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1. Introduction

We understand the locution “minimal negation” as historically defined
by Johansson in [3], where negative theorems are instances of positive in-
tuitionistic theorems with A → f abbreviating ¬A and f an arbitrary
propositional falsity constant. In particular, any logic with axioms for cus-
tomary properties of conjunction and disjunction is endowed with minimal
negation if it contains as theorems:

(i) A→ ¬¬A

(ii) (A→ B)→ (¬B → ¬A)

(iii) (A→ ¬B)→ (B → ¬A)

(iv) (A→ ¬A)→ ¬A

(v) (A→ B)→ ((A→ ¬B)→ ¬A)

(vi) (A→ ¬B)→ ((A→ B)→ ¬A)

all of which are instances of positive implicative theorems of I→ (intu-
itionistic implicational logic).
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Our question is: can we embed minimal negation in implicative logics
weaker than I→? [4] shows how to define minimal negation in the positive
fragment of the logic of relevance R and [5] in contractionless intuitionistic
logic. Is it possible to endow weaker positive logics with minimal negation?
In this paper our aim is to prove that minimal negation can be embedded
in even such a weak system as Anderson and Belnap’s minimal positive
logic.

Whenever implicative resources to instantiate minimal negation are
absent, we can still impose additional constraints on f to obtain minimal
negation. Interestingly, this strategy allows the semantical isolation of
different principles of negation. Moreover, finegrained varieties of negation
weaker than minimal are naturally considered in this setting, which offers
a kind of microscopical companion to [2]. Together with the modelizing
of positive and minimal negation, these facts illustrate – we think- the
conceptual import and motivation of the proofs.

The structure of the paper is as follows. In §2, Anderson and Belnap’s
minimal positive logic ML+ is presented. §§3-5 recall semantical consis-
tency and completeness proofs for ML+ with respect to Routley-Meyer
type relational semantics. §§6,7,8 define the logic ML+, f (ML with the
falsity constant f added to the sentential language). In §§9,10,11, we define
the logic MLm (ML+ with weak double negation and weak contraposi-
tion, but without reductio). In §§12,13,14 the logic MLmr (MLm with
the reductio axiom). The paper ends in §15 with three notes on the results
obtained.

2. Anderson and Belnap’s Minimal Positive Logic:
The logic ML+

Anderson and Belnap’s minimal implicative logic is (see 8.11 of [1],
labelled T→ −W ):

A1. A→ A

A2. (A→ B)→ ((B → C)→ (A→ C))

A3. (B → C)→ ((A→ B)→ (A→ C))
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with the rule Modus ponens (if ` A and ` A→ B, then ` B).

To this logic ML→ we add the axioms:

A4. (A ∧B)→ A (A ∧B)→ B

A5. ((A→ B) ∧ (A→ C))→ (A→ (B ∧ C))

A6. A→ (A ∨B) B → (A ∨B)

A7. ((A→ C) ∧ (B → C))→ ((A ∨B)→ C)

A8. (A ∧ (B ∨ C))→ ((A ∧B) ∨ (A ∧ C))

and the rule Adjunction (if ` A and ` B, then ` A ∧B) thus defining
the logic ML+. We note that ML+ is BR+ plus C5 of [1] (p.294), also
called (T −W )+.

The following formulas (useful in the proof of the completeness theo-
rem) are derivable:

T1. (A ∧B)→ (B ∧A)

T2. ((A ∨B) ∧ (C ∧D))→ ((A ∧ C) ∨ (B ∧D))

T3. ((A→ C) ∨ (B → D))→ ((A ∧B)→ (C ∨D))

T4. ((A→ C) ∧ (B → D))→ ((A ∧B)→ (C ∧D))

T5. ((A→C)∧(B→D))→((A∨B)→(C∨D))

3. Semantics for ML+

A ML+ model is a quadruple < O,K, R, �>where K is a set, O a non-
empty subset of K and R a ternary relation on K subject to the following
definitions and postulates for all a, b, c, d ∈ K with quantifiers ranging over
K:

d1 a ≤ b =def ∃x(x ∈ O and Rxab)

d2 R2abcd =def ∃x(Rabx and Rxcd)

P1 a ≤ a

P2 a ≤ b and Rbcd⇒ Racd

P3 R2abcd⇒ ∃x(Racx and Rbxd)

P4 R2abcd⇒ ∃x(Rbcx and Raxd)
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Finally, � is a binary valuation relation between elements from K and
sentences of ML+ satisfying the following conditions for all sentence letters
p, formulas A, B and a, b, c ∈ K:

(i) a � p and a ≤ b⇒ b � p

(ii) a � A ∨B iff a � A or a � B

(iii) a � A ∧B iff a � A and a � B

(iv) a � A→ B iff for all b, c ∈ K, Rabc and b � A⇒ c � B

A is valid in ML + [�ML+ A] iff a � A for all a ∈ O in all models.

4. Semantic consistency of ML+

We prove:

Lemma 4.1. a ≤ b and a � A⇒ b � A

Proof. Induction on the length of A (Use P2 in the case of the condi-
tional). �

Lemma 4.2. �ML+ A → B iff for all a ∈ K in all models, a � A ⇒
a � B

Proof. Use P1, d1 and Lemma 4.1. �

Now we can prove:

Theorem 4.1. (Semantic consistency of ML+) If `ML+ A, then

�ML+ A.

Proof. Since all axioms of ML+ are conditional formulas, we can use
Lemma 4.2. to immediately render A1, A4-A8 and the rules. A2 and A3
are proved with, respectively, P3 and P4. �

5. Completeness of ML+

We begin by recalling some definitions. A theory is a set of formulas
of ML+ closed under adjunction and provable entailment; a theory a is
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prime if whenever A ∨ B ∈ a, then A ∈ a or B ∈ a; finally, a is regular if
all theorems of ML+ belong to a.

Now we define the ML+ canonical model. Let KT be the set of all
theories and RT be defined on KT as follows: for all formulas A, B and
a, b, c ∈ KT , RT abc just in case if A → B ∈ a and A ∈ b, then B ∈
c. Further, let KC be the set of all prime theories, OC the set of all
regular prime theories and RC the restriction of RT to KC . Finally, let
�C be defined as follows: for any wff A and a ∈ KC , a �C A iff A ∈ a.
Then, the ML+ canonical model is the quadruple < OC , KC ; RC , �C>. In
what follows in this section we sketch a proof of the completeness theorem,
beginning with some previous Lemmas.

Lemma 5.1. Let A be a wff, a ∈ KT and A /∈ a. Then, A /∈ x for

some x ∈ KC such that a ⊆ x.

Proof. Define from a a maximal theory x without A. If x is not
prime, then for some wffs B, C,B∨C ∈ x, B /∈ x, C /∈ x. Put [B, x] = {E :
∃D(D ∈ x and ` (B ∧D)→ E}. Define [C, x] similarly. Well, both [B, x]
and [C, x] are theories strictly including x. As x is maximal, A ∈ [B, x]
and A ∈ [C, x], whence it is easy to prove that A ∈ x, which is impossible.

�

Lemma 5.2. Let RT abc, a, b ∈ KT , c ∈ KC . Then, RT xbc for some

x ∈ KC such that a ⊆ x.

Proof. Define from a a maximal theory x such that RT xbc. Suppose x

is not prime and define [A, x] and [B, x] as in Lemma 5.1. Since both [A, x]
and [B, x] are theories strictly including x, we deduce not−RT [A, x]bc and
not−RT [B, x]bc. But then, it is easily shown that c is not prime, which is
impossible. �

Lemma 5.3. Let RT abc, a, b ∈ KT , c ∈ KC . Then, RT axc for some

x ∈ KC such that b ⊆ x.

Proof. Similar to that of Lemma 5.2. �
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Lemma 5.4. If `ML+ A, there is some x ∈ OC such that A /∈ x.

Proof. ML+ is the minimal regular theory such that A /∈ML+. By
Lemma 5.1, there is some x ∈ KC such that ML+ ⊆ x and A /∈ x. But
x ∈ OC . �

Lemma 5.5. Let a, b ∈ KT . The set x = {B : ∃A(A → B ∈ a and

A ∈ b)} is a theory such that RT abx.

Proof. It is smoothly proven that x is closed under adjunction and
provable entailment. Obviously then, RT abx. �

Lemma 5.6. a ≤C b iff a ⊆ b.

Proof. Suppose a ≤C b. By d1, RCxab with x ∈ OC . As A→ A ∈ x,
if A ∈ a, then A ∈ b, i.e., a ⊆ b. Suppose now a ⊆ b. Granted that a is a
theory, clearly RT ML + aa, and, so, RT ML + ab. By Lemma 5.2, there is
some x ∈ KC such that ML+ ⊆ x and RCxab. As x ∈ OC , a ≤C b by d1.

�

Lemma 5.7. Let a, b, c ∈ KT and d ∈ KC . Moreover, let RT2abcd.

Then, there is some x ∈ KC such that RT acx and RT bxd.

Proof. Suppose RT2abcd, that is, RT abx and RT xcd for some x ∈ KT .
We have to prove that there is some x ∈ KC such that RT acx and RT bxd.
Define [cf. Lemma 5.5] the theory z = {B : ∃A(A → B ∈ a and A ∈ c)}
with RT acz. Deduce now RT bzd using A2. By Lemma 5.3, RT bxd with
z ⊆ x and x ∈ KC . By RT acz and definitions, RT acx. �

Lemma 5.8. Let a, b, c ∈ KT and d ∈ KC . Further, assume RT2abcd.

Then, there is some x ∈ KC such that RT bcx and RT axd.

Proof. Proceed as in Lemma 5.7, but use A3. �

Lemma 5.9. The canonical postulates hold in the ML+ canonical

model.

Proof. P1 is trivial by Lemma 5.4. P2 holds by Lemma 5.4 and
definition of RC . Use Lemmas 5.7 and 5.8 to prove, respectively, P3 and
P4. �
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Lemma 5.10. The canonical �C is a valuation relation satisfying con-

ditions (i)-(iv) of §3.

Proof. (i) is trivial by Lemma 5.4 (ii) and (iii) are easy given ML+
and properties of the members of KC . (iv) from left to right is immediate.
So, interest focusses on clause (iv) from right to left. Assume a 2C A→ B.
We show that there are x, y ∈ KC such that RCaxy, x �C A and x 2C B.
Define first b = {C :` A→ C}. Notice b is a theory and A ∈ b [` A→ A].
Define now (cf. Lemma 5.5.) the theory c = {C : ∃D(D → C ∈ a and
D ∈ b)} such that RT abc. We do have: B /∈ c (if otherwise B ∈ c, then
C → B ∈ a, C ∈ b, therefore, ` A → C, and, so, A → B ∈ a, i.e.,
a �C A→ B, contradicting the hypothesis). By Lemma 5.1, there is some
y ∈ KC such that c ⊆ y and B /∈ y. Applying definitions, RT aby. By
Lemma 5.3, there is some x ∈ KC including b and RCaxy with A ∈ x

[A ∈ b]. �

Lemma 5.11. The ML+ canonical model is indeed a ML+ model.

Proof. By Lemma 5.4, OC is non-empty. Obviously, RC is a ternary
relation on KC . Then, Lemma 5.11 follows by Lemmas 5.9 and 5.10. �

Finally, we prove

Theorem 5.1. (Completeness of ML+) If �ML+ A, then `ML+ A.

Proof. By contraposition, if 0ML+ A, then 2ML+ A: Lemmas 5.4 and
5.11. �

6. The logic ML + f

In order to define the logic ML + f , we add to the sentential language
of ML+ the propositional falsity constant f together with the definition:
¬A =def A → f . Note that, for example, the following are provable in
ML + f :

T6. (A→ B)→ (¬B → ¬A)

T7. ¬B → ((A→ B)→ ¬A)
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T8. ¬(A ∨B)→ (¬A ∧ ¬B)

T9. (¬A ∨ ¬B)→ ¬(A ∧B)

7. Semantics for ML + f

An ML+f model is a quintuple < O, K, S,R, �> where < O,K, R, �>

is an ML+ model and S is a subset of K such that S∩O 6= Ø. The clause:

(v) a � f iff a /∈ S

is satisfied in all models.

A is valid in ML + f [�ML+f A] iff a � A for all a ∈ O in all models.

We note that f is not valid: let a ∈ S ∩ O. Then, a 2 f . But a ∈ O.
So, 2ML+f f .

Theorem 7.1. (Semantic consistency of ML + f) If `ML+f A,

then �ML+f A.

Proof. Since analogues of Lemmas 4.1 and 4.2 are immediate, the
theorem follows by Theorem 4.1. �

8. Completeness of ML + f

We define the ML + f canonical model as the quintuple

< OC , KC , SC , RC , �C>

where < OC , KC , RC , �C> is the ML+ canonical model and SC is inter-
preted as the set of all consistent theories. A theory a is consistent iff
f /∈ a.

Now we need to prove:

Lemma 8.1. SC ∩OC is not empty.

Proof. Given that 2ML+f f [see §7], we have, by theorem 7.1., 0ML+f

f , i.e., f /∈ML + f . As ML + f is a theory, Lemma 5.1. applies and there
is some x ∈ KC such that ML + f ⊆ x and f /∈ x. Obviously, x ∈ OC

[since ML + f ⊆ x]. As f /∈ x, x ∈ SC . �
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Lemma 8.2. Clause (v) holds in the canonical model.

Proof. Lemma 8.1 and definition of SC . �

Lemma 8.3. The ML+f canonical model is in fact a ML+f model.

Proof. Lemmas 5.11, 8.1 and 8.2. �

Theorem 8.1. (Completeness of ML + f) If �ML+f A, then

`ML+f A.

Proof. It suffices to note that an analogue of Lemma 5.4 holds for
ML + f , since the theorem follows by Lemmas 5.4, 8.1 and 8.3. �

9. ML+ with minimal negation: The logic MLm

MLm is defined when we add to ML + f the axiom:

A9. A→ ((A→ f)→ f)

We note that, in addition to T6-T9, the following are exemplary the-
orems of MLm:

T10. A→ ¬¬A

T11. (A→ ¬B)→ (B → ¬A)

T12. ¬¬¬A→ ¬A

T13. (¬A ∧ ¬B)→ ¬(A ∨B)

Alternatively, MLm can be axiomatized with

A9’. If ` A→ (B → f), then ` B → (A→ f)

or

A9”. (A→ (B → f))→ (B → (A→ f))

instead of A9, among other possibilities. Proof is left to the reader.

10. Semantics for MLm

A MLm model is any ML+f model with the addition of the postulate:

P5. Rabc and c ∈ S ⇒ ∃x(x ∈ S and Rbax)

A is valid in MLm (�MLm A) iff a � A for all a ∈ O in all models.
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Theorem 10.1. (Semantic consistency of MLm) If `MLm A, then

�MLm A.

Proof. Given Theorem 7.1, just the validity of A9 is at issue. Use P5.
�

11. Completeness of MLm

We define the MLm canonical model exactly as the ML+ f canonical
model, but with this difference: now a theory a is consistent iff the negation
of a theorem does not belong to a.

Lemma 11.1. f ∈ a iff a is inconsistent.

Proof. Suppose f ∈ a. By A9, (f → f) → f ∈ a. Thus, a is
inconsistent. Suppose now a is inconsistent. Then, for a theorem A, A→
f ∈ a. By A9, (A→ f)→ f is a theorem. So, f ∈ a. �

Next, we note that an analogue of Lemma 8.1 for MLm becomes im-
mediate. We prove

Lemma 11.2. Let a, b, c ∈ KT with c consistent and RT abc. Then,

there is some x ∈ SC such that c ⊆ x and RT bax.

Proof. Assume RT abc, with a, b, c ∈ KT and c consistent. Define (cf.
Lemma 5.5) the theory y = {B : ∃A(A→ B ∈ b and A ∈ a)}. We go into
proving that y is consistent. Suppose it is not. Then, (cf. Lemma 11.1)
f ∈ y. By definition of y, A → f ∈ b, A ∈ a. By A7, (A → f) → f ∈ a.
Given RT abc, f ∈ c, which is impossible c being consistent.

So, we have a consistent theory y such that RT bay. Since f /∈ y,
Lemma 5.1 applies and we have some x ∈ KC such that y ⊆ x and f /∈ x.
So x is consistent, that is, x ∈ SC . Given that y ⊆ x and RT bay, we
conclude RT bax. �

Lemma 11.3. The canonical P5, i.e., RCabc and c ∈ SC ⇒ ∃x(x ∈
SC and RCbax), holds in the MLm canonical model.

Proof. By Lemma 11.2. �
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Lemma 11.4. Clause (v) holds in the MLm canonical model.

Proof. Lemma 11.1. �

Lemma 11.5. The MLm canonical model is indeed a MLm model.

Proof. Lemmas 8.3, 11.3 and 11.4. �

Finally we turn to

Theorem 11.1. (Completeness of MLm) If �MLm A, then

`MLm A.

Proof. First we note that an analogue of Lemma 5.4 for MLm is
immediate. Then, theorem 11.1 follows by Lemmas 5.4 and 11.5. �

12. MLm with the reductio axiom: The logic MLmr

We add to MLm the axiom:

A10. (A→ (A→ f))→ (A→ f)

Note that, in addition to T6-T13, the following are provable in MLmr:

T14. (A→ B)→ ((A→ ¬B)→ ¬A)

T15. (A→ ¬B)→ ((A→ B)→ ¬A)

T16.(A→ ¬B)→ ¬(A ∧B)

T17. (A→ B)→ ¬(A ∧ ¬B)

T18. ¬(A ∧ ¬A)

T19. ¬¬(A ∨ ¬A)

MLmr can be axiomatized alternatively with

A10’. (A→ B)→ ((A→ (B → f))→ (A→ f))

that is, T14, or

A10”. (A→ (B → f))→ ((A→ B)→ (A→ f))

which is T15, or

A10”’. (A→ (B → f))→ ((A ∧B)→ f)

i.e., T16, or
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A10””. If ` A→ B, then ` (A→ ¬B)→ ¬A

among other possibilities instead of A10. Proofs are left to the reader.

13. Semantics for MLmr

Models for MLmr are defined as those for MLm but with the addition
of the postulate

P6. Rabc and c ∈ S ⇒ ∃x∃y(Rabx and Rxby and y ∈ S)

Note. The postulate

P6’. Rabc and c ∈ S ⇒ ∃x(x ∈ S and Rcbx)

used in [5] for A10 still would work here. We have preferred P6 because
it is exactly what is needed in the semantic consistency and completeness
proofs of the alternatives offered in §12 (we leave to the reader the proofs
of these facts).

Theorem 13.1. (Semantic consistency of MLmr) If `MLmr A,

then �MLmr A.

Proof. Given Theorem 10.1, we have to prove that A10 is valid. Use
P6. �

14. Completeness of MLmr

The MLmr canonical model is defined similarly as the corresponding
one for MLm. Hence, an analogue of Lemma 8.1 for MLmr is immediate.
Next we prove,

Lemma 14.1. Let a, b, c ∈ KT c being consistent and RT abc. Then,

there is some x ∈ KC and y ∈ SC such that RT abx and RT xby.

Proof. Suppose RT abc, a, b, c ∈ KT and c a consistent theory. Define
(cf. Lemma 5.5) the theory u = {B : ∃A(A→ B ∈ a and A ∈ b)} such that
RT abu. Define now the theory w = {B : ∃A(A→ B ∈ u and A ∈ b)} such
that RT ubw. We prove first that w is consistent. Suppose it is not. Then,
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f ∈ w (cf. Lemma 11.1.). By definition of w, B → f ∈ u (B ∈ b). By
definition of u, A→ (B → f) ∈ a (A ∈ b). Then, by T16, (A∧B)→ f ∈ a.
But, given that A∧B ∈ b (A, B ∈ b) and RT abc, f ∈ c, which is impossible
c being consistent. Therefore, we have u, w ∈ KT (w being consistent).
Lemma 5.1 applies and in consequence there is some y in SC such that
w ⊆ y and RT uby. Now, by Lemma 5.2 there is some x in KC such that
u ⊆ x and RT xby. As RT abu (and u ⊆ x), RT abx as required. �

Lemma 14.2. The canonical P6 holds in the MLmr canonical model.

Proof. By Lemma 14.1. �

Lemma 14.3. The MLmr canonical model is in fact a MLmr model.

Proof. Lemmas 11.5 and 14.2. �

Theorem 14.1. (Completeness of MLmr) If �MLmr A, then

`MLmr A.

Proof. Lemma 5.4 for MLmr and Lemma 14.3. �

15. Additional remarks

1. Both MLm and MLmr can also be defined with a negation con-
nective instead of the falsity constant f , by means of the general strategy
followed in [5].

2. MLm and MLmr are different logics. We refer to the results of [5].
There, the logic I + −C [positive intuitionistic logic without contraction]
was defined and next extended with a minimal negation [Im − C] and
reductio [Imr − C]. These extensions are defined from I +−C exactly as
MLm and MLmr were defined from ML+. Well, in that paper it was
proved that Im − C and Imr − C are different logics, the first included
in the second. Therefore, MLm and MLmr are different logics, MLmr

including MLm.

3. Can a genuine intuitionistic negation, that is, a minimal negation
plus
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¬A→ (A→ B)

be introduced in ML+? The answer is affirmative, but we leave the matter
for another paper.

We thank the contribution of two RML referees.
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