s paradox for the

term R := {x|{t|x ∈ x} = {t|⊥}}, in the theory Abst(Lτ )+ EXT.

So it is natural to try to see what happens if one assumes “intensionality"

instead of EXT. The idea is that we expect terms, say {x|ϕ(x)} and {x|ψ(x)},

to be equal whenever the formulas ϕ(x) and ψ(x) are “equivalent". But

what does “equivalent" mean ? One should reasonably at least expect that

logically equivalent formulas are “equivalent" in that sense. But one can

further imagine arguments in favour of “equivalence" in the style :

Γ ` ∀x(ϕ(x) ↔ ψ(x)),

for some theory Γ.

Now there are surely natural such Γ’s, inspired by the “partial information"

point of view (see also section 5).

Indeed : if we think about a positive term {x|ϕ(x)} as being the possibly

incomplete, but reliable list of those objects x that satisfy ϕ(x), we will at

least expect the following condition of “pre-abstraction" to be fulfilled :

∀z(z ∈ {x|ϕ(x)} → ϕ(z)).

So a kind of “minimal" Γ0 could just be this scheme, and the corresponding

intensionality rule would then be :

Γ0 ` ∀x(ϕ(x) ↔ ψ(x))

{x|ϕ(x)} = {x|ψ(x)}
.

It should be noticed that intensionality, in place of extensionality, is not in

itself a guarantee against paradoxes. For example, Abst(Lτ ) is incompatible

with the intensionality rule where Γ is Abst(Lτ ) itself. Indeed : consider

the same term R as before. One can easily check that Γ ` R ∈ R ↔ ⊥,

so that via this intensionality rule, one gets {x|R ∈ R} = {x|⊥}, and then

via abstraction : R ∈ R, precisely contradicting {x|R ∈ R} = {x|⊥} ! The

problem clearly arises from the possibility of abstracting on free variables in

proper terms (i.e. terms that are not just variables); also is quantification
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on such free variables “dangerous", as it allows to pass round the previous

interdiction, with “tricks" like :

{x|∃y(y = x ∧ {t|y ∈ y} = {t|⊥})}.

The weaker language L? that we propose precisely takes that in account.

Definition 2.1. L? is the fragment of Lτ where one forbids abstraction

and quantification on free variables in proper terms (in the formulas, as

well as in the positive terms).

Comments: While L? is still closed for sub-formulas and sub-terms,

one has to be more careful for replacement of free variables by proper terms,

that is now only allowed if the free variables in those replacing terms stay

free, i.e. don’t become abstracted or quantified. Remember also that only

positive terms are admitted.

L? is obviously “in between" L and Lτ , and actually very close to L, in the

following sense : whenever we have a model for Comp(L), we can see it also

as a model for Abst(L?), just by interpreting (inductively) the terms (via

the axiom of choice in our metatheory).

Notice further that, when EXT is assumed, this interpretation already holds

in the theory itself.

We are able now to discuss the construction of a pure term model for

Abst(L?), satisfying an adequate intensionality rule.

.3 A pure term model

We call Ω the set of all closed positive L?-terms. Actually one can as well

construct Ω inductively :

Ω0 :={{x|ψ(x)}
∣

∣ ψ(x) is a positive L-formula}

Ωk+1 :={{x|ψ(x,~b)}
∣

∣ ψ(x, ~y) is a positive L-formula and each bi is in Ωk}

Ω:=Ωω, i.e.
⋃

k∈ω

Ωk

Obviously is (Ωk)k∈ω an increasing chain for ⊂. We will use letters a, b, c, . . .

for elements of Ω, except when we want to “look inside" them, in which case

we will prefer τ , τ ′, τ ′′,. . . Each τ in Ω is of type {x|ψ(x,~b)}, with ~b in Ω and
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ψ(x, ~y) a positive L-formula; further is ψ(x,~b) a positive L-formula that we

will denote, for convenience : ϕτ (x).

All the models considered in this section will have Ω as universe, so will be

of type : (Ω,∈M ,=M ), where M is the name of the model and ∈M , =M are

binary relations on Ω.

The abstraction scheme that we want to modelize is Abst(L?); as Ω is only

made of closed positive terms, it is clear that we just have to modelize

“abstraction without parameters" :

Abst0(L
?) : ∀x(x ∈ τ ↔ ϕτ (x)), for each τ in Ω.

The same remark applies to “pre-abstraction".

Further we will denote “Congr(=)" the first-order axiom expressing that =

is a congruence for L, i.e. that = is an equivalence relation satisfying L-

substitutivity (as is well-known, it suffices to ask, for this last part : (x =

x′ ∧ y = y′ ∧ x ∈ y) → x′ ∈ y′).

We will restrict our attention to admissible models, i.e. those that satisfy

Preabst(L?) and Congr(=), where Preabst(L?) is the scheme :

∀~y ∀x(x ∈ {t|ψ(t, ~y)} → ψ(x, ~y)),

for any positive L?-formula ψ.

As noticed before is it equivalent here to satisfy Preabst0(L
?), i.e. :

∀x(x ∈ τ → ϕτ (x)), for any τ in Ω.

We denote Adm the set of all admissible models and put a “notion of exten-

sion" on it, more precisely a partial order ≤ defined by :

M ≤ N iff (M ∈ Adm & N ∈ Adm & ∈M⊂∈M & =M⊂=N ).

As usually are binary relations seen as collections of ordered pairs.

We say that “N is an extension of M" when M ≤ N . Further we denote

PFP the following “positive formulas preservation" property (easy to check) :

If ψ(~z) is a positive L?-formula, ~b is in Ω and N ≥M |= ψ(~b),

Then N |= ψ(~b).

This argument will be often used in this section.

Notice that the argument holds even when N is not supposed to be admissi-

ble.

We introduce now some convenient notations and the particular “notion of

forcing" that we will use (for X ⊂ Adm)
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• M≤XN iff (def.) M ∈ X & N ∈ X & M ≤ N .

• MXτ = τ ′ iff (def.)

M ∈ X & ∀N ≥X M ∃P≥XN P |= ∀x(ϕτ (x) ↔ ϕτ ′(x)).

• X+ := {M ∈ X
∣

∣ ∀τ, τ ′ ∈ Ω(M |= τ = τ ′ →MXτ = τ ′)}.

• A0 := Adm; Aα+1 := (Aα)+;

Aγ :=
⋂

β<γ Aβ (for γ limit ordinal).

This defines a decreasing chain (for ⊂) of subsets Aα (of Adm), indexed

by Von Neumann ordinals (in our metatheory).

• Any increasing chain (for ≤) of elements Mα of Adm (for α < γ, γ

limit ordinal) has an obvious limit, namely the “union" of the Mα’s :

(Ω,
⋃

α<γ

∈α,
⋃

α<γ

=α), where ∈α is ∈Mα
, and =α is =Mα.

We analyse now the properties of , finding back several familiar “forcing

aspects".

The following initial propositions are very easy to check.

Proposition 3.1. (Extension Lemma)

If

N ≥X MXτ = τ ′,

Then

NX τ = τ ′.

Proposition 3.2. (Inductivity Lemma) If X is closed under “unions" of

chains (as described before; with X ⊂ Adm),

Then so is X+.

Proposition 3.3. Each Aα is non-empty and closed under “unions" of

chains.

(Hint : use proposition 3.2; and the fact that M = (Ω, φ,≡) belongs to each

Aα, where φ is the empty set and ≡ is “formal identity").

Proposition 3.4. (Fixpoint Lemma)

For some ordinal δ, we have Aδ+1 = Aδ.
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This is obvious via the classical argument. From here on we suppose that

δ is the least ordinal for which Aδ+1 = Aδ.

Proposition 3.5. Aδ admits maximal elements (for ≤).

This is obvious via the classical Zorn-argument. We now choose one such

maximal element of Aδ, and call it G. Notice that : ∀α G ∈ Aα.

Actually is this G the model we are looking for.

As we shall see has G the behaviour of a “generic structure", w.r.t. the

adequate notion of “forcing" (for analogies, see f.ex. [1]).

Lemma 3.6. (Abstraction Lemma) : G satisfies Abst(L?).

Proof. As G is admissible, with universe Ω, it suffices to prove :

G |= ∀x(ϕτ (x) → x ∈ τ),

whenever τ ∈ Ω.

So let us fix τ and x, both in Ω, such that ϕτ (x) holds in G. We have to

check that : x ∈G τ .

We construct an extension G of G, like this :

G |= a ∈ b iff G |= a ∈ b ∨ (a = x ∧ b = τ).

Further have G and G the same equality relation.

We show now, by induction on α, that G belongs to each Aα :

• For α = 0 :

As A0 = Adm, we have to check that G ∈ Adm. That =G is also a

congruence on G is easily seen. For Preabst : suppose G |= a ∈ η, and

distinguish two cases :

Case 1 : G |= a ∈ η; then G |= ϕη(a), and so G |= ϕη(a) by PFP

(“positive formulas preservation").

Case 2 : G |= ¬a ∈ η; then a =G x and η =G τ ; as G ∈ Aδ+1, we

have (by our definitions) :

∀M ≥δ G ∃N ≥δ M N |= ∀t(ϕη(t) ↔ ϕτ (t))

(where ≥δ denotes ≥Aδ
); so, as G is maximal in Aδ, we get :

G |= ∀t(ϕη(t) ↔ ϕτ (t)).
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We assumed that ϕτ (x) holds in G, so we have also G |= ϕη(x).

And, as a =G x, we get finally :

G |= ϕη(a), and also G |= ϕη(a).

Conclusion: in both cases we get G |=ϕη(a), and that proves Prabst(L?)

for G.

• If G ∈ Aα, then G ∈ Aα+1 :

So suppose G ∈ Aα and G |= a = b; then G |= a = b, because G and G

have the same equality relation. As G ∈ Aα+1, this implies G α a = b

(where α denotes Aα
). As we showed already that G ∈ Adm, we

get by Proposition 3.1 that G α a = b.

Conclusion : G ∈ Aα+1.

• If ∀β < γ (limit ordinal) G ∈ Aβ, then G ∈ Aγ : obvious.

This achieves the inductive proof of : ∀α G ∈ Aα; in particular do we get

G ∈ Aδ; and so G = G, because G is maximal in Aδ and G ≤ G.

Conclusion : as G = G |= x ∈ τ , we get finally G |= x ∈ τ , which achieves

the proof of Lemma 3.6.

Lemma 3.7. (Generic Lemma) :

G |= τ = τ ′ iff G On τ = τ ′

(where G On τ = τ ′ means : ∀α G α τ = τ ′; and α is Aα
).

Remark: This shows that On is the “right" notion of forcing, i.e. the

one for which G is indeed “generic".

Proof of Lemma 3.7. The left-to-right direction is immediate from the

definitions and the fact that ∀α G ∈ Aα.

To prove the other direction : fix some term τ and construct the following

extension G? (actually depending on τ) of G : G? = (Ω,∈?,=?), where

• a =? b iff a =G b ∨G On a = b = τ .

• a ∈? b iff ∃a′, b′ a =? a′ ∈G b′ =? b.
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The following facts are easy to check :

Fact 1 : =? is an equivalence relation on G?.

Fact 2 (already mentioned) : a =G b→ G On a = b.

Fact 3 : a =? b→ G |= ∀t(t ∈ a↔ t ∈ b).

(hint : use the definitions and lemma 3.6).

Fact 4 : a =? b→ G? |= ∀z(a ∈ z ↔ b ∈ z)

(hint : use the definitions).

It suffices now to show that G? belongs to each Aα, to get G? ∈ Aδ, so that

G = G? and finally : G |= τ = τ ′ whenever G On τ = τ ′.

Again, we prove this by induction on α.

• For α = 0 :

We should prove that G? is admissible.

That =? is a congruence is easily seen thanks to the above-mentioned

facts.

Further, for Preabst : suppose a ∈? η; we have to prove that G? |=

ϕη(a).

We will distinguish 4 cases :

Case 1 : ¬a =? η and ¬η =? τ ; here one gets quickly that a ∈G η, so

G |= ϕη(a), and by PFP : G? |= ϕη(a).

Case 2 : a =? τ , but ¬η =? τ ; so some a′ satisfies : a′ =? a and

a′ ∈G η; so we get G |= ϕη(a
′), and by PFP : G? |= ϕη(a

′).

Consider now the permutation exchanging a and a′, and fixing all

the other points.

This is an automorphism for the first-order structure G? = (Ω,∈?

,=?), so that one gets : G? |= ϕη(a).

Case 3 : η =? τ , but ¬a =? τ ; here a ∈G η′ for some η′ =? η, and

so by fact 3, we get : a ∈G η; so again G |= ϕη(a), and also (by

PFP) : G? |= ϕη(a).

Case 4 : η =? τ =? a; here, for some a′ and η′, we have :

a =? a′ ∈G η′ =? η.

By fact 3 : a′ ∈G η; so again : G |= ϕη(a
′), and (by PFP) :

G? |= ϕη(a
′).

The automorphism argument from case 2 then allows to get :

G? |= ϕη(a).
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• If G? ∈ Aα, then G? ∈ Aα+1 :

Suppose G? |= a = b, i.e. a =? b. If a =G b, the fact that G ∈ Aα+1

immediately gives us G α a = b, and so by proposition 3.1 also

G?
α a = b. In the other case we have G On a = b = τ , so again

G α a = b and G?
α a = b. So in any case G? |= a = b implies

G?
α a = b; and for G? ∈ Aα, we can conclude G? ∈ Aα+1.

• If ∀β < γ (limit ordinal) G? ∈ Aβ , then G? ∈ Aγ : trivial.

Lemma 3.8. (Strong Congruence Lemma) :

=G is a strong congruence on G, i.e. a congruence that is also substitutive

in terms (whenever ~a =G
~b, one has {x|ψ(x,~a)} =G {x|ψ(x,~b)}, for each

positive L?-formula ψ(x, ~y)).

Comment: The reader should notice that our admissible models only

require substitutivity for first-order formulas, not for terms !

For extensional models (modulo abstraction of course) both substitutivities

are equivalent, but extensionality is precisely missing here. So it is somewhat

astonishing that we get substitutivity for terms here, while we made no effort

at all to obtain it !

Proof of Lemma 3.8. Suppose ~a =G
~b; we should prove that

{x|ψ(x,~a)} =G {x|ψ(x,~b)}

for any L?-term {x|ψ(x, ~y)}. The definition of L? however shows that it

suffices to prove this for positive L-formulas ψ(x, ~y). By PFP we have im-

mediately :

∀N ≥ G ~a =N
~b.

As =N is a first-order congruence we have :

∀N ≥ G N |= ∀x(ψ(x,~a) ↔ ψ(x,~b)).

So (a fortiori) :

∀α G α {x|ψ(x,~a)} = {x|ψ(x,~b)}.

Then by lemma 3.7 :

G |= {x|ψ(x,~a)} = {x|ψ(x,~b)}.
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Definition. “IntruleL(Γ)" will denote the following intensionality rule

(where L is some language, Γ a theory expressed in L, and ψ, ψ ′ are positive

L-formulas):
Γ ` ∀~y ∀x(ψ(x, ~y) ↔ ψ′(x, ~y))

∀~y {x|ψ(x, ~y)} = {x|ψ′(x, ~y)}

Here we will consider the language L?, and also :

Γ? := {σ|∀N ∈ A? N |= σ}, where

A? := {N |N ≥ G & ∃α N is maximal in Aα}.

Lemma 3.9. (Intensionality Lemma) :

G satisfies IntruleL?(Γ?).

Proof. As G is a pure term model, it suffices to prove that τ = τ ′ when-

ever Γ? ` ∀x(ϕτ (x) ↔ ϕτ ′(x)).

As each Aα is closed under “unions" of chains, it is clear (via a Zorn-

argument) that α is characterized via:

G α τ = τ ′ iff

∀N ≥α G [N is maximal in Aα → N |= ∀x(ϕτ (x) ↔ ϕτ ′(x))].

And so, once Γ? ` ∀x(ϕτ (x) ↔ ϕτ ′(x)), we have :

∀α G α ∀x(ϕτ (x) ↔ ϕτ ′(x)),

and by lemma 3.7 : G |= τ = τ ′.

The results obtained so far can now be summarized in :

Theorem 3.10. G satisfies Abst(L?)+IntruleL?(Γ?), and =G is a strong

congruence.

As the theory Γ? is not very “explicit" (it refers to extensions of G), we

propose also at once a more “logically explicit" version Γ1, defined by :

Γ1 := Preabst(L?) + Congr(=) + {σ|σ is a positive L?-sentence

& Abst(L?) + Congr(=) ` σ}.

Γ1 just involves “admissibility", plus the positive consequences of “admissi-

bility + abstraction".

One can easily check that Γ1 ⊂ Γ?, so that we get (from theorem 3.10) :
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Theorem 3.11. G satisfies Abst(L?)+IntruleL?(Γ1), and =G is a strong

congruence.

Comment: The natural strategy consists in trying to find a Γ as close

as possible to the theory of G, i.e. {σ|σ is an L?-sentence & G |= σ}.

Indeed : if one could take for Γ exactly the theory of G, then G would

be extensional (via abstraction), and would we have a pure term model for

Abst(L?) + Congr(=) + EXT; while the existence of such a model is still an

open question !

Remark: Actually one can imagine other versions of the type of forcing

used here. There is even one that allows to obtain the same theorem 3.111,

but a priori a weaker Theorem 3.10 and so probably less identifications in G.

More precisely, if one modifies the definition of  like this :

M X τ = τ ′ iff M ∈ X & ∀N ≥X M N |= ∀x(ϕτ (x) ↔ ϕτ ′(x)),

the fixed-point Aδ is reached very quickly, as A2 = A1 ! Everything else stays

the same, except lemma 3.9 that becomes : if ∀N ≥ G′ N |= ∀x(ϕτ (x) ↔

ϕτ ′(x)), then τ =G′ τ ′ (where G′ is the “new" G); and theorem 3.10 that

gets a “new Γ" : {σ|σ is an L?-sentence & ∀N ≥ G N |= σ}.

One can easily show that any G′ constructed in that way has an extension G

of the “old type" : G′ ≤ G. So that (a priori) G seems better, as it proceeds

to more identifications. It is however still not clear whether or not G′ 6= G. . .

.4 A model “containing ZF"

We present here a modification of the construction in section 3, where we lose

the fact that any element is a finite term, but get in exchange a transitive

part that interprets ZF ; the whole model still satisfies abstraction, inten-

sionality and strong congruence. Our metatheory is ZF with the additional

assumption that there exists an uncountable inaccessible cardinal κ (i.e. a

regular, limit cardinal κ such that 2α < κ for any cardinal α < κ).

The infinitary language Lκ that we will use allows κ variables, uses a new

unary predicate “C(x)" (intended to distinguish the “classical" sets) and is

built up following the rules :

1This was noticed too (and independently) by O. Esser.



120 ROLAND HINNION

(1) if x, y are variables, then x = y and x ∈ y are positive Lκ-formulas,

(2) ⊥,> are positive Lκ-formulas,

(3) C(x) is a positive Lκ-formula,

(4) if (yα)α<β (with β < κ) are variables, then ∨∨α<β x = yα is a positive

L-formula,

(5) if ϕ,ψ are positive Lκ-formulas, then so are ϕ ∨ ψ, ϕ ∧ ψ, ∃x ϕ, ∀x ϕ,

(6) if ϕ is an Lκ-formula, then so is ¬ϕ.

Notice that only rule (4) (allowing κ-finite disjunctions) distinguishes Lκ

from the first-order language LC , i.e. L enriched with the predicate C(x).

We construct now an adapted universe ∆ :

∆0 := {{x|ψ(x)}|ψ(x) is a positive Lκ-formula}

∆α+1 := {{x|ψ(x,~b)}
∣

∣ ψ(x, ~y) is a positive Lκ-formula,

and the components of ~b are elements of ∆α}

∆γ :=
⋃

β<γ

∆β (for γ limit ordinal).

Finally : ∆ := ∆κ.

Comments: This is similar to the construction of Ω (in section 3),

except that we go beyond ω and use Lκ-formulas instead of L-formulas.

Naturally are the sequences ~y and ~b here κ-finite sequences, i.e. of type

(yα)α<β and (bα)α<β (with β < κ).

As we suppose κ inaccessible, it is clear that each ∆α (with α < κ) is κ-finite,

and that ∆ is exactly of cardinality κ. Each element of ∆ is a closed term,

but naturally no longer necessarily a finite term; we call that a “κ-term",

and go on denoting “ϕτ (x)" the infinitary formula defining the κ-term τ .

We can then use the machinery developed in section 3, modulo the obvious

adaptation of the notion of “admissible model". Fundamentally the proofs

will stay the same (with the obvious interpretation for ∨∨α<β x = yα as an

infinite disjunction).

At the end one gets a “generic structure" that we denote G?, and analogues

for theorems 3.10 and 3.11. As however the G? obtained here is not an
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usual “pure term model" (because most terms are not finite), we prefer to

reformulate the most interesting results in theorem 4.1.

Before that, we will show that G? contains “naturally" the transitive set

Vκ (from the Von Neumann hierarchy), constructed (in the metatheory) as

usually, by :

V0 := ∅

Vα+1 := PVα (where P is the power set operator)

Vγ :=
⋃

β<γ

Vβ for γ limit ordinal)

So put some well-ordering relation ≤? on Vκ (via the axiom of choice) and

define inductively the interpretation z? of an element z of Vκ :

∅? := {x|⊥}

z? := {x| ∨∨α<βx = aα?}, when z = {aα|α < β}

and (aα)α<β is the unique κ-finite (i.e. β < κ) enumeration

of the elements of z, increasing for ≤? (i.e. α ≤ α′ ↔ aα≤
?aα′).

Obviously, each z? belongs to ∆ (for z ∈ Vκ), and we get a “copy" of Vκ in

∆ :

{z?|z ∈ Vκ} ⊂ ∆.

We can now precise the adequate notion of “admissible model", that we use

here : it is a model of type M = (∆,∈M ,=M , CM (x)), that satisfies pre-

abstraction (for the elements of ∆), where =M is a first-order congruence

(w.r.t. ∈M) and where the interpretation CM of the unary first-order predi-

cate C satisfies : CM (x) iff ∃z ∈ Vκ x =M z?. The reader can easily check

that =M is then also automatically a congruence w.r.t. CM (x). Also has the

predicate C(x) the agreeable property of preservation under extension (what

justifies naturally that C(x) is considered here as a “positive formula") : for

M , N admissible models, with M ≤ N , we have : CM (x) → CN (x).

Thanks to the fact that Vκ is (in the metatheory) a transitive, well-founded

set, can one easily check that the class C := {x|C(x)}, seen in the “generic"

model G?, is a transitive class, isomorphic to Vκ (up to =G?); more precisely :

(C/ =G? ,∈G?) and (Vκ,∈) are isomorphic; where C/ =G? := {[x]|x ∈ C} and

[x] := {y ∈ ∆|x =G? y}.

And so, as Vκ (structured by ∈) satisfies the axioms of ZF (thanks to the

uncountable, inaccessible κ), so does the class C in G?.
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Notice further that C is even a set in G? (as {x|C(x)} is a term, member of

∆).

In order to summarize the most interesting facts about G?, we introduce the

language L?
C , that simply extends L? (see section 2) via the new predicate

C(x), and is built up like L?, by allowing also the extra rule : C(x) is a

positive L?
C -formula.

Theorem 4.1. (1) G? satisfies Abst(L?
C),

(2) =G? is a strong congruence w.r.t. L?
C ,

(3) G? satisfies IntruleL?

C
(Γ2), where Γ2 is defined like Γ1 (see section 3,

theorem 3.11), but with L?
C instead of L?,

(4) the set {x|C(x)} interprets ZF (in G?), i.e. G? satisfies σC for any σ

axiom of ZF (where σC is obtained from σ by bounding each quantifi-

cation to the set {x|C(x)}),

(5) G? satisfies the following “generalized replacement" principle : if F is

a class-function (i.e. definable via some, not necessarily positive, L?
C-

formula, possibly with parameters), then : ∀a[C(a) → ∃b ∀t (t ∈ b ↔

(∃z ∈ a F (z) = t))].

Hints for the proofs: The proofs of (1), (2), (3) are just adaptations of

those in section 3. Point (4) is clear from the previous remark that {x|C(x)},

seen inG?, is a “copy" of Vκ. Point (5) results from the fact that the collection

(subset of ∆) {F (z)|z ∈G? a} will be κ-finite for each a such that G? |= C(a),

and so be a set in the sense of G?, simply by the construction of ∆.

Comments:

• The known models of GPK+
∞ (the strong “positive set theory", allow-

ing inter alia “generalized positive comprehension") actually also satisfy

theorem 4.1 ! This is relatively easy to check, and we refer the inter-

ested reader to [4], [6]. Their construction however involves a stronger

hypothesis than ours, namely the existence of an uncountable, weakly

measurable cardinal, so that the modelized theory is indeed stronger,

but at a higher price !

• G? modelizes a theory of type “ZF in T", in a sense introduced by

Boffa [2], and further explored in [12].
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Also is the interpretation of ZF via the set {x|C(x)} a very “standard"

one, in the sense of [14]; about that should we just precise that [14]

assumes extensionality in the theory T that “contains ZF"; as here

we have only “intensionality", should one take the expectations in [14]

“cum grano salis", i.e. adapt them by replacing here and there the idea

that some set v is in C by the one that some v ′ with the same extension

as v (i.e. ∀t(t ∈ v ↔ t ∈ v′)) is in C (so not necessarily v itself).

.5 About partial information

The “partial set" theories initiated by P.C. Gilmore [8] can be seen as formal-

izations of the following natural concepts concerning “partial information" :

for a given “property" (predicate) P (x), we can imagine the “set" {x|P (x)}

as a “double list" based on “positive" and “negative" information; say the left

side of the list mentions the objects x for which we got the information that

P (x) is true, what we denote P+(x); while the right side mentions those x’s

for which we got the information that P (x) is false (notation : P −(x)). We

conceive such lists as (probably) incomplete, but however reliable; and we

formalize these expectations by :

• ∀x ¬(P+(x) ∧ P−(x))

• z ∈+ {x|P (x)} → P+(z)

• z ∈− {x|P (x)} → P−(z)

where ∈+, ∈− are the “memberships" corresponding respectively to the

left/right sides of the lists.

So we find back the “partial aspect" and also pre-abstraction.

Abstraction itself can then be conceived, for a given set {x|P (x)}, as the

fact that, at that moment, the double list is “complete"; there is indeed a

dynamic aspect in this, namely the idea that these lists grow w.r.t. time;

and that explains the “positivity" expectations concerning the “formulas"

P+ and P− (as precisely positive formulas are preserved under the kind of

“extensions" considered here).

Now can “positive set theory" be seen as a simplification of “partial set the-

ory"; in terms of partial information is a “set" {x|P (x)} then reduced to a

simple list (instead of a “double" one), that mentions those x for which we
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got the information that P (x) is true.

Again does pre-abstraction then express that the information, however in-

complete, is at least reliable ; and abstraction expresses “completeness".

All this is just one possible interpretation, giving an “intuitive" basis for

“positive set theory".

Further is there also some hope that adequate adaptations of the techniques

in this paper might solve the still open problems concerning the compatibility

of intensionality (or even extensionality) with several forms of “partial set

theory" (see for example [13], [14]). About that should it be mentioned

that the successfull constructions for similar problems in the “positive" and

“paradoxical" cases simply don’t work in the “partial" case (see for example

[5], [13], [14]).

That adaptations are necessary if one wants “forcing" results concerning

partial sets, can easily be seen in several proofs of section 3, namely those

where one has to construct extensions of G : the problem is that we miss

arguments to ensure that situations like “x ∈+ y ∧ x ∈− y" won’t occure !

So far it is not obvious how to overcome this, but the hope remains. . .

.References

[1] M. Boffa, Forcing et négation de l’axiome de fondement, Académie Royale de

Belgique, Vol. 40 (1972).

[2] M. Boffa, The consistency of ZF +NF3, Mathematisches Forschunginstitut Ober-

wolfach, Tagungsbericht 9 (1987).

[3] O. Esser, An interpretation of the Zermelo-Fraenkel Set Theory and the Kelley-

Morse Set Theory in a Positive Theory, Mathematical Logic Quarterly 43 (1999),

pp. 369–377.

[4] O. Esser, On the consistency of a positive set theory, Mathematical Logic Quarterly

45 (1999), pp. 105–116.

[5] O. Esser, A model of a strong paraconsistent set theory, Notre Dame Journal of

Formal Logic 44 (2003), to appear.

[6] M. Forti & R. Hinnion, The consistency problem for positive comprehension prin-

ciples, The Journal of Symbolic Logic 54 (1989), pp. 1401–14198.

[7] M. Forti & F. Honsell, A general construction of hyperuniverses, Theoretical

Computer Science 156 (1996), pp. 203–215.

[8] P.C. Gilmore, The consistency of partial set theory without extensionality, Pro-

ceedings of Symposia in Pure Mathematics 13 (1974), pp. 147–153.



INTENSIONAL POSITIVE SET THEORY 125

[9] P.C. Gilmore, An intensional type theory : motivation and cut-elimination, The

Journal of Symbolic Logic 66 (2001), pp. 283–400.

[10] P.C. Gilmore, Logicism Renewed : Logical Foundations for Mathematics and Com-

puter Science, book to appear.

[11] R. Hinnion, Le paradoxe de Russell dans des versions positives de la théorie naïve

des ensembles, Comptes Rendus de l’Académie des Sciences de Paris 304 (1987),

pp. 307–310.

[12] R. Hinnion, Stratified and positive comprehension seen as superclass rules over or-

dinary set theory, Zeitschrift für mathematische Logik und Grundlagen der Math-

ematik 36 (1990), pp. 519–534.

[13] R. Hinnion, Naive set theory with extensionality in partial logic and in paradoxical

logic, Notre Dame Journal of Formal Logic 35 (1994), pp. 15–40.

[14] R. Hinnion, About the coexistence of classical sets with non-classical ones : a

survey, Logic and Logical Philosophy 11 (2003), pp. 79–90.

[15] R. Hinnion & T. Libert, Positive abstraction and extensionality, The Journal of

Symbolic Logic 68 (2003), pp. 828–836.

[16] R.J. Malitz, Set theory in which the axiom of foundation fails, Ph.D. University of

California (1976), unpublished (available from University Microfilms International,

Ann. Arbor, Michigan 48106).

Université Libre de Bruxelles

C.P. 211

Boulevard du Triomphe

1050 Bruxelles, Belgium

rhinnion@ulb.ac.be


