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FULLY ADEQUATE GENTZEN SYSTEMS AND
THE DEDUCTION THEOREM

A b s t r a c t. A deductive system over an arbitrary language type Λ is

a finitary and substitution-invariant consequence relation over the for-

mulas of Λ. A Gentzen system is a finitary and substitution-invariant

consequence relation over the sequents of Λ. A matrix model of a de-

ductive system SS is a pair 〈A,F〉 where A is a Λ-algebra and F is an
SS-filter on A, i.e., a subset of A closed under all interpretations of the

consequence relation of SS in A. A generalized matrix is a pair 〈A,C〉
where C is an algebraic closed-set system over A; it is a model of a

Gentzen system G if C is closed under all interpretations of the conse-

quence relation of G in A. A Gentzen system G is fully adequate for

a deductive system SS if (roughly speaking) every reduced generalized

matrix model of G is of the form 〈A, FiSSSA〉 , where FiSSSA is the set of

all SS-filters on A.

The existence of a fully adequate Gentzen system for a given pro-

toalgebraic deductive system SS is completely characterized in terms

of the following variant of the standard deduction theorem of classical
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and intuitionistic logic.
An infinite sequence ∆∆∆ = 〈∆n(x0, . . . , xn−1, y, ū) : n < ω 〉 of pos-

sibly infinite nonempty sets of formulas in n+1 variables x0, . . . , xn−1, y
and a possibly infinite system of parameters ū is a parameterized graded

deduction-detachment (PGDD) system for a deductive system SS over

an SS-theory T if, for every n < ω and for all ϕ0, . . . , ϕn−1, ψ ∈ FmΛ,
T, ϕ0, . . . , ϕn−1 $SSS ψ iff T $SSS ∆n(ϕ0, . . . , ϕn−1, ψ, ϑ̄) for every possi-

ble system of formulas ϑ̄. An SS-theory is Leibniz if it is included in

every SS-theory with the same Leibniz congruence. A PGDD system
∆∆∆ is Leibniz-generating if the union of the ∆n(x0, . . . , xn−1, y, ϑ̄) as ϑ̄

ranges over all systems of formulas generates a Leibniz theory. The
main result of the paper is the following:

Theorem. A protoalgebraic deductive system has a fully ade-

quate Gentzen system if and only if it has a Leibniz-generating PGDD
system over all Leibniz theories.

Two corollaries:

(I) A weakly algebraizable deductive system has a fully adequate
Gentzen system iff it has the multiterm deduction-detachment theo-

rem.
(II) A finitely equivalential deductive system has a fully adequate

Gentzen system iff it has a finite Leibniz-generating system for over all

Leibniz SS-filters.
Several different variants of the deduction theorem arise in the

course of the paper showing that this familiar notion is only one man-

ifestation of a surprisingly complex phenomenon.
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1. Introduction

Recent attempts to extend the theory of algebraizability to (Hilbert-style)
deductive systems that cannot be algebraized in the standard way has led
to consideration of Gentzen-style systems that are adequate for the given
deductive system. In this paper a deductive system S is determined by a
(finitary and substitution-invariant) consequence relation �S between the
formulas of some given language type. Gentzen systems on the other hand
can be identified with consequence relations between sequents, where a
sequent is thought of as a finite, nonempty sequence ϕ0, . . . , ϕn, which we
shall write in the form ϕ0, . . . , ϕn−1 � ϕn; alternative, and possibly more
standard notations for a sequent are ϕ0, . . . , ϕn−1 → ϕn and

ϕ0, . . . , ϕn−1

ϕn
.

A Gentzen system G is said to be adequate for a deductive system
S if the sequent ϕ0, . . . , ϕn−1 � ϕn is a theorem of G if and only if
ϕ0, . . . , ϕn−1 �S ϕn. It turns out that the most useful Gentzen system
for this purpose, provided it exists, is the one whose generalized matrix
models coincide with the full generalized models of S. A generalized ma-
trix is a pair A = 〈A, C〉 where A is an algebra and C is an algebraic
closed-set system on the universe of A. Generalized matrices can be used
as the basis for a semantics for Gentzen systems in much the same way
ordinary matrices serve as the basis for a semantics for deductive systems.
The generalized matrix 〈A, C〉 is a basic full generalized model of a deduc-
tive system S if C coincides with the set of all S-filters on B, and it is
a full generalized model if there is a basic full generalized model 〈B,D〉
of S and a surjective homomorphism h: A � B such that C = h−1(D)
(= {h−1(F ) : F ∈ D }). If S is protoalgebraic, a full generalized model is
uniquely determined by its smallest S-filter, which is necessarily nonempty
if S is not almost inconsistent. These filters are called the Leibniz filters of
S.

A Gentzen system G is said to be fully adequate for a deductive system
S if the models of G coincide with the full generalized models of S. (This
is the case if S has at least one theorem and hence in particular if S is
protoalgebraic and not almost inconsistent. Otherwise the definition of
full adequacy has to be modified slightly. Since we consider exclusively
protoalgebraic deductive systems in this paper we ignore the distinction.)
The notion of a fully adequate Gentzen system (under the name “strongly
adequate”) was introduced in [15] and is studied in some detail in [16], a
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companion paper to the present one.
From recent work in abstract algebraic logic we now have a pretty clear

idea of what it means for a deductive system to be algebraizable in one of the
standard ways. ([3, 8, 10, 18, 19]). There are however a number of deductive
systems that are not algebraizable in any of the standard ways but do
have a fully adequate Gentzen system that is algebraizable in a standard
way ([21]). Moreover in these cases the equivalent quasivariety of this
Gentzen system gives a natural algebraic semantics for the given deductive
system. The paradigm for these deductive systems is the conjunction-
disjunction fragment of the classical propositional logic. The equivalent
algebraic semantics for its fully adequate Gentzen system is, as expected,
the variety of distributive lattices ([17]; see also [15, p. 99]).

With regard to the standard methods of abstract algebraic logic, the
algebraic properties of a deductive system S are reflected in those con-
gruences, on an arbitrary algebra, that are maximal with respect to being
compatible with some S-filter. These are the so-called Leibniz congruences
of S. It is shown in [3] that a deductive system S is finitely algebraizable
in the standard way when the correspondence between S-filters and Leib-
niz congruences is essentially as close as possible. One of the main results
of [15] is that a similar correspondence holds for every deductive system
between full generalized models and arbitrary intersections of Leibniz con-
gruences. In the case of protoalgebraic systems this induces a one-one cor-
respondence between Leibniz filters and Leibniz congruences. It is largely
because of these correspondences that the fully adequate Gentzen systems
have such a large role to play in the attempt to extend the standard theory
of algebraizability.

The main result of the present paper is a complete characterization of
those protoalgebraic deductive systems that have a fully adequate Gentzen
system. The characterization takes the form of a variant of the standard
deduction theorem that is not comparable to the original in the sense that
the two notions are logically independent. These are only two of the many
different variants of the deduction theorem that arise in the course of the
paper. Altogether they show that the familiar notion of the deduction
theorem, when carefully analyzed, is seen to be but a single manifestation
of a surprisingly complex phenomenon. Let

∆ = 〈∆n(x0, . . . , xn−1, y, ū) : n < ω 〉 (1)
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be an infinite sequence of sets of formulas, where for each n < ω,
∆n(x0, . . . , xn−1, y, ū) is a possibly infinite nonempty set of formulas in
the n + 1 variables x0, . . . , xn−1, y and a potentially infinite number of
parameters ū = u0, u1, . . . , uk, . . . (k < ω).

Let S be a deductive system, and let T be an S-theory. Then ∆ is said
to be a parameterized graded deduction-detachment (PGDD) system for S
over T if, for every n < ω and for all ϕ0, . . . , ϕn−1, ψ ∈ FmΛ,

T,ϕ0, . . . , ϕn−1 �S ψ iff T �S ∀ϑ̄∆n(ϕ0, . . . , ϕn−1, ψ, ϑ̄). (2)

In this expression T �S ∀ϑ̄∆n(ϕ0, . . . , ϕn−1, ψ, ϑ̄) is intended to represent
the potentially infinite set of entailments of the form

T �S δ(ϕ0, . . . , ϕn−1, ψ, ϑ̄),

where δ(x0, . . . , xn−1, y, ū) ∈ ∆n(x0, . . . , xn−1, y, ū) and ϑ̄ = ϑ0, ϑ1, . . . ,
ϑk, . . . (k < ω) ranges over all ω-sequences of formulas. A PGDD system
∆ is said to be Leibniz-generating if ∀ϑ̄∆n(x0, . . . , xn−1, y, ϑ̄) generates a
Leibniz S-theory, i.e., a theory that is Leibniz as an S-filter.

∆ is a graded deduction-detachment (GDD) system for S over T if it
is a PGDD system in which the parameter set is empty, and ∆ is finite
if ∆n is finite for each n < ω. A deductive system is said to have the
graded deduction-detachment theorem if it has a finite GDD system over the
smallest theory, the set of theorems. Thus S has the graded DD theorem
iff there is a finite set ∆n(x0, . . . , xn−1, y) of formulas for each n < ω such
that, for all formulas ϕ0, . . . , ϕn−1, ψ,

ϕ0, . . . , ϕn−1 �S ψ iff �S ∆n(ϕ0, . . . , ϕn−1, ψ).

The graded DD theorem is strictly weaker than the multiterm DD theorem,
i.e., the standard DD theorem where the role of the implication connective
is taken by a fixed but arbitrary finite set of formulas (Thm. 5.12). The
graded DD theorem, in the special case ∆n contains a single formula with-
out parameters, has also been considered by Rybakov [22, p. 477] under
the name “the general deduction theorem”.

Let S be a protoalgebraic deductive system. In the main result of
the paper we prove that a protoalgebraic deductive system S has a fully
adequate Gentzen system if and only if it has a Leibniz-generating PGDD
system ∆ over every Leibniz theory; see Theorems 4.8 and 4.10. Moreover,
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if (1) is a PGDD system for S over every Leibniz theory, then the family
of Gentzen-style rules

x0, . . . , xn−1 � y

� δ(x0, . . . , xn−1, y, ū)

for each δ(x0, . . . , xn−1, y, ū) ∈ ∆n(x0, . . . , xn−1, y, ū), (R∆n)

where n ranges over all natural numbers, constitutes a base for a presen-
tation of the fully adequate Gentzen system for S relative to a base for S
itself.

These results can be refined in various ways. Every protoalgebraic de-
ductive system that has a fully adequate Gentzen system has a finite GDD
system ∆ (without parameters, but possibly not Leibniz-generating) over
all Leibniz theories (Thm. 5.4). From this we get that every protoalgebraic
deductive system with a fully adequate Gentzen system has the graded DD
theorem (Cor. 5.5).

Every equivalential deductive system (Def. 3.9) with a fully adequate
Gentzen system has a finite Leibniz-generating GDD system over all Leibniz
filters (Cor. 5.9). Thus, for equivalential deductive systems, having a fully
adequate Gentzen system is equivalent to the existence of a finite Leibniz-
generating GDD system over all Leibniz filters. An example is given of a
finitely equivalential deductive system that has a fully adequate Gentzen
system and hence the graded DD theorem, but fails to have the multiterm
DD theorem (Example 5.10).

Finally, if S weakly algebraizable (Def. 5.6), in particular, if S is
(finitely) algebraizable, then S has a fully adequate Gentzen system iff
it has the multiterm DD theorem (Cor. 5.7).

The motivation for the proof of the main result of the paper is the
fundamental isomorphism theorem [15, Theorem 2.30] (see also [16, Theo-
rem 1.14]). It establishes for every deductive system S a bijection between
the full generalized models of S over a fixed algebra A and the intersections
of S-Leibniz congruences of A. In the case S is protoalgebraic with a fully
adequate Gentzen system G, this gives rise to an order-preserving bijection
between G-theories and Leibniz S-theories. This bijection turns out to
commute with surjective substitutions and to preserve arbitrary joins (in
the lattices of G-theories and S-theories). The method of [3, Theorem 3.7]
can then be applied to show that there is a faithful interpretation of the
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consequence relation of G in the consequence relation of S. The existence
of this interpretation leads directly to the existence of a Leibniz-generating
PGDD system for S over Leibniz theories.

Section 2 is preliminary. Its primary purpose is to develop the part of
the theory of generalized matrices that is needed to obtain the main results
of the paper. The central idea of the paper is that the theory that underlies
the interpretation of the equational logic of a quasivariety in the logic of
a deductive system, and which in turn underlies the notion of algebraic
semantics in [3], can be carried over more-or-less intact to the interpretation
of the logic of a Gentzen system in that of a deductive system. For this
purpose a theory of generalized matrices as models of Gentzen systems is
needed. A large part of Section 2 is taken up in this task.

Section 3 is devoted to presenting facts about Leibniz theories in pro-
toalgebraic systems that are needed for the main results of the paper. The
equivalence between having a fully adequate Gentzen system and the exis-
tence of a Leibniz-generating parameterized GDD system for Leibniz the-
ories is presented in Section 4. The refinements of this basic equivalence,
including in particular the results on GDD systems without parameters,
are given in Section 5.

2. Deductive Systems, Gentzen Systems, and their Models

Let A be a nonempty set. By a string over A we mean a nonempty finite
sequence 〈a0, . . . , an〉 of elements ofA; the set of all strings over A is denoted
by A(ω). Strings will be written in the form a0, . . . , an−1 � an. If n = 0
then a0, . . . , an−1 is the empty sequence, and hence a0, . . . , an−1 � an is the
one-element string 〈a0〉. We write this as � a0, and as usual we identify it
with a0. Sets of strings over A are called generalized subsets (g-subsets) of
A. Every function from A to B induces a function from A(ω) to B(ω), which
we denote by the same symbol. If h:A→ B and a0, . . . , an−1 � an ∈ A(ω),
then h(a0, . . . , an−1 � an) := h(a0), . . . , h(an−1) � h(an).

Definition 2.1. Let R be a g-subset of a set A.

(i) R is reflexive if a � a for all a ∈ A;

(ii) R is transitive if a0, . . . , ak−1 � ak ∈ R and b0, . . . , bl−1 � ai ∈ R for
some i < k, then a0, . . . , ai−1, b0, . . . , bl−1, ai+1, . . . , ak−1 � ak ∈ R;
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(iii) R is standard if it is both reflexive and transitive;

(iv) R is structural if a0, . . . , ak−1 � ak ∈ R, then b0, . . . , bl−1 � ak ∈ R
whenever {a0, . . . , ak−1} ⊆ {b0, . . . , bl−1}.

A standard, structural g-subset of A is called a finite closure relation
on A.

The closure operator associated with a given finite closure relation R is
denoted by CloR. Thus CloR :P(A) → P(A), and, for each X ⊆ A,

CloRX = { an ∈ A : a0, . . . , an−1 � an ∈ R for some a0, . . . , an−1 ∈ X }.

The finiteness of R is reflected in the fact that CloRX =
⋃{CloRX

′ :
X ′ ⊆ω X }. (X ′ ⊆ω X means that X ′ is a finite subset of X.)

Let A be a nonempty set. By an algebraic closed-set system C on A

we mean a family of subsets of A that contains A and is closed under
arbitrary intersections and under the unions of subfamilies upward-directed
by inclusion. If C is an algebraic closed-set system and F ∈ C, we define

[F )C := {G : F ⊆ G ∈ C }.

[F )C is also an algebraic closed-set system, called the principal subsystem
of C generated by F .

If C is an algebraic closed-set system on A, then

Fcr C :=
{
a0, . . . , an−1 � an ∈ A(ω) :

for every F ∈ C, a0, . . . , an−1 ∈ F implies an ∈ F
}

is a finite closure relation on A. Conversely, if R is a finite closure relation
on A, then

Css R := {F ⊆ A : for every a0, . . . , an−1 � an ∈ R,

a0, . . . , an−1 ∈ F implies an ∈ F }

is an algebraic closed-set system. Fcr is a one-one correspondence between
the algebraic closed-set systems and the finite closure relations on A, and
Css is its inverse. The sets of finite closure relations and algebraic closed-set
systems on A are both closed under arbitrary intersections and unions of
upward-directed sets and thus form algebraic lattices under set-theoretic
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inclusion. Fcr and Css are inverse dual isomorphisms between these two
lattices.

We use upright boldface Roman symbols for finite closure relations and
calligraphic symbols for algebraic closed-set systems. For every algebraic
closed-set system C we take CloC := CloFcr C .

By a matrix we mean a pair A = 〈A, F 〉, where A is an algebra over a
fixed but arbitrary language type Λ, and F is a subset of the universe A of
A.

A generalized matrix (g-matrix ) is a pair A = 〈A, C〉, where A is a Λ-
algebra and C is an algebraic closed-set system on A. The pair 〈A,Fcr C〉
will be called the closure-relation form of A, and 〈A, C〉 will be referred to
as the closed-set form of A.

A g-matrix 〈A, C〉 in closed-set form is closed under inverse endomor-
phisms if, for each endomorphism h: A → A of the underlying algebra,
h−1(C) ⊆ C, i.e., h−1(F ) ∈ C for each F ∈ C. A g-matrix 〈A,R〉 in
closure-relation form is said to be endomorphism-invariant if, for each
endomorphism h of A, h(R) ⊆ R, i.e., a0, . . . , an−1 � an ∈ R implies
h(a0), . . . , h(an−1) � h(an) ∈ R. It is easy to see that a g-matrix in closed-
set form is closed under inverse endomorphisms iff its closure-relation form
is endomorphism-invariant.

The following easy lemma and its corollary will be useful to have.

Lemma 2.2. Let C be an algebraic closed-set system on a nonempty
set A and let F ∈ C. Then a0, . . . , an−1 � an ∈ Fcr[F )C iff an ∈ CloC

(
F ∪

{a0, . . . , an−1}
)
.

Proof. a0, . . . , an−1 � an ∈ Fcr[F )C iff an ∈ Clo[ F )C
({a0, . . . , an−1}

)
.

But it is easy to see that, for any X ⊆ A, Clo[ F )C (X) = CloC(F ∪ X).
Thus a0, . . . , an−1 � an ∈ Fcr[F )C iff an ∈ CloC

(
F ∪ {a0, . . . , an−1}

)
. �

Corollary 2.3. Let C be an algebraic closed-set system on a nonempty
set A and let F ∈ C. Then F = { a ∈ A : � a ∈ Fcr[F )C }. In particular,
CloC(∅) =

⋂C = { a ∈ A :� a ∈ Fcr C }. �

Let A = 〈A, C〉 and B = 〈B,D〉 be g-matrices over Λ in closed-set
form. B is a submatrix of A, in symbols B ⊆ A, if B ⊆ A (i.e., B is
a subalgebra of A) and D = {F ∩ B : F ∈ C }. B is a weak submatrix
of A, in symbols B ⊆w A, if B ⊆ A and D ⊇ {F ∩ B : F ∈ C }. A
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submatrix or weak submatrix B of A is finitely generated if B ⊆ω A, i.e.,
B is a finitely generated subalgebra of A. A homomorphism h: A → B is
a matrix homomorphism between A and B if h−1(D) ⊆ C, i.e., h−1(F ) ∈ C
for every F ∈ D. Note that A is closed under inverse endomorphisms iff
every endomorphism of the underlying algebra is a matrix endomorphism.
A matrix homomorphism h is strict if h−1(D) = C. If in addition h is
surjective, we say that B is a strict homomorphic image of A, in symbols
B � A or A � B. A strict bijective matrix homomorphism is a matrix
isomorphism; in this case we write A ∼= B.

Now let A = 〈A,R〉 and B = 〈B,S〉 be g-matrices over Λ in closure-
relation form. B is a submatrix of A, in symbols B ⊆ A, if B ⊆ A and S =
R∩B(ω). B is a weak submatrix of A, in symbols B ⊆w A, if B ⊆ A and
S ⊆ R. A homomorphism h: A → B is a matrix homomorphism between
A and B if h(R) ⊆ S (equivalently, R ⊆ h−1(S)) i.e., h(a0), . . . , h(an−1) �
h(an) ∈ S for all a0, . . . , an−1 � an ∈ R. h is strict if h−1(S) = R, i.e.,
h(a0), . . . , h(an−1) � h(an) ∈ S iff a0, . . . , an−1 � an ∈ R.

For g-matrices A and B in closed-set form, B is a (weak) submatrix of
A iff the closure-relation form of B is a (weak) submatrix of the closure-
relation form of A. Similarly, h is a (strict) homomorphism between A
and B iff it is a (strict) homomorphism between the corresponding closure-
relation forms.

2.1. Deductive systems

A (first-order) deductive system over the language type Λ is defined to be
a g-matrix in closed-set form that is closed under inverse endomorphisms
and whose underlying algebra is FmΛ, the algebra of formulas over Λ. The
closed sets of a deductive system S are called the theories of S, and the
set of all S-theories is denoted by Th S. Thus S = 〈FmΛ,Th S〉.

Strings over the set FmΛ of formulas of type Λ are called sequents. The
set of all sequents is Fm(ω)

Λ . The sequent ϕ0, . . . , ϕn−1 � ϕn is sometimes
written in the form

ϕ0, . . . , ϕn−1

ϕn
.

The closure-relation form FcrTh S of Th S is called the (finite) conse-
quence relation of S and is denoted by �S. Thus S = 〈FmΛ,�S〉 in closure-
relation form. Following standard practice we write ϕ0, . . . , ϕn−1 �S ϕn
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instead of ϕ0, . . . , ϕn−1 � ϕn ∈ �S. The corresponding closure operator
is called the consequence operator of S and written CnS. Thus CnS =
Clo�S = CloTh S. A formula ϕ is a theorem of S if �S ϕ ( � ϕ ∈ �S),
or equivalently if ϕ ∈ ⋂

Th S. The set of all theorems of S is denoted by
Thm S.

Endomorphisms of the formula algebra are called substitutions and con-
sequently deductive systems are said to be closed under inverse substitu-
tions or, when in closure-relation form, substitution-invariant. Expressed in
terms of the algebraic closed-set system of S-theories, closure under inverse
substitutions takes the form

σ−1(T ) ∈ Th S, for every σ :FmΛ → FmΛ and every T ∈ Th S.

Expressed in terms of the consequence relation substitution-invariance takes
the form

ϕ0, . . . , ϕn−1 �S ϕn implies σ(ϕ0), . . . , σ(ϕn−1) �S σ(ϕn),

for every σ : FmΛ → FmΛ.

Following standard use of the turnstyle symbol �S we also use it to
represent the associated closure operation. Thus, for any set Γ of for-
mulas, possibly infinite, Γ,ϕ0, . . . , ϕn−1 �S ϕn will mean ϕn ∈ CloS

(
Γ ∪

{ϕ0, . . . , ϕn−1}
)
. Also, Γ �S ∆ means Γ �S ϕ for all ϕ ∈ ∆. As a par-

ticular case of Corollary 2.3 we have that, if S is a deductive system and
T ∈ Th S, then ϕ0, . . . , ϕn−1 � ϕn ∈ Fcr[T )Th S iff T,ϕ0, . . . , ϕn−1 �S ϕn.

A sequent ϕ0, . . . , ϕn−1 � ϕn is called a Hilbert-style (or first-order) rule
of S, an S-rule for short, if it is contained in �S, i.e., if ϕ0, . . . , ϕn−1 �S ϕn.

The sequent ϕ0, . . . , ϕn−1 � ϕn is valid in a matrix A = 〈A, F 〉, and
A is a model of ϕ0, . . . , ϕn−1 � ϕn, if, for every assignment h:FmΛ → A,

h(ϕ0), . . . , h(ϕn−1) ∈ F implies h(ϕn) ∈ F .

A is a model of a deductive system S if it is a model of every rule of S.
The class of all models of S is denoted by ModS.

A subset F of the underlying set A of an algebra A is said to be a filter
of S (S-filter) if 〈A, F 〉 is a model of S. The set of all S-filters on A is
denoted by FiS A. Note that Th S = FiS FmΛ, and like Th S, FiS A is an
algebraic closed-set system. Thus 〈A,FiS A〉 is a g-matrix.
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Let h: A → B be an arbitrary homomorphism. If F ⊆ A is an S-
filter, then so is h−1(F ); if F ⊆ A is an S-filter that is compatible with
the relation-kernel of h (in the sense defined just below), then h(F ) is an
S-filter.

Let A be an algebra and F ⊆ A. A congruence Θ on A is compatible
with F if a ∈ F and a ≡ b (mod Θ) imply b ∈ F (i.e., F is a union
of equivalence classes of Θ). The largest congruence compatible with F

(it always exists) is called the Leibniz congruence of F and is denoted by
ΩAF . The mapping ΩA from subsets of A to congruences on A is called
the Leibniz operator.

Theorem 2.4 ([5, Lemma 5.4]). Let h: A → B be a surjective ho-
momorphism. Then for every F ⊆ A, ΩA h−1(F ) = h−1(ΩB F ). �

Definition 2.5 ([5, Definition 7.1]). A deductive system S is pro-
toalgebraic if, for each algebra A, the Leibniz operator restricted to S-filters
is monotonic, i.e., for all F,G ∈ FiS A, F ⊆ G implies ΩAF ⊆ ΩAG.

It is not difficult to show that, if S is protoalgebraic, then ΩA(F ∩G) =
ΩAF ∩ΩAG for all F,G ∈ FiS A.

Protoalgebraic deductive systems were introduced in [2] using a different
but equivalent defining condition.

The following theorem gives a characteristic property of protoalgebraic
systems that will play a key role in the paper. It is one version of the
so-called correspondence theorem for protoalgebraic logic (see [2, p. 352]).

Theorem 2.6. Let S be a protoalgebraic deductive system. Let A and
B be algebras and h: A � B a surjective homomorphism. Then, for each
F ∈ FiS B, the mapping G �→ h−1(G) is an isomorphism between the
lattices [F )FiS B and [h−1(F ) )FiS A. �

For each language type Λ there is a unique protoalgebraic deductive sys-
tem with no theorems, called the almost inconsistent system; it is presented
by the single inference rule

x

y
(and no axioms). The almost inconsistent

system has exactly two theories, ∅ and FmΛ. In this paper we assume that
all protoalgebraic deductive systems have at least one theorem.
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2.2. Gentzen systems

The definition of a Gentzen system, or second-order deductive system, over
the language type Λ is similar to that of a first-order deductive system
except that we now take an algebraic closed-set system on the set Fm(ω)

Λ of
sequents that is closed under inverse substitutions, rather than on the set
of formulas. The members of the closed-set system that defines a Gentzen
system G are called theories of G (G-theories for short), and the set of
all G-theories is denoted by Th G. Thus G = 〈FmΛ,Th G〉. The closure-
relation form FcrTh G of Th G is called the consequence relation of G and
is denoted by �G. Thus G = 〈FmΛ,�G〉 in closure-relation form. The
corresponding closure operator is called the consequence operator of G and
written CnG. Thus CnG = CloTh G = Clo�G . The turnstyle symbol �G
is used to represent the closure operator of G, as in the case of deductive
systems.

A sequent ϕ0, . . . , ϕn−1 � ϕn is a theorem of G if �G ϕ0, . . . , ϕn−1 � ϕn

or equivalently if ϕ0, . . . , ϕn−1 � ϕn ∈ ⋂
Th G. The set of all theorems of

G is denoted by Thm G. The theorems of a Gentzen system G are called
derivable sequents of G in the usual terminology of Gentzen calculi.

Expressed in terms of the consequence relation, the substitution-inva-
riance of G takes the form

{ϕi
0, . . . , ϕ

i
ni−1 � ϕi

ni
: i < k } �G ψ0, . . . , ψm−1 � ψm

implies

{σ(ϕi
0), . . . , σ(ϕi

ni−1) � σ(ϕi
ni

) : i < k } �G σ(ψ0), . . . , σ(ψm−1) � σ(ψm),

for every σ : FmΛ → FmΛ.
The elements of �G are generalized sequents (g-sequents) that is, se-

quents of sequents. G-sequents are traditionally called Gentzen-style rules
and written in the form

ϕ0
0, . . . , ϕ

0
n0−1 � ϕ0

n0
; . . . ; ϕk−1

0 , . . . , ϕk−1
nk−1−1 � ϕk−1

nk−1

ψ0, . . . , ψm−1 � ψm
. (3)

In this paper the term “rule” is only used in connection with a particular
deductive system or Gentzen system, and is reserved exclusively for those
sequents or g-sequents that are contained in the consequence relation of the
given system.

The sequents ϕ0
0, . . . , ϕ

0
n0−1 � ϕ0

n0
; . . . ; ϕk−1

0 , . . . , ϕk−1
nk−1−1 � ϕk−1

nk−1
are

called the antecedents of the g-sequent (3) and ψ0, . . . , ψm−1 � ψm is its
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consequent. A g-sequent is proper if it has at least one antecedent. The
g-sequent (3) is called a rule of G, a G-rule, if it is contained in �G, i.e., if

{ϕi
0, . . . , ϕ

i
ni−1 � ϕi

ni
: i < k } �G ψ0, . . . , ψm−1 � ψm.

The following g-sequents are of special importance.

(axiom)
x � x

;

(cut)
x0, . . . , xk−1 � xk ; y0, . . . , yl−1 � xi

x0, . . . , xi−1, y0, . . . , yl−1, xi+1, . . . , xk−1 � xk
, i < k < ω;

(structure)

x0, . . . , xk−1 � xk

y0, . . . , yl−1 � xk
, k, l < ω, {x0, . . . , xk−1} ⊆ {y0, . . . , yl−1}.

The theories of G are sets of sequents, i.e., g-subsets of FmΛ; as such
they are standard (in the sense of Def. 2.1) just in case all the g-sequents
of (axiom) and (cut) are G-rules, and they are structural just in case all
of the g-sequents of (structure) are G-rules. In this case G is said to be
structural. Thus G is structural and has (axiom) and (cut) as rules iff each
G-theory is a finite closure relation on the set of formulas; in this case
〈FmΛ,T〉 is a g-matrix in closure-relation form for each G-theory T. All
the Gentzen systems we consider in this paper are automatically assumed
to be structural and have (axiom) and (cut) as rules.

Since G-theories are finite closure relations they can be represented as
algebraic closed-set systems by taking their closed-set form. In the sequel
we will find it convenient to pass back-and-forth between these two concepts
of a G-theory as we do with g-matrices.

The g-sequent (3) is valid in a g-matrix A = 〈A,R〉, in closure-relation
form, and the g-matrix is a model of the g-sequent, if for every assignment
h: FmΛ → A,

h(ϕi
0), . . . , h(ϕi

ni−1) � h(ϕi
ni

) ∈ R for all i < k

implies h(ψ0), . . . , h(ψm−1) � h(ψm) ∈ R.

A g-matrix is a model of a Gentzen system if it is a model of all its rules.
The class of all models of a Gentzen system G is denoted by ModG.

The proof of the following theorem is straightforward.



ADEQUATE GENTZEN SYSTEMS AND THE DEDUCTION THEOREM 129

Theorem 2.7. Let A and B be g-matrices.

(i) If B ⊆ A, then every g-sequent that is valid in A is also valid in B.

(ii) If B � A, then a g-sequent is valid in B iff it is valid in A. �

The following technical lemma of a similar kind will also be useful in
the sequel.

Let K be a family of g-matrices that is upward-directed under the weak-
submatrix ordering ⊆w. Assuming the members of K are in closure-relation
form we define⋃

K :=
〈⋃{A : 〈A,R〉 ∈ K }, ⋃{R : 〈A,R〉 ∈ K }〉.

where
⋃{A : 〈A,R〉 ∈ K } is the algebra whose universe is the union of

the universes of the underlying algebras of the g-matrices of K and each
of whose fundamental operations, when viewed as a relation, is the union
of the corresponding fundamental operations of the underlying algebras.
Clearly,

⋃
K is a g-matrix in closure-relation form.

Lemma 2.8. Let K be any upward-directed family of g-matrices such
that, for each B ∈ K, there exists a C ∈ K such that B ⊆w C and the
g-sequent (3) is valid in C. Then (3) is valid in

⋃
K.

Proof. Let h:FmΛ → ⋃{A : 〈A,R〉 ∈ K } be an assignment in
⋃{A :

〈A,R〉 ∈ K } such that h(ϕi
0), . . . , h(ϕi

ni−1) � h(ϕi
ni

) ∈ ⋃{R : 〈A,R〉 ∈
K } for all i < k. Let B = 〈B,S〉 ∈ K be such that B contains the h-image
of each variable occurring in the g-sequent (3), and h(ϕi

0), . . . , h(ϕi
ni−1) �

h(ϕi
ni

) ∈ S for each i < k. By hypothesis there is a C = 〈C,T〉 ∈ K such
that B ⊆w C and (3) is valid in C. So h(ψ0), . . . , h(ψm−1) � h(ψm) ∈ T ⊆⋃{R : 〈A,R〉 ∈ K }. Hence (3) is valid in

⋃
K. �

Let G = 〈FmΛ,�G〉 be a Gentzen system (G is structural and has
(axiom) and (cut) as rules), and let A be an algebra. A finite closure
relation R on A is a filter of G (a G-filter) if 〈A,R〉 is a model of G. The
set of all G-filters on A is denoted by FiG A. The G-filters on FmΛ are
the G-theories. FiG A is an algebraic closed-set system over the set A(ω) of
strings on A; thus it is closed under arbitrary intersection and the union of
upward-directed sets.
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Let A be an algebra and R ⊆ A(ω), a set of strings over A. A congruence
Θ on A is compatible with R if a0, . . . , an−1 � an ∈ R and ai ≡ bi (mod Θ)
for all i ≤ n implies b0, . . . , bn−1 � bn ∈ R. The largest congruence on A

compatible with R is called the Tarski congruence of R and is denoted by
Ω̃A R.

Lemma 2.9. Let A be a Λ-algebra and R,S ⊆ A(ω). If R and S are
finite closure relations, then R ⊆ S implies Ω̃A R ⊆ Ω̃A S.

Proof. Assume R and S are finite closure relations and R ⊆ S. Let Θ
be a congruence compatible with R. It suffices to show it is also compatible
with S. Suppose a0, . . . , an−1 � an ∈ S and bi ≡ ai (mod Θ) for all i ≤ n.
a0, . . . , an−1 � ai ∈ R for all i < n by reflexivity and structurality. So
b0, . . . , bn−1 � ai ∈ R ⊆ S for all i < n by the assumption Θ is compatible
with R. Thus b0, . . . , bn−1 � an ∈ S by transitivity. Then, since an � an ∈
R by reflexivity, and an ≡ bn (mod Θ), an � bn ∈ R ⊆ S. Transitivity
now gives b0, . . . , bn−1 � bn ∈ S. �

If C is an algebraic closed-set system on the underlying set of an algebra
A, we define Ω̃A C = Ω̃A Fcr C. It is not difficult to see that Ω̃A C =⋂

F∈C ΩAF .
A g-matrix A = 〈A,R〉, in closure-relation form, is reduced if Ω̃A R =

IdA, the identity congruence on A. For an arbitrary g-matrix A, the quo-
tient matrix A/ Ω̃A R := 〈A/ Ω̃A R, R/ Ω̃A R〉 is reduced. It is called
the reduction of A and is denoted by A∗. (For any congruence Θ we
define R/Θ = { a0/Θ, . . . , an−1/Θ � an/Θ : a0, . . . , an−1 � an ∈ R }.)
A∗ � A, and hence A∗ is a model of exactly the same g-sequents as A.
If A = 〈A, C〉 is in closed-set form, then A/ Ω̃A C = 〈A/ Ω̃A, C/ Ω̃A C〉
where C/ Ω̃A C = {F/ Ω̃A C : F ∈ C }.

2.3. Generalized models of a deductive system

A Gentzen system G is said to be adequate for a (first-order) deductive
system S if the theorems (derivable sequents) of G coincide with the rules
of S, i.e., �G ϕ0, . . . , ϕn−1 � ϕn iff ϕ0, . . . , ϕn−1 �S ϕn. There are in
general many different Gentzen systems adequate for a given deductive
system S. The weakest one is presented by the rules of S taken as initial
sequents (together with the g-sequents of (axiom), (cut), and (structure)).
Since any proof in a Hilbert-style system can be replicated in a Gentzen
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system having (cut) as a rule, it is enough to take only a base for the rules
S for the initial sequents.

The generalized models (g-models) of S are defined to be the models
of the weakest Gentzen system adequate for S. It is easy to check that
a g-matrix A = 〈A, C〉 in closed-set system form is a g-model of S iff
C ⊆ FiS A. It is clear that, if A � B, then A is a g-model of S iff B is.

A finite closure relation R on a Λ-algebra A is said to be a generalized
S-filter (S-g-filter) of A if 〈A, Css R〉 is a g-model of S. The set of all
S-g-filters is denoted by GFiS A; it is clearly an algebraic closed-set system
on A(ω).

The following definition, in slightly modified form, is given in [15, Def-
inition 2.8].

Definition 2.10. Let S be a deductive system.

(i) G-models of the form 〈A,FiS A〉 are called basic full g-models of S
in closed-set form.

(ii) The full g-models of S are the g-models whose reduction is a basic full
g-model, i.e., 〈A, C〉 is a full g-model of S if C/ Ω̃A C = FiS(A/ Ω̃A C).

The class of all full g-models of S is denoted by FGModS.

By the following theorem every basic full g-model is also a full g-model;
this is not an immediate consequence of the definitions.

Theorem 2.11 ([15, Propositions 2.10 and 2.11]). Let S be a de-
ductive system.

(i) For every algebra A, (FiS A)/ Ω̃A(FiS A) = FiS(A/ Ω̃A(FiS A)),
i.e., every basic full g-model of S is a full g-model.

(ii) Let A and B be g-matrices. If A � B, then A ∈ FGModS iff
B ∈ FGModS. �

As an immediate corollary of this result and the definition of full g-
model we have that A is a full g-model of S iff B � A for some basic full
g-model B of S. Consequently, every reduced full g-model of S is basic.

A finite closure relation R on a Λ-algebra A is said to be a full gen-
eralized S-filter (full S-g-filter) of A if 〈A, CssR〉 is a full g-model of
S. The set of all full S-g-filters is denoted by FGFiS A. Note that
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FGFiS A ⊆ GFiS A. FGFiS A is not in general an algebraic closed-set
system on A(ω), but it is a complete lattice under set-theoretic inclusion
([15, Corollary 2.32]).

Let A be any algebra, and consider the closure-relation form
〈A,Fcr(FiS A)〉 of the basic full g-model of S on A. Fcr(FiS A) is a full
g-filter of S on A. It is the smallest full S-g-filter and in fact the smallest
S-g-filter on A. This follows from the observation that, for every g-model
〈A, C〉 of S, C ⊆ FiS A, and hence Fcr(FiS A) ⊆ Fcr C. Fcr(FiS A) is
called the basic g-filter of S on A and is denoted by BfS A. We note
for future reference that BfS A =

⋂
GFiS A, and that 〈A,R〉 is a full g-

model of S in closure-relation form iff R = h−1(BfS B) for some surjective
homomorphism h: A � B.

The following technical lemma and its corollary will be useful later.

Lemma 2.12. Let S be a deductive system and A an algebra. Let

K = { 〈B,BfS B〉 : B ⊆ω A }.

Then K is upward-directed and
⋃

K = 〈A,BfS A〉, the (unique) basic full
g-model of S on A.

Proof. Clearly {B : B ⊆ω A } is an upward-directed family of algebras.
If B,C ⊆ω A and B ⊆ C, then BfS B ⊆ BfS C by the minimality of
BfS B as an S-g-filter. So {BfS B : B ⊆ω A } is upward-directed, and
hence K is upward-directed. Since it is obvious that A =

⋃{B : B ⊆ω A },
to show that

⋃
K is the basic full g-model of S on A it suffices to show

that
BfS A =

⋃{BfS B : B ⊆ω A }.
The inclusion from left-to-right follows immediately from the minimality of
BfS A as an S-g-filter because it is clear that the union of all the BfS B

is an S-g-filter. For the opposite inclusion we simply note that for each
B ⊆ω A, BfS B ⊆ BfS A ∩B(ω) by the minimality of BfS B. �

Theorem 2.13 ([15, Theorem 3.4]). Let S be a deductive system.
S is protoalgebraic iff, for every algebra A, FGFiS A ⊆ {

Fcr
(
[F )FiS A

)
:

F ∈ FiS A
}
. �

The full g-models of both the classical and intutionistic propositional
calculi are definable in the sense that they are exactly the models of a
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Gentzen system. The following definition identifies this important property
of deductive systems.

Definition 2.14 ([15, Definition 4.10]). Let S be a deductive sys-
tem with at least one theorem. A Gentzen system G is said to be fully
adequate for S if ModG = FGModS.

This definition must be modified slightly in case S has no theorems.
We will be concerned exclusively with protoalgebraic systems that are not
almost inconsistent, and all such systems have at least one theorem. Since
a Gentzen system, like a deductive system, is completely determined by its
models, if a fully adequate Gentzen system exists it is unique.

Expressed in terms of filters, G is fully adequate for S if FiG A =
FGFiS A for every algebra A. The main goal of the present paper is to find
useful conditions that guarantee the existence of a fully adequate Gentzen
system.

3. Leibniz Filters

In a protoalgebraic deductive system S every full g-filter of S is a principal
order-filter in the lattice FiS A of all S-filters (Thm. 2.13). But not every
S-filter generates a full S-g-filter. In this section we characterize those that
do as Leibniz filters and develop some of their properties. The close cor-
respondence between Leibniz filters and full g-filters in the protoalgebraic
case is the key to the proof of the main results of the paper that are given
in the next section.

Definition 3.1 ([14]). Let S be a deductive system and A an algebra.
An S-filter F on A is a Leibniz S-filter if it is the smallest S-filter among
all those with the same Leibniz congruence, i.e., F =

⋂{G ∈ FiS A :
ΩAG = ΩAF }. The set of all Leibniz S-filters on A is denoted by Fi+S A.
The set of all Leibniz S-theories (Leibniz S-filters on FmΛ) is denoted by
Th+ S.

Let F ∈ FiS A. If the set of all filters with the same Leibniz congruence
as F has a smallest member G, i.e., if there exists a G ∈ Fi+S A such that
ΩAG = ΩAF , then it is obviously unique and we denote it by F+.

Lemma 3.2 ([14, Theorem 8]). Let S be any deductive system. Let
h: A � B be a surjective homomorphism. Then h−1(Fi+S B) ⊆ Fi+S A, i.e.,
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h−1(F ) ∈ Fi+S A for every F ∈ Fi+S B. In particular, for every F ∈ FiS B

such that F+ exists, h−1(F+) = h−1(F )+.

Proof. Consider any F ∈ Fi+S B and let G = h−1(F ). G is an S-
filter on A. By Thm. 2.4 ΩAG = h−1(ΩB F ). Suppose H ∈ FiS A and
ΩAH = ΩAG (= h−1(ΩB F )). Then h−1(ΩB F ), and hence also the
relation kernel of h, are compatible with H. We thus have h(H) ∈ FiS B

since h is surjective. h−1
(
ΩB h(H)

)
= ΩA h−1h(H) = ΩAH = ΩAG =

h−1(ΩB F ). Thus ΩB h(H) = ΩB F , and hence h(H) ⊇ F since F is
Leibniz. Then, because H is compatible with the relation kernel, H =
h−1h(H) ⊇ h−1(F ) = G. So h−1(F ) = G ∈ Fi+S A.

Consider any F ∈ FiS B such that F+ exists. Then h−1(F+) ∈ Fi+S A

for each F ∈ FiS B. Using Thm. 2.4 we have

ΩA

(
h−1(F+)

)
= h−1

(
ΩB(F+)

)
= h−1

(
ΩB(F )

)
= ΩA

(
h−1(F )

)
.

Since h−1(F+) is Leibniz we have h−1(F+) = h−1(F )+. �

Lemma 3.3. If S is protoalgebraic, then F+ exists for every algebra
A and every F ∈ FiS A. In fact, F+ =

⋂{G ∈ FiS A : ΩAG = ΩAF }.

Proof. Let H =
⋂{G ∈ FiS A : ΩAG = ΩAF }. H ⊆ F , so ΩAH ⊆

ΩAF by protoalgebraicity. On the other hand, ΩAF is compatible with
each G ∈ FiS A such that ΩAG = ΩAF . Hence it is compatible with their
intersection H. So ΩAF ⊆ ΩAH since ΩAH is the largest congruence
compatible with F . �

If S is protoalgebraic, then F+ exists for every S-filter F , and hence
+: FiS A → Fi+S A it a total function for every algebra A.

Lemma 3.4. Let S be a protoalgebraic deductive system. +: FiS A →
FiS A is monotonic for every algebra A, i.e., for every pair F,G of S-filters
on A, F ⊆ G implies F+ ⊆ G+.

Proof. If F ⊆ G, then, since S is protoalgebraic, ΩA(F∩G+) = ΩAF∩
ΩAG+ = ΩAF ∩ ΩAG = ΩAF . Therefore, F+ ⊆ F ∩G+ ⊆ G+. �

The most significant aspect of Leibniz filters for our purposes is their
close connection with full g-models.
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Theorem 3.5 ([15, Proposition 3.6]). Assume S is a protoalgebraic
deductive system. Then, for every algebra A and every F ∈ FiS A,
Fcr

(
[F )FiS A

) ∈ FGFiS A iff F is a Leibniz filter. �
Corollary 3.6. Assume S is a protoalgebraic deductive system. Then,

for every algebra A, FGFiS A =
{

Fcr
(
[F )FiS A

)
: F ∈ Fi+S A

}
. In

particular FGFiS FmΛ =
{

Fcr
(
[T )Th S

)
: T ∈ Th+ S }

.

Proof. By Thms. 2.13 and 3.5. �

Thus a Gentzen system G is fully adequate for a protoalgebraic deduc-
tive system S iff

FiG A =
{

Fcr
(
[F )FiS A

)
: F ∈ Fi+S A

}
for every algebra A.

Lemma 3.7 ([14, Proposition 13]). If S is protoalgebraic, then
Fi+S A is closed under

∨FiS A. In particular, Th+ S is closed under
∨Th S.

Proof. Let F =
∨FiS A

i Gi. By Lem. 3.4 Gi ⊆ F+ for all i ∈ I. Thus
F ⊆ F+. So F is Leibniz. �

In the following, ū denotes a normally infinite sequence u0, u1, u2, . . . ,
without repetitions, of variables different from x and y. Let

E(x, y, ū) = { εi(x, y, ū) : i ∈ I }
be a possibly infinite system of formulas over Λ in two variables, x and y,
and an arbitrary number of variables from the list ū; the latter variables
are called parameters. Of course, each individual formula εi(x, y, ū) actually
contains only a finite number of parameters, but the set of parameters that
occur in at least one of the members of E(x, y, ū) may be infinite and
normally is. For any algebra A and all a, b ∈ A, let ∀c̄ EA(a, b, c̄) stand for
the set of all elements h

(
εi(x, y, ū)

)
in A, where i ranges over all of I and

h ranges over all homomorphisms h:FmΛ → A such that h(x) = a and
h(y) = b; i.e., ∀c̄ EA(a, b, c̄) :=

{
εAi (a, b, c̄) : i ∈ I, c̄ ∈ Aω

}
. In particular,

taking A = FmΛ we have for all ϕ,ψ ∈ FmΛ,

∀ϑ̄ E(ϕ,ψ, ϑ̄) :=
{
εi(ϕ,ψ, ϑ̄) : i ∈ I, ϑ̄ ∈ Fmω

Λ

}
.

E(x, y, ū) is said to be an equivalence system with parameters for a de-
ductive system S if it defines the Leibniz congruences of S in the following
sense. For every algebra A and every F ∈ FiS A,

ΩAF =
{ 〈a, b〉 ∈ A2 : ∀c̄ EA(a, b, c̄) ⊆ F

}
.
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Theorem 3.8 ([5, Theorem 3.10]). A deductive system is protoal-
gebraic iff it has an equivalence system with parameters. �

The equivalential deductive systems form a natural subclass of the class
of protoalgebraic systems. They were introduced in [20] and studied ex-
tensively in [6]. The defining condition we use in the following definition is
known to be equivalent to the original one (see [5, Theorem 13.5]).

Definition 3.9. A deductive system is (finitely) equivalential if it has
a (finite) equivalence system without parameters.

Lemma 3.10 ([10, Lemma 3.4]). Assume S is protoalgebraic and
E(x, y, ū) is an equivalence system with parameters for S. Let A be an
algebra and F ∈ FiS A. Then

F+ = CloFiS A

(⋃{ ∀c̄ EA(a, b, c̄) : a ≡ b (mod ΩAF ) }).
Proof. Let

F̃ = CloFiS A

(⋃{ ∀c̄ EA(a, b, c̄) : a ≡ b (mod ΩAF ) }).
Consider any G ∈ FiS A such that ΩAG = ΩAF . Then, for all a, b ∈ A,
a ≡ b (mod ΩAF ) iff a ≡ b (mod ΩAG) iff ∀c̄ EA(a, b, c̄) ⊆ G. So F̃ ⊆
F+, and hence ΩA F̃ ⊆ ΩAF+. On the other hand, ∀c̄ EA(a, b, c̄) ⊆ F̃ for
all a, b such that a ≡ b (mod ΩAF ). This gives ΩAF+ = ΩAF ⊆ ΩA F̃ .
So ΩA F̃ = ΩAF+ and hence F+ = F̃ . �

Corollary 3.11. Assume S is protoalgebraic. Let A be an algebra and
F ∈ FiS A. Then F ∈ Fi+S A iff there exists a X ⊆ A2 such that

F = CloFiS A

(⋃{ ∀c̄ EA(a, b, c̄) : 〈a, b〉 ∈ X }).
Proof. The implication from left to right is a trivial consequence of the

lemma taking X = ΩAF .
For the implication in the other direction suppose

F = CloFiS A

(⋃{ ∀c̄ EA(a, b, c̄) : 〈a, b〉 ∈ X })
for some X ⊆ A2. Then X ⊆ ΩAF . So

F ⊆ CloFiS A

(⋃{ ∀c̄ EA(a, b, c̄) : a ≡ b (mod ΩAF ) }) = F+

by the lemma. Thus F = F+. �
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We note that Lemma 3.7 is an easy corollary of Lem. 3.10 and Cor. 3.11.
To see this assume {Gi : i ∈ I } ⊆ Fi+S A, so that

Gi = CloFiS A

(⋃{ ∀c̄ EA(a, b, c̄) : a ≡ b (mod ΩAGi) }
)

for each i ∈ I. Then∨FiS A
i Gi = CloFiS A

(⋃
i

⋃{ ∀c̄ EA(a, b, c̄) : a ≡ b (mod ΩAGi) }
)
.

Hence
∨FiS A

i Gi ∈ Fi+S A by Cor. 3.11.
The main purpose of the above characterization of Leibniz filters is

to show that the set of Leibniz theories is invariant under surjective sub-
stitutions in the following technical sense. For any S-theory T and any
substitution σ : FmΛ → FmΛ, let

σS(T ) := CnS
(
σ(T )

)
= CnS

({σ(ϕ) : ϕ ∈ T }).
Lemma 3.12. Let S be a protoalgebraic deductive system. If T ∈

Th+ S and σ :FmΛ � FmΛ is a surjective substitution, then σS(T ) ∈
Th+ S.

Proof. We have T = CnS
(⋃{ ∀ϑ̄ E(ϕ,ψ, ϑ̄) : 〈ϕ,ψ〉 ∈ ΩT }) by

Lem. 3.10, taking FmΛ for A and Th S for FiS A. By the substitution-
invariance of S, σ(T ) ⊆ CnS

(⋃{σ(∀ϑ̄ E(ϕ,ψ, ϑ̄)) : 〈ϕ,ψ〉 ∈ ΩT }). So

σS(T ) ⊆ CnS
(⋃{σ(∀ϑ̄ E(ϕ,ψ, ϑ̄)) : 〈ϕ,ψ〉 ∈ ΩT }).

The inclusion in the opposite direction is obvious. Since σ is surjective,
σ
(∀ϑ̄ E(ϕ,ψ, ϑ̄)

)
= ∀ϑ̄ E(σ(ϕ), σ(ψ), ϑ̄). So σS(T ) ∈ Th+ S by Cor. 3.11.

�

4. The Graded Deduction-Detachment Theorem

with Parameters

Let y, x0, x1, . . . , xk, . . . and ū = u0, u1, . . . , uk, . . . (k < ω) be two disjoint
infinite sequences of variables without repetitions. Let

∆ = 〈∆n(x0, . . . , xn−1, y, ū) : n < ω 〉
be an infinite sequence of sets of formulas, where for each n < ω, ∆n(x0, . . . ,
xn−1, y, ū) is a nonempty, possibly infinite, set of formulas in the n +
1 variables x0, . . . , xn−1, y and a possibly infinite number of parameters
from ū.
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Definition 4.1. Let S be a deductive system and let T be an S-theory.
∆ is said to be a parameterized graded deduction-detachment (PGDD) sys-
tem for S over T if, for every n < ω and for all ϕ0, . . . , ϕn−1, ψ ∈ FmΛ,

T,ϕ0, . . . , ϕn−1 �S ψ iff T �S ∀ϑ̄∆n(ϕ0, . . . , ϕn−1, ψ, ϑ̄).

The implication from T,ϕ0, . . . , ϕn−1 �S ψ to T �S ∀ϑ̄∆n(ϕ0, . . . , ϕn−1,
ψ, ϑ̄) will be referred to as the graded deduction property (over T ) and the
implication in the other direction as the graded detachment property (over
T ).

For each n < ω, consider the following (generally infinite) family of
g-sequents.

x0, . . . , xn−1 � y

� δ(x0, . . . , xn−1, y, ū)

for each δ(x0, . . . , xn−1, y, ū) ∈ ∆n(x0, . . . , xn−1, y, ū).

(R∆n)

This entire family of g-sequents is abbreviated
x0, . . . , xn−1 � y

� ∆n(x0, . . . , xn−1, y, ū)
.

Lemma 4.2. Let ∆ be a PGDD system for a deductive system S over
an S-theory T . Then every g-sequent in (R∆n) is valid in 〈FmΛ, [T )Th S〉.

Proof. Suppose ϕ0, . . . , ϕn−1 � ψ ∈ Fcr
(
[T )Th S

)
. Then by Lem. 2.2

ψ ∈ CloTh S
(
T ∪ {ϕ0, . . . , ϕn−1}

)
, i.e., T,ϕ0, . . . , ϕn−1 �S ψ. Thus, by

the graded deduction property, ∀ϑ̄∆n(ϕ0, . . . , ϕn−1, ψ, ϑ̄) ⊆ T , that is,
δ(ϕ0, . . . , ϕn−1, ψ, ϑ̄) ∈ T , and hence

� δ(ϕ0, . . . , ϕn−1, ψ, ϑ̄) ∈ Fcr
(
[T )Th S

)
for all δ(x0, . . . , xn−1, y, ū) ∈ ∆n(x0, . . . , xn−1, y, ū) and all ϑ̄ ∈ Fmω

Λ . �

Lemma 4.3. Let S be a protoalgebraic deductive system and assume
that ∆ is a PGDD system for S over every Leibniz S-theory. Then every
full g-model of S is a model of the g-sequents of (R∆n) for all n < ω.

Proof. In view of Thm. 2.7(ii), to prove every full g-model of S is a
model of (R∆n) it suffices to prove that every basic full g-model is a model
of (R∆n). Let A be a basic full g-model of S. Then, by Lem. 2.12, A =
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⋃{ 〈B,BfS B〉 : B ⊆ω A }. Consequently, by Lem. 2.8, to show that
(R∆n) is valid in A it suffices to show that it is valid in every finitely
generated weak submatrix of A that is a basic full g-model of S. So we
can assume that A itself is a finitely generated basic full g-model of S.

It is convenient in this proof to work with the closed-set form of A,
so we assume that A = 〈A,FiS A〉. Let h: FmΛ � A be a surjective
homomorphism. Let F0 =

⋂
FiS A, the smallest S-filter on A, and let

T0 = h−1(F0). By the correspondence theorem for protoalgebraic systems
(Thm. 2.6) we have h−1

(
FiS A) = [T0 )Th S. Since F0 is obviously Leibniz,

we have by Lem. 3.2 that T0 ∈ Th+ S. h is a strict surjective homomor-
phism from 〈FmΛ, [T0 )Th S〉 onto A, i.e., 〈FmΛ, [T0 )Th S〉 � A. So from
Thm. 2.7(ii) and Lem. 4.2 it follows that, for every n < ω, each of the
g-sequents of (R∆n) is valid in A. �

Although we will not use the fact here, it can be shown that, if every
full g-model of a deductive system S is a model of the g-sequents of (R∆n)
for all n < ω, then S has the graded deduction property over every Leibniz
theory.

Definition 4.4. Let S be a deductive system. A set ∆(x0, . . . , xn, ū) of
formulas is said to be Leibniz-generating over S if the S-theory generated
by the set of all parameter-substitution instances of ∆(x0, . . . , xn, ū), i.e.,
the set

CnS
(∀ϑ̄∆(x0, . . . , xn, ϑ̄)

)
,

is a Leibniz S-theory.

Lemma 4.5. Let S be a protoalgebraic deductive system and assume
that ∆(x0, . . . , xn, ū) is Leibniz-generating over S. Then for every algebra
A and all a0, . . . , an ∈ A, the set ∀c̄ ∆A(a0, . . . , an, c̄) generates a Leibniz
S-filter of A.

Proof. Since ∆(x0, . . . , xn, ū) is Leibniz-generating, by Cor. 3.11 there
is a Ξ ⊆ Fm2

Λ such that

CnS
(∀ϑ̄∆(x0, . . . , xn, ϑ̄)

)
= CnS

(⋃{ ∀ϑ̄ E(ϕ,ψ, ϑ̄) : 〈ϕ,ψ〉 ∈ Ξ }), (4)

where E(x, y, ū) is an equivalence system with parameters for S. Let

X =
⋃{h(Ξ) : h: FmΛ → A and h(xi) = ai for all i ≤ n }.
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We will prove that

CloFiS A

(∀c̄ ∆A(a0, . . . , an, c̄)
)

= CloFiS A

(⋃{ ∀c̄ EA(f, g, c̄) : 〈f, g〉 ∈ X }),
(5)

from which it follows by Cor. 3.11 that ∀c̄ ∆A(a0, . . . , an, c̄) generates a
Leibniz S-filter.

To prove the inclusion from left to right, let

d ∈ CloFiS A

(∀c̄ ∆A(a0, . . . , an, c̄)
)
.

Since FiS A is an algebraic closed-set system there is an m < ω and, for
each i < m, δi(x0, . . . , xn, u0, . . . , uk−1) ∈ ∆ and ci0, . . . , c

i
k−1 ∈ A such that

d ∈ CloFiS A

({ δA
i (a0, . . . , an, c

i
0, . . . , c

i
k−1) : i < m }).

By (4) there is a finite subset Γ of
⋃{ ∀ϑ̄ E(ϕ,ψ, ϑ̄) : 〈ϕ,ψ〉 ∈ Ξ }) such

that, for every i < m, Γ �S δi(x0, . . . , xn, u0, . . . , uk−1). It follows immedi-
ately that, for each i < m,

δA
i (a0, . . . , an, c

i
0, . . . , c

i
k−1) ∈ CloFiS A

(⋃{ ∀c̄ EA(f, g, c̄) : 〈f, g〉 ∈ X }).
To prove the other inclusion of (5) let d ∈ CloFiS A

(⋃{ ∀c̄ EA(f, g, c̄) :
〈f, g〉 ∈ X }). As before, since FiS A is algebraic, there is an m < ω and
for each i < m there are εi(x, y, u0, . . . , uk−1) ∈ E(x, y, ū), 〈fi, gi〉 ∈ X, and
ci0, . . . , c

i
k−1 ∈ A such that

d ∈ CloFiS A

({ εAi (fi, gi, c
i
0, . . . , c

i
k−1) : i < m }).

Let us fix i < n. Since 〈fi, gi〉 ∈ X, there is a homomorphism h: FmΛ →
A and 〈ϕ,ψ〉 ∈ Ξ such that h(x0) = a0, . . . , h(xn) = an and h(ϕ) =
fi and h(ψ) = gi. We can assume without loss of generality that the
variables u0, . . . , uk−1 do not occur in either ϕ or ψ, and moreover that
h(u0) = ci0, . . . , h(uk−1) = cik−1. Now, since by (4) ∀ϑ̄∆(x0, . . . , xn, ϑ̄) �S
εi(ϕi, ψi, u0, . . . , uk−1), after applying h we obtain

εAi (fi, gi, c
i
0, . . . , c

i
k−1) ∈ CloFiS A

(∀c̄ ∆A(a0, . . . , an, c̄)
)
.

�
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Note that in particular, if ∆(x0, . . . , xn, ū) is Leibniz-generating, then,
for all ϕ0, . . . , ϕn ∈ FmΛ, the set ∆(ϕ0, . . . , ϕn, ū) is also Leibniz-generating

We will be chiefly interested in PGDD systems over all Leibniz theories
that are also Leibniz-generating. A PGDD system

∆ = 〈∆n(x0, . . . , xn−1, y, ū) : n < ω 〉

is Leibniz-generating if ∆n(x0, . . . , xn−1, y, ū) is Leibniz-generating for each
n < ω. These systems have the following graded modus ponens property.

Lemma 4.6. Let S be a deductive system and assume

∆ = 〈∆n(x0, . . . , xn−1, y, ū) : n < ω 〉

is a Leibniz-generating PGDD system for S over every Leibniz theory.
Then, for every n < ω and all ϕ0, . . . , ϕn−1, ψ ∈ FmΛ,

∀ϑ̄∆n(ϕ0, . . . , ϕn−1, ψ, ϑ̄), ϕ0, . . . , ϕn−1 �S ψ.

Proof. Let T be the S-theory generated by ∀ϑ̄∆n(ϕ0, . . . , ϕn−1, ψ, ϑ̄).
T is a Leibniz theory since ∆ is Leibniz-generating. Thus

T,ϕ0, . . . , ϕn−1 �S ψ iff T �S ∀ϑ̄∆n(ϕ0, . . . , ϕn−1, ψ, ϑ̄).

But T �S ∀ϑ̄∆n(ϕ0, . . . , ϕn−1, ψ, ϑ̄) holds trivially. �

A set ∆(y, ū) of formulas in one variable with parameters is said to ex-
plicitly define Leibniz filters over a deductive system S if, for every algebra
A and every S-filter F of A, F+ = { b ∈ A : ∀c̄ ∆A(b, c̄) ⊆ F }.

Theorem 4.7. Assume S is protoalgebraic and

∆ = 〈∆n(x0, . . . , xn−1, y, ū) : n < ω 〉

is a Leibniz-generating PGDD system for S over every Leibniz theory.
Then the initial set ∆0(y, ū) of ∆ explicitly defines Leibniz filters over S.

Proof. Assume ∀c̄ ∆A
0 (a, c̄) ⊆ F . Let G be the S-filter of A generated

by the set ∀c̄ ∆A
0 (a, c̄). By Lem. 4.5 it is a Leibniz S-filter, and by Lem. 3.4

G ⊆ F implies G ⊆ F+. So ∀c̄ ∆A
0 (a, c̄) ⊆ F+, and hence by the graded

modus ponens property (Lem. 4.6) a ∈ F+.
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Assume conversely that a ∈ F+, i.e., � a ∈ Fcr
(
[F+ )FiS A

)
. By

Thm. 3.5, the g-matrix
〈
A, Fcr

(
[F+ )FiS A

〉
is a full g-model of S, and

hence by Lem. 4.3 it satisfies the g-sequents of (R∆0). Therefore, for every
sequence c̄ of elements of A, ∀c̄ ∆A

0 (a, c̄) ⊆ F+, that is, ∀c̄ ∆A
0 (a, c̄) ⊆ F+ ⊆

F . �

Theorem 4.8. Let S be a protoalgebraic deductive system.1 If S has
a Leibniz-generating PGDD system over all Leibniz theories, then S has a
fully adequate Gentzen system. More precisely, if ∆ is a Leibniz-generating
PGDD system of S over every Leibniz theory, then the fully adequate
Gentzen system for S has a presentation whose initial sequents are (ax-
iom) and the rules of S, and whose proper rules are (cut), (structure), and
the g-sequents of (R∆n) for n < ω.

Proof. We prove that, under the hypothesis of the theorem, the Gen-
tzen system presented by the initial sequents (axiom) and the rules of S,
and the proper rules (cut), (structure), and the g-sequents of (R∆n) for
n < ω, is fully adequate for S. The g-matrices that are models of the rules
of S (considered as g-sequents with an empty set of antecedents) are all
g-models of S. Hence, from Lem. 4.3 it follows that every full g-model of
S is a model of this Gentzen system.

Now let A = 〈A, C〉 be a g-model of S. We have to show that, if A is a
model of (R∆n) for a n < ω, then A is a full g-model of S. For the purposes
of obtaining a contradiction, assume that the contrary holds, i.e., that A is
a g-model of S that is also a model of (R∆n) for all n < ω, but A is not a full
g-model of S. Let F0 be the smallest S-filter in C.Since S is protoalgebraic
and A is not a full g-model of S, this implies that C is properly included
in [F+

0 )FiS A by Thm. 3.5. Let G ∈ [F+
0 )FiS A \ C, and set Ḡ = CloC G.

Then Ḡ ∈ [F+
0 )FiS A and F+

0 ⊆ G ⊂ Ḡ. Let b ∈ Ḡ \ G. Then there
is a finite subset {a0, . . . , an−1} of G such that b ∈ CloC{a0, . . . , an−1},
i.e., a0, . . . , an−1 � b ∈ Fcr C. Thus, since the g-sequents of (R∆n) are
valid in A, ∀c̄ ∆A

n (a0, . . . , an−1, b, c̄) ⊆ F0. We now use the assumption
that ∆ is a Leibniz-generating PGDD system over all Leibniz theories to
conclude by Lem. 4.5 that ∀c̄ ∆A

n (a0, . . . , an−1, b, c̄) generates a Leibniz S-
filter, and thus, by Lem. 3.4, that ∀c̄ ∆A

n (a0, . . . , an−1, b, c̄) ⊆ F+
0 . Now by

1This theorem was originally proved under the assumption that the language type of

S is countable. The authors want to thank an anonymous referee for pointing out that

this restriction can be eliminated.
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the graded modus ponens property (Lem. 4.6) we get b ∈ G, and this is a
contradiction. �

We are now ready to state and prove the main result of the paper, Theo-
rem 4.10, the converse of Thm. 4.8. Together the two theorems completely
characterize the protoalgebraic deductive systems with a fully adequate
Gentzen system as exactly those with a Leibniz-generating PGDD system
over every Leibniz theory.

The proof emulates the proof of Theorem 3.7(i) in [3]. A quasivari-
ety Q is said, in [3], to be an algebraic semantics (in contrast to being
an equivalent algebraic semantics) for a deductive system S if there is a
faithful interpretation of the consequence relation �S of S in the equa-
tional consequence relation �Q of Q (see [3, Definition 2.2] for details).
A pseudo-lattice-theoretic criterion for the existence of such a faithful in-
terpretation is established in Theorem 3.7 of [3]. There it is proved that a
faithful interpretation of �S in �Q exists iff there is an isomorphism between
the lattice of Q-theories and a complete join subsemilattice of the theory
lattice of S that commutes with substitutions. In proving Theorem 4.10
we use the methods of the proof of [3, Theorem 3.7] to show that, under
the assumption that a deductive system S has a fully adequate Gentzen
system G, there is a similar faithful interpretation of �G in �S. We then
show that this faithful interpretation leads directly to the existence of a
Leibniz-generating PGDD system for S over every Leibniz theory.

Let G be a Gentzen system. For each surjective substitution σ :FmΛ �
FmΛ we define a transformation σG : Th G → Th G between G-theories in
complete analogy to the way the transformation σS between theories of
the deductive system S was defined in Section 3. For each T ∈ Th G, in
closure-relation form, let

σG(T) := CnG
(
σ(T)

)
,

where

σ(T) =
{
σ(ϕ0), . . . , σ(ϕn−1) � σ(ϕn) : ϕ0, . . . , ϕn−1 � ϕn ∈ T

}
.

Assume the protoalgebraic deductive system S has a fully adequate
Gentzen system. Then by Cor. 3.6 there exists a Gentzen system G whose
g-theories are exactly the S-g-filters of FmΛ that have the closed-set form
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[T )Th S, with T ∈ Th+ S, i.e.,

Th G = {Fcr
(
[T )Th S

)
: T ∈ Th+ S }.

Let Φ: Th G → Th+ S be the bijection defined by Φ
(
Fcr

(
[T )Th S

))
= T

for all T ∈ Th+ S.

Lemma 4.9. Let G be a fully adequate Gentzen system for the pro-
toalgebraic deductive system S. Then the mapping Φ defined above is an
isomorphism between the lattice Th G and the join-complete subsemilattice
Th+ S of Th S.

Moreover, Φ commutes with surjective substitutions in the following
sense. If σ :FmΛ � FmΛ is a surjective substitution and T ∈ Th G,
then

Φ(σG(T)) = σS(Φ(T)). (6)

Proof. As we already observed, Φ is a bijection between Th G and
Th+ S. For every T ∈ Th G, CssT = [Φ(T) )Th S. Thus T = FcrCssT =
Fcr

(
[Φ(T) )Th S

)
. It is now clear that, for all T,T′ ∈ Th G, T ⊆ T′ iff

Φ(T) ⊆ Φ(T′), and hence Φ is an order-isomorphism between Th G and
Th+ S, which by Lem. 3.7 is a join-complete subsemilattice of Th S.

To prove the second part of the lemma, let T ∈ Th G and put T =
Φ(T) ∈ Th+ S, so that T = Fcr

(
[T )ThS

)
. Now σG(T) ∈ Th G. Thus, if

we put S = Φ(σG(T)) ∈ Th+ S, then σG(T) = Fcr
(
[S )Th S

)
, and hence

Φ(σG(T)) = Φ
(
Fcr

(
[S )Th S

))
= S. So to show that Φ(σG(T)) = σS(Φ(T))

it is necessary and sufficient to show that S = σS(T ).
If ϕ ∈ T , then � ϕ ∈ T, so � σ(ϕ) ∈ σ(T) ⊆ σG(T), that is, σ(ϕ) ∈ S.

This shows that σ(T ) ⊆ S, and hence that σS(T ) ⊆ S because S is an
S-theory.

To show the opposite inclusion, i.e., σS(T ) ⊇ S, we will actually show
[σS(T ) )Th S ⊆ [S )Th S, and it is easier to work with the corresponding
closure-relation forms and show that

σG(T) = Fcr
(
[S )Th S

) ⊆ Fcr
(
[σS(T ) )Th S

)
.

But T ∈ Th+
S implies σS(T ) ∈ Th+

S by Lem. 3.12, and thus
Fcr

(
[σS(T ) )Th S is a G-theory, so it is enough to show that σ(T) ⊆

Fcr
(
[σS(T ) )Th S

)
. Let ϕ0, . . . , ϕn−1 � ϕn ∈ T = Fcr

(
[T )Th S

)
. By
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Lem. 2.2, this means that T,ϕ0, . . . , ϕn−1 �S ϕn, which by the substitution-
invariance of S gives σ(T ), σ(ϕ0), . . . , σ(ϕn−1) �S σ(ϕn), and thus, a for-
tiori,

σS(T ), σ(ϕ0), . . . , σ(ϕn−1) �S σ(ϕn).

From this we get σ(ϕ0), . . . , σ(ϕn−1) � σ(ϕn) ∈ Fcr
(
[σS(T ) )Th S

)
, thus

showing that σ(T) ⊆ Fcr
(
[σS(T ) )Th S

)
, as required. �

Theorem 4.10. Let S be a protoalgebraic deductive system. If S has
a fully adequate Gentzen system, then S has a Leibniz-generating PGDD
system over every Leibniz theory.

Proof. Let G be a Gentzen system fully adequate for S, and let Φ be
the mapping considered in Lemma 4.9. For each n < ω let

Tn := CnG
({x0, . . . , xn−1 � y}),

where x0, . . . , xn−1, y are distinct variables. Let ∆n(x0, . . . , xn−1, y, ū) ⊆
FmΛ be a set of generators of the S-theory Φ(Tn), where ū is a sequence
without repetitions of all variables distinct from x0, . . . , xn−1, y. Set

∆ := 〈∆n(x0, . . . , xn−1, y, ū) : n < ω 〉.

Note that Φ(Tn) is a Leibniz S-theory, and hence ∆n(x0, . . . , xn−1, y, ū)
generates a Leibniz theory. We verify that ∆ is a Leibniz-generating PGDD
system for S over every Leibniz S-theory.

Let T be a Leibniz S-theory, n < ω, and ϕ0, . . . , ϕn−1, ψ ∈ FmΛ. We
must show that

T,ϕ0, . . . , ϕn−1 �S ψ iff T �S ∀ϑ̄∆n(ϕ0, . . . , ϕn−1, ψ, ϑ̄), (7)

and also that

∀ϑ̄∆n(ϕ0, . . . , ϕn−1, ψ, ϑ̄) generates a Leibniz theory. (8)

Let Σ be the set of all surjective substitutions σ such that

σ(x0) = ϕ0, . . . σ(xn−1) = ϕn−1, σ(y) = ψ.

Then, for each σ ∈ Σ,
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Φ
(
CnG{ϕ0, . . . , ϕn−1 � ψ})

= Φ
(
CnG{σ(x0, . . . , xn−1 � y)})

= Φ
(
CnG

(
σ(CnG{x0, . . . , xn−1 � y})

))
,

by substitution-invariance of G
= Φ

(
σG(CnG{x0, . . . , xn−1 � y})

)
,

by definition of σG
= σS

(
Φ

(
CnG{x0, . . . , xn−1 � y})),

by Lem. 4.9

= σS Φ(Tn)

= σS
(
CnS

(
∆n(x0, . . . , xn−1, y, ū)

))
,

by definition of ∆n(x0, . . . , xn−1, y, ū)

= CnS
(
σ(∆n(x0, . . . , xn−1, y, ū))

)
,

by substitution-invariance of S.

Thus we have

Φ
(
CnG{ϕ0, . . . , ϕn−1 � ψ}) = CnS

(
∆n(ϕ0, . . . , ϕn−1, ψ, σ(ū))

)
. (9)

Recall that T is a Leibniz S-theory. Let T := Fcr
(
[T )Th S

)
). T is a

G-theory since T is Leibniz. Then

T,ϕ0, . . . , ϕn−1 �S ψ iff ϕ0, . . . , ϕn−1 � ψ ∈ T

iff CnG{ϕ0, . . . , ϕn−1 � ψ} ⊆ T

iff Φ
(
CnG{ϕ0, . . . , ϕn−1 � ψ}) ⊆ Φ(T) = T

iff ∆n(ϕ0, . . . , ϕn−1, ψ, σ(ū)) ⊆ T, by (9).

Thus, for every σ ∈ Σ,

T,ϕ0, . . . , ϕn−1 �S ψ iff T �S ∆n(ϕ0, . . . , ϕn−1, ψ, σ(ū)).

Consider any δ(x0, . . . , xn−1, y, ū) ∈ ∆n(x0, . . . , xn−1, y, ū) and any ϑ̄ ∈
Fmω

Λ . Since δ contains only a finite number of variables in the list ū, there
is a σ ∈ Σ such that δ(ϕ0, . . . , ϕn−1, ψ, ϑ̄) = δ(ϕ0, . . . , ϕn−1, ψ, σ(ū)). Thus

∀ϑ̄∆n(ϕ0, . . . , ϕn−1, ψ, ϑ̄) =
⋃{

∆n(ϕ0, . . . , ϕn−1, ψ, σ(ū)) : σ ∈ Σ
}
.
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This gives (7). Moreover, we have

CnS
(∀ϑ̄∆n(ϕ0, . . . , ϕn−1, ψ, ϑ̄)

)
= CnS

(⋃{∆n(ϕ0, . . . , ϕn−1, ψ, σ(ū)) : σ ∈ Σ })
= CnS

(⋃{σ(∆n(x0, . . . , xn−1, y, ū)) : σ ∈ Σ })
=

∨ThS

σ∈Σ

CnS
(
σ(∆n(x0, . . . , xn−1, y, ū))

)

=
∨ThS

σ∈Σ

CnS
(
σ
(
CnS(∆n(x0, . . . , xn−1, y, ū))

))
,

by substitution-invariance of S
=

∨ThS

σ∈Σ

σS
(
CnS(∆n(x0, . . . , xn−1, y, ū)

)
,

by definition of σS

=
∨ThS

σ∈Σ

σS Φ(Tn),

by definition of ∆n(x0, . . . , xn−1, y, ū).

But Φ(Tn) is a Leibniz S-theory. So, for each σ ∈ Σ, σS Φ(Tn) is Leibniz
by Lem. 3.12 and the assumption that σ is surjective. Finally, we get that

CnS
(∀ϑ̄∆n(ϕ0, . . . , ϕn−1, ψ, ϑ̄)

)
=

∨ThS

σ∈Σ

σS Φ(Tn)

is a Leibniz S-theory by Lem. 3.7. This gives (8). �

Corollary 4.11. A protoalgebraic deductive system has a fully ade-
quate Gentzen system iff it has a Leibniz-generating PGDD system over
every Leibniz theory.

Proof. By Thms. 4.8 and 4.10. �

5. The Graded Deduction-Detachment Theorem

without Parameters

In the last section we completely characterized the protoalgebraic deduc-
tive systems with a fully adequate Gentzen system by means of a Leibniz-
generating PGDD system over Leibniz theories. In this section we investi-
gate circumstances under which the parameters can be eliminated and the
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other two special conditions, Leibniz-generation and restriction to Leibniz
theories, can be weakened.

∆ is said to be simply a graded deduction-detachment (GDD) system
for a deductive system S over the S-theory T if it is a PGDD system for
S over T in which the set of parameters in each formula of ∆ is empty. In
this case we write

∆ = 〈∆n(x0, . . . , xn−1, y) : n < ω 〉,

and the graded deduction and detachment properties become

T,ϕ0, . . . , ϕn−1 �S ψ iff T �S ∆n(ϕ0, . . . , ϕn−1, ψ).

We sometimes say that ∆ is a GDD system without parameters for empha-
sis. A GDD system ∆ is said to be finite if ∆n(x0, . . . , xn−1, y) is finite for
each n < ω.

It is interesting to compare the notion of a GDD system with the familiar
deduction theorem from classical (and intuitionistic) logic. In the present
context we consider a slight extension of the latter notion in which there are
a finite number of formulas (not necessarily atomic) that collectively play
the role of the implication connective in the classical deduction theorem.
A deductive system S is said to have the multiterm deduction-detachment
(DD) theorem if there is a finite nonempty set Ω(x, y) of formulas in two
variables with the property that, for all Γ ⊆ FmΛ and all ϕ,ψ ∈ FmΛ,

Γ,ϕ �S ψ iff Γ �S Ω(ϕ,ψ).

The set Ω(x, y) is called a deduction-detachment (DD) system for S. The
classical deduction theorem corresponds to the special case where the DD
system consists of a single formula, usually of the form x → y; we refer to
this as the uniterm DD theorem. The DD theorem (in both its multi- and
uniterm forms) has been extensively studied in abstract algebraic logic, and
several equivalent characterizations have been found for a protoalgebraic or
an algebraizable deductive system to have the multiterm DD theorem; see
[4, 1, 7, 9]. By the main result of [9] every deductive system with the
multiterm DD theorem is protoalgebraic and has theorems.

The proof of the next lemma is straightforward (compare with the proof
of Lemma 4.2).
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Lemma 5.1. A deductive system S has the DD theorem with DD sys-
tem

Ω(x, y) = {ω0(x, y), . . . , ωk−1(x, y)}
iff, as a g-matrix S = 〈FmΛ,Th S〉, it is a model of the g-sequents

x0, . . . , xn � y

x0, . . . , xn−1 � ωi(xn, y)
for all i < k, (RΩ,n)

all n < ω, and of the following sequents (g-sequents without antecedents)

x, ω0(x, y), . . . , ωk−1(x, y) � y
.

�

The following theorem spells out the exact connection between the mul-
titerm DD theorem and GDD systems.

Theorem 5.2. Let S be a deductive system. S has the multiterm DD
theorem iff there is a finite GDD system for S over every S-theory.

Proof. Suppose Ω(x, y) is a multiterm DD system for S., i.e., Ω(x, y)
is finite and T,ϕ �S ψ iff T �S Ω(ϕ,ψ) for every S-theory T and all
ϕ,ψ ∈ FmΛ. Define ∆n(x0, . . . , xn−1, y) for every n < ω by recursion on n.
Take ∆0(y) = {y} and ∆1(x0, y) = Ω(x0, y). For each nonzero n < ω take

∆n+1(x0, . . . , xn, y)

=
⋃{Ω(x0, ϑ(x1, . . . , xn, y)) : ϑ(x1, . . . , xn, y) ∈ ∆n(x1, . . . , xn, y) }.

It is easy to see that ∆ = 〈∆n(x0, . . . , xn−1, y) : n < ω 〉 is a finite GDD sys-
tem for S over every S-theory T . Conversely, if ∆ = 〈∆n(x0, . . . , xn−1, y) :
n < ω 〉 is a finite GDD system for S over every S-theory T , then ∆1(x, y)
is a multiterm DD system for S. �

If one is chiefly interested in a graded deduction-detachment system for
theorem proving, then probably the most interesting situation is when ∆

is a finite GDD system (without parameters) over the smallest theory, i.e.,
the set of theorems. This seems closest in spirit to the multiterm deduction-
detachment theorem, and we define the graded deduction-detachment the-
orem in this way.
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Definition 5.3. Let S be a deductive system. S is said to have the
graded deduction-detachment (GDD) theorem if there is a finite GDD sys-
tem ∆ (without parameters) for S over the smallest S-theory, i.e., for all
ϕ0, . . . , ϕn−1, ψ ∈ FmΛ,

ϕ0, . . . , ϕn−1 �S ψ iff �S ∆n(ϕ0, . . . , ϕn−1, ψ).

It is clear from Theorem 5.2 that every deductive system with the multi-
term deduction-detachment theorem has the graded deduction-detachment
theorem. The converse does not hold; see Theorems 5.11 and 5.12 below.

It turns out that if a protoalgebraic system S has a fully adequate
Gentzen system, then the parameters in the PGDD system for S can be
eliminated; this is the content of the next theorem. When the parameters
are eliminated, the PGDD system can be reduced to a finite system. There
is a price to pay for this simplification however: the finite parameterless
GDD system we finally obtain need no longer be Leibniz-generating, and,
as a consequence, it is no longer guaranteed to define the full g-models of
S in the sense of Thm. 4.8.

Theorem 5.4. Let S be a protoalgebraic deductive system. If S has
a fully adequate Gentzen system, then there is a finite GDD system for S
(without parameters) over every Leibniz theory.

Proof. Assume S has a fully adequate Gentzen system, and let Γ =
〈Γn(x0, . . . , xn−1, y, ū) : n < ω〉 be a Leibniz-generating PGDD system for
S over every Leibniz theory. Then, for every n < ω, for all ϕ0, . . . , ϕn−1, ψ ∈
FmΛ, and for every Leibniz S-theory T ,

T,ϕ0, . . . , ϕn−1 �S ψ iff T �S ∀ϑ̄ Γn(ϕ0, . . . , ϕn−1, ψ, ϑ̄); (10)

moreover, ∀ϑ̄ Γn(ϕ0, . . . , ϕn−1, ψ, ϑ̄) generates a Leibniz S-theory. In par-
ticular,

T, x0, . . . , xn−1 �S y iff T �S ∀ū Γn(x0, . . . , xn−1, y, ū), (11)

and ∀ū Γn(x0, . . . , xn−1, y, ū) generates a Leibniz S-theory. Thus, taking
the Leibniz theory T in (11) to be CnS

(∀ū Γ (x0, . . . , xn−1, y, ū)
)
, we have

∀ū Γn(x0, . . . , xn−1, y, ū), x0, . . . , xn−1 �S y.
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Since S is finitary, there exists a k < ω,

γ0(x0, . . . , xn−1, y, ū), . . . , γk−1(x0, . . . , xn−1, y, ū) ∈ Γn(x0, . . . , xn−1, y, ū),

and ϑ̄0, . . . , ϑ̄k−1 ∈ Fmω
Λ such that{

γi(x0, . . . , xn−1, y, ϑ̄i) : i < k
}
, x0, . . . , xn−1 �S y.

Let σ be the (nonsurjective) substitution such that σ(x0) = x0, . . . , σ(xn) =
xn, σ(y) = y and σ(z) = y for all z ∈ Va \ {x0, . . . , xn−1, y}. Then, by the
substitution invariance of S,{

γi(x0, . . . , xn−1, y, σ(ϑ̄i)) : i < k
}
, x0, . . . , xn−1 �S y.

Define

∆n(x0, . . . , xn−1, y) :=
{
γi(x0, . . . , xn−1, y, σ(ϑ̄i)) : i < k

}
.

Then ∆n(x0, . . . , xn−1, y), x0, . . . , xn−1 �S y, and, again by the substitu-
tion invariance of S we get ∆n(ϕ0, . . . , ϕn−1, ψ), ϕ0, . . . , ϕn−1 �S ψ. Thus

T �S ∆n(ϕ0, . . . , ϕn−1, ψ) implies T,ϕ0, . . . , ϕn−1 �S ψ. (12)

Let τ be any substitution such that τ(x0) = ϕ0, . . . , τ(xn) = ϕn, τ(y) = ψ.
Then

∆n(ϕ0, . . . , ϕn−1, ψ) = τ
(
∆n(x0, . . . , xn−1, y)

)
=

{
τ
(
γi(x0, . . . , xn−1, y, σ(ϑ̄i))

)
: i < k

}
=

{
γi(ϕ0, . . . , ϕn−1, ψ, (τ ◦ σ)(ϑ̄i)) : i < k

}
⊆ ∀ϑ̄ Γn(ϕ0, . . . , ϕn−1, ψ, ϑ̄).

Thus by (10) we have

T,ϕ0, . . . , ϕn−1 �S ψ implies T �S ∆n(ϕ0, . . . , ϕn−1, ψ).

Combining this with (12) we obtain the conclusion of the theorem. �

We do not know for certain that the finite GDD system in this theorem
cannot always be taken to be Leibniz-generating, i.e., we do not know if, for
protoalgebraic systems, having a fully adequate Gentzen system is actually
equivalent to the existence of a finite GDD system (without parameters)
over every Leibniz theory. However, this seems highly unlikely. What makes
it difficult to settle the question is the fact that this equivalence does hold
for all finitely equivalential deductive systems. (See Cor. 5.9 below.)
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Corollary 5.5. Every protoalgebraic deductive system that has a fully
adequate Gentzen system has the GDD theorem.

Proof. If S is protoalgebraic and has a fully adequate Gentzen system,
then, by Thm. 5.4, there is a finite GDD system ∆ for S over every Leibniz
S-theory. The smallest S-theory T0, the set of theorems of S, is obviously
Leibniz. Thus ∆ is a finite GDD system for S over T0, i.e., S has the GDD
theorem. �

Any deductive system with a fully adequate Gentzen system that does
not have the multiterm DD theorem is an example of a deductive sys-
tem with a graded DD system over all Leibniz theories but without the
multiterm DD theorem. The deductive system of Example 5.10 has these
properties, but it is specifically constructed for this purpose. The difficulty
in finding examples of this kind already in the literature is not surprising.
There is a wide class of deductive systems, including most of the known
protoalgebraic systems, that have a fully adequate Gentzen system iff they
have the multiterm DD theorem. (See Cor. 5.7 below.)

Definition 5.6 ([10]). A deductive system S is weakly algebraizable if
Ω : Th S → CoFmΛ is order-preserving and injective.

It is easy to see that a protoalgebraic deductive system S is weakly
algebraizable iff every S-theory is Leibniz, i.e., Th+ S = Th S.

The weakly algebraizable deductive systems are all protoalgebraic and
include all the algebraizable systems ([8, 10, 18, 19]), in particular all the
finitely algebraizable systems ([3]). But they also include a number of
important deductive systems that are not algebraizable, for instance any
orthologic that is not orthomodular ([10]).

Corollary 5.7. A weakly algebraizable deductive system S has a fully
adequate Gentzen system iff it has the multiterm deduction-detachment the-
orem. More precisely, if Ω(x, y) = {ω0(x, y), . . . , ωk−1(x, y)} is a DD sys-
tem for S, then the fully adequate Gentzen system for S has a presentation
whose initial sequents are (axiom) and the rules of S, and whose proper
rules are (cut), (structure), and the g-sequents of (RΩ,n) for n < ω.

Proof. Assume S is weakly algebraizable. Then S is protoalgebraic
and, since every S-theory is Leibniz, every GDD system over all Leibniz
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theories is Leibniz-generating. Thus, by Thms. 4.8 and 5.4, S has a fully
adequate Gentzen system iff it has a GDD system over all S-theories. Now
apply Thm. 5.2.

That the fully adequate Gentzen system for S has the presentation
claimed follows without difficulty from Thm. 4.8 and the precise connection
between DD systems for S and finite GDD systems for S over every S-
theory that is spelled out in the proof of Thm. 5.2. �

We have no general method of eliminating the parameters from a PGDD
system without losing the Leibniz-generating property. However, such a
method does exist for all the protoalgebraic deductive systems that satisfy
the rather technical condition given in the next theorem. There are at least
two important classes of deductive systems that satisfy the condition. One
of them is the weakly algebraizable systems. Another is the equivalential
systems that we discussed briefly in Sec. 3; see Def. 3.9.

Let S be a protoalgebraic deductive system. The set of Leibniz S-
filters on an arbitrary algebra is not in general closed under intersection,
but they do form a complete lattice (under set-theoretic inclusion) in light
of Lem. 3.7. And it is shown in [16] that, if S has a fully adequate Gentzen
system, then they are also closed under intersection.

Theorem 5.8. Assume that S is a protoalgebraic deductive system
with the property that every Leibniz filter that is compact in the lattice
of Leibniz S-filters is also compact in the lattice of all S-filters. If S has a
fully adequate Gentzen system, then it has a finite Leibniz-generating GDD
system (without parameters) over all Leibniz theories.

Proof. Assume S has a fully adequate Gentzen system. Let Φ be the
isomorphism between the lattice Th G and the lattice of Leibniz S-theories
investigated in Lem. 4.9. Recall that Φ commutes with surjective substitu-
tions in the sense that

Φ(σG(T)) = σS(Φ(T))
for every surjective σ :FmΛ � FmΛ and every T ∈ Th G.

(13)

Recall also that the Leibniz-generating PGDD system

∆ := 〈∆n(x0, . . . , xn−1, y, ū) : n < ω 〉
for S over all Leibniz theories that was constructed in the proof of Thm. 4.10
was defined as follows. ∆n(x0, . . . , xn−1, y, ū) is any set of generators of the
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S-theory Φ(CnG
({x0, . . . , xn−1 � y}), where ū is a sequence without repeti-

tions of all variables distinct from x0, . . . , xn−1, y. CnG
({x0, . . . , xn−1 � y})

is finitely generated as a generalized G-filter, and hence it is a compact el-
ement in the algebraic lattice Th G. Thus Φ(CnG

({x0, . . . , xn−1 � y}) is
a compact element in the lattice of Leibniz theories of S. By hypoth-
esis then Φ(CnG

({x0, . . . , xn−1 � y}) is a compact element in the lat-
tice of all S-theories and hence finitely generated as an S-theory. So
∆n(x0, . . . , xn−1, y, ū) can be taken to be finite; in particular, only a fi-
nite number of the variables ū can actually occur in ∆n(x0, . . . , xn−1, y, ū).
So there exists a surjective substitution σ such that σ(xi) = xi for i < n,
σ(y) = y, and σ(u) = y for each u different from x0, . . . , xn−1, y that actu-
ally occurs in ∆n(x0, . . . , xn−1, y, ū). Then

CnS
(
∆n(x0, . . . , xn−1, y, ū)

)
= Φ

(
CnG{x0, . . . , xn−1 � y})

= Φ
(
CnG{σ(x0, . . . , xn−1 � y)})

= Φ
(
CnG

(
σ(CnG{x0, . . . , xn−1 � y})

))
,

by substitutional invariance of G
= Φ

(
σG(CnG{x0, . . . , xn−1 � y})

)
,

by definition of σG
= σS

(
Φ

(
CnG{x0, . . . , xn−1 � y})),

by (13)

= σS
(
CnS

(
∆n(x0, . . . , xn−1, y, ū)

))
,

by definition of ∆n(x0, . . . , xn−1, y, ū)

= CnS
(
σ(∆n(x0, . . . , xn−1, y, ū))

)
,

by substitutional invariance of S
= CnS

(
∆n(x0, . . . , xn−1, y, σ(ū))

)
.

Thus ∆n can be taken to be a finite set of formulas in x0, . . . , xn−1, y,
without parameters. �

Obviously every weakly algebraizable deductive system satisfies the con-
dition in Theorem 5.8 because every filter is Leibniz. We shall now see that
every finitely equivalential system also satisfies the condition.
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Corollary 5.9. A finitely equivalential deductive system S has a fully
adequate Gentzen system iff there is a finite Leibniz-generating GDD sys-
tem for S over all Leibniz S-theories.

Proof. Let E(x, y) be a finite equivalence system for S without param-
eters. We verify that S satisfies the condition of Thm. 5.8. Let F be a
Leibniz S-filter on an algebra A that is compact in the lattice of Leib-
niz filters. But the lattice of Leibniz S-filters and the lattice of Leibniz
congruences are isomorphic (under the Leibniz operator). Thus ΩAF is
compact in the lattice of Leibniz congruences on A. Since S is equivalen-
tial and hence protoalgebraic, the set of all Leibniz congruences on A is
closed under intersection and thus forms a closed-set system (actually, an
algebraic closed-set system because S is equivalential, but this fact is not
needed here). In a closed-set system every closed set that is compact in the
lattice of closed sets is finitely generated. Thus we finally get that ΩAF

is finitely generated as a Leibniz congruence. Let 〈a0, b0〉, . . . , 〈an−1, bn−1〉
be a finite set of generators of ΩAF . Then, for every S-filter G on A,
F ⊆ G iff ΩAF ⊆ ΩAG iff ai ≡ bi (mod ΩAG) for each i < n. But E, as
an equivalence system, generates Leibniz congruences, i.e., for all a, b ∈ A,
a ≡ b (mod ΩAG) iff E(a, b) ⊆ G. Thus F ⊆ G iff E(ai, bi) ⊆ G for all
i < n, i.e., F is generated as an S-filter by

⋃
i<nE(ai, bi). So F is finitely

generated. Now apply Thm. 5.8. �

In summary we have considered five putatively different deduction-
detachment-like properties of an arbitrary protoalgebraic deductive system.

(I) S has a Leibniz-generating parameterized GDD system over all Leib-
niz theories.

(II) S has a finite Leibniz-generating GDD system (without parameters)
over all Leibniz theories.

(III) S has a finite (not necessarily Leibniz-generating) GDD system over
all Leibniz theories.

(IV) S has a finite GDD system over the smallest theory (i.e., S has the
GDD theorem).

(V) S has the multiterm DD theorem.
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The logical relationships between these five notions are given in the
following diagram.

(II) ⇒ (I) ⇒ (III) ⇒ (IV)
⇑

(V)

We have shown that (I) characterizes full adequacy in general and that
full adequacy implies (III) in general, so (I) implies (III). For finitely equiv-
alential systems (I) and (II) are equivalent, and for weakly algebraizable
systems (I)–(III),(V) are all equivalent.

The following example shows that (II) does not imply (V), even under
the assumption that S is finitely equivalential; hence each of (I)–(IV) also
fails to imply (V).

Example 5.10. Let Λ = {↔,�, γ0, γ1, . . . , γn, . . . }n<ω be a language
type where ↔ is of rank 2, � of rank 0, and γk of rank k+1 for each k < ω.
Let G be the Gentzen system over Λ presented by the following axioms and
rules of inference, in addition to those of (axiom), (cut), and (structure).

Equivalence axioms:

� x↔ x,

x↔ y � y ↔ x,

x↔ y, y ↔ z � x↔ z,

x0 ↔ y0, x1 ↔ y1 � (x0 ↔ x1) ↔ (y0 ↔ y1),

x, x↔ y � y,

and, for each n < ω,

x0 ↔ y0, . . . , xn−1 ↔ yn−1, z ↔ w

� γn(x0, . . . , xn−1, z) ↔ γn(y0, . . . , yn−1, w).

Graded detachment axioms: for every n < ω,

γn(x0, . . . , xn−1, y) ↔ �, x0, . . . , xn−1 � y.

Leibniz deduction axioms: for all m,n < ω,



ADEQUATE GENTZEN SYSTEMS AND THE DEDUCTION THEOREM 157

z0 ↔ w0, . . . , zm−1 ↔ wm−1

� γm+n(z0 ↔ w0, . . . , zm−1 ↔ wm−1, x0, . . . , xn−1, y)

↔ γn(x0, . . . , xn−1, y).

Inference rules: for each n < ω,

(R∆n)
x0, . . . , xn−1 � y

� γn(x0, . . . , xn−1, y) ↔ � .

Let S be the unique deductive system whose rules are the derived se-
quents of G, that is, Γ �S ψ iff �G ϕ0, . . . , ϕn−1 � ψ for some ϕ0, . . . , ϕn−1 ∈
Γ . Then S is a finitely equivalential deductive system and G is a fully ad-
equate Gentzen system for it. Furthermore, if ∆ = 〈∆n(x0, . . . , xn−1, y) :
n < ω 〉, where

∆n(x0, . . . , xn−1, y) = {γn(x0, . . . , xn−1, y) ↔ �}, for each n < ω,

then ∆ is a finite Leibniz-generating GDD system for S over all Leibniz
theories. However, S does not have the multiterm DD theorem. These
statements are verified in the following two theorems.

Theorem 5.11. Let G be the Gentzen system and S the deductive sys-
tem defined in the above example. S is finitely equivalential and ∆ is a
finite Leibniz-generating GDD system for S over all Leibniz theories. G is
fully adequate for S.

Proof. The singleton E(x, y) = {x → y} is a finite equivalence system
for S without parameters. This can be verified by showing that E(x, y)
defines the Leibniz congruences of S, which is not difficult, or it can be
obtained directly from the original definition of equivalential logics (see
[20] or [6]). Thus, by Cor. 3.11, T is a Leibniz theory of S iff T is generated
by a set of formulas of the form ϕ ↔ ψ. Hence ∆ is Leibniz-generating.
We prove that ∆ is a GDD system over S for every Leibniz theory, i.e., we
verify that the equivalence

T,ϕ0, . . . , ϕn−1 �S ψ iff T �S γn(ϕ0, . . . , ϕn−1, ψ) ↔ � (14)

holds for every T ∈ Th+ S and all ϕ0, . . . , ϕn−1, ψ ∈ FmΛ.
Suppose T is a Leibniz theory of S and

T,ϕ0, . . . , ϕn−1 �S ψ.
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Then, for some ϑ0 ↔ ξ0, . . . , ϑm−1 ↔ ξm−1 ∈ T we have

�G ϑ0 ↔ ξ0, . . . , ϑm−1 ↔ ξm−1, ϕ0, . . . , ϕn−1 � ψ.

Thus, by (R∆n),

�G� γm+n(ϑ0 ↔ ξ0, . . . , ϑm−1 ↔ ξm−1, ϕ0, . . . , ϕn−1, ψ) ↔ �.

Then applying the Leibniz deduction axiom for m,n and using (cut) and
the equivalence axioms several times we get

�G ϑ0 ↔ ξ0, . . . , ϑm−1 ↔ ξm−1 � γn(ϕ0, . . . , ϕn−1, ψ) ↔ �,

i.e.,
ϑ0 ↔ ξ0, . . . , ϑm−1 ↔ ξm−1 �S γn(ϕ0, . . . , ϕn−1, ψ).

Thus T �S γn(ϕ0, . . . , ϕn−1, ψ). This gives the implication from left to
right in (14). The reverse implication is an immediate consequence of the
graded detachment axiom for n.

Thus ∆ is a Leibniz-generating GDD system for S over every Leibniz
theory. So by Thm. 4.8 S has a fully adequate Gentzen system; moreover,
it has a presentation whose only proper inference rules (apart from (cut)
and (structure)) are the g-sequents (R∆n), for n < ω. Clearly any two
Gentzen systems that are adequate for the same deductive system and have
presentations with the same set of proper inference rules must coincide.
Thus G is fully adequate for S. �

Theorem 5.12. The deductive system S of Example 5.10 has the GDD
theorem, but does not have the multiterm DD theorem.

Proof. That S has the GDD theorem follows immediately from the
preceding theorem by Cor. 5.5.

It is well known that, if S has the multiterm DD theorem, then, for
every algebra A, the lattice FiS A is distributive ([4, Corollary 4.4], [7,
Corollary 2.6]). Thus it suffices to find an algebra A such that FiS A is not
a distributive lattice, that is, a basic full g-model 〈A, C〉 of S such that C
is not distributive. Since every full g-model reduces to a basic full g-model,
and reduction preserves lattice structure up to isomorphism, it suffices to
find a full g-model that is not distributive. Finally, since the Gentzen
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system G of Exam. 5.10 is fully adequate for S, the problem reduces finally
to finding a model 〈A, C〉 of G such that C fails to be distributive.

Let A be any nonempty set, and let 0, 1 be fixed but arbitrary elements
of A. Let C be any algebraic closed-set system on A such that 1 ∈ ⋂ C and
CloC({0}) = A. Then we shall show that there is a Λ-algebra

A = 〈A,↔A,�A, γA
n 〉n<ω

that 〈A, C〉 ∈ ModG.
Define �A = 1,

a↔A b =

{
1 if a = b

0 otherwise,

for all a, b ∈ A, and, for every n < ω,

γA
n (a0, . . . , an−1, b) =

{
1 if b ∈ CloC({a0, . . . , an−1})

0 otherwise,

for all a0, . . . , an−1, b ∈ A.
We show that 〈A, C〉 is a model of G by verifying that each axiom and

rule of inference is valid in 〈A, C〉. For each axiom, which is in the form of
a sequent ϕ0, . . . , ϕn−1 � ψ, this means showing that, for every evaluation
h: FmΛ → A,

h(ψ) ∈ CloC({h(ϕ0), . . . , h(ϕn−1)}). (15)

This is straightforward for the equivalence axioms. Consider for exam-
ple the replacement axiom for the connective γn. If h(xi) �= h(yi), i.e.,
h(xi ↔ yi) = h(xi) ↔A h(yi) = 0, for some i < n, or h(z) �= h(w),
then CloC

({h(x0 ↔ y0), . . . , h(xn−1 ↔ yn−1), h(z ↔ w)}) = A, and (15)
obviously holds. Otherwise, h(xi) = h(yi) for all i < n and h(z) =
h(w), and hence h

(
γn(x0, . . . , xn−1, z)

)
= γA

n

(
h(x0), . . . , h(xn−1), h(z)

)
=

γA
n

(
h(y0), . . . , h(yn−1), h(w)

)
= h

(
γn(y0, . . . , yn−1, w)

)
. So

h
(
γn(x0, . . . , xn−1, z) ↔ γn(y0, . . . , yn−1, w)

)
= 1,

and obviously (15) again holds.

The graded detachment axiom for and n < ω:
Let S = {h(x0), . . . , h(xn−1)} and S′ = S ∪ {

h
(
γn(x0, . . . , xn−1, y) ↔

�)}
. If h(y) ∈ CloC(S), then obviously h(y) ∈ CloC(S′). If h(y) /∈ CloC(S),
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then h
(
γn(x0, . . . , xn−1, y)

)
= γA

n (h(x0), . . . , h(xn−1), h(y)) = 0. Hence
S′ = S ∪ {0}, and again h(y) ∈ CloC(S′). So in all cases we have h(y) ∈
CloC

({
h(γn(x0, . . . , xn−1, y) ↔ �), h(x0), . . . , h(xn−1), h(y)

})
.

The Leibniz deduction axiom for m,n < ω:
Let S = {h(z0 ↔ w0), . . . , h(zm−1 ↔ wm−1)} and

T = {h(x0), . . . , h(xn−1)}. Let

ϕ = γm+n−1(z0 ↔ w0, . . . , zm−1 ↔ wm−1, x0, . . . , xn−1, y)

↔ γn(x0, . . . , xn−1, y).

If h(zi ↔ wi) = 1 for all i < m, then S ∪ T = T ∪ {1}, and hence
h(y) ∈ CloC(S ∪ T ) iff h(y) ∈ CloC(T ). So h(γm+n−1(z0 ↔ w0, . . . , zm−1 ↔
wm−1, x0, . . . , xn−1, y)) = h(γn(x0, . . . , xn−1, y)), and hence h(ϕ) = 1. Thus
h(ϕ) ∈ CloC(S). On the other hand, if h(zi ↔ wi) = 0 for some i < m,
then 0 ∈ S and hence again we have h(ϕ) ∈ CloC(S).

The inference rule (R∆n) for n < ω:
If h(y) ∈ CloC({h(x0), . . . , h(xn−1)}, then h

(
γn(x0, . . . , xn−1, y)

)
= 1

and hence h
(
γn(x0, . . . , xn−1, y) ↔ �)

= 1.
This completes the verification of 〈A, C〉 as a model of G. To complete

the proof of the theorem we only have to exhibit a model with the property
that C is nondistributive. But this is easy. For example, let A be the
5-element set {1, a, b, c, 0} take C =

{{1}, {1, a}, {1, b}, {1, c}, A}
. This

satisfies the two conditions 1 ∈ ⋂ C and CloC{0} = A, and C is isomorphic,
as a lattice, to the 5-element nondistributive lattice M3. �

In the companion paper [16] we give an example of a finitely equiv-
alential deductive system that is a “dual” of the one in Example 5.10 in
the sense that it has the multiterm DD theorem but fails to have a fully
adequate Gentzen system, thus confirming that among the five deduction-
detachment-like properties considered previously, (V) does not imply (I)
and hence also not (II). Like its dual this example is the result of an ad hoc
construction designed specifically for the purpose at hand. The problem
with finding examples in the extant literature of either of these two kinds is
that there are very few examples of protoalgebraic deductive systems there
that are not at least weakly algebraizable, and thus for which the existence
of a fully adequate Gentzen system and of the multiterm DD theorem are
equivalent. There is however a deductive system that is closely related to
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one that has appeared in the literature and that, like Exam. 5.10, has a
fully adequate Gentzen system but not the multiterm DD theorem. See
[16] for details.

It is interesting to compare the results in the present paper to those
obtained in Chapter 4 of the monograph [15]. The two main results of
[15] we are interested in present sufficient conditions for the existence of a
fully adequate Gentzen system for selfextensional deductive systems, and
are obtained by using a completely different technique, namely Rebagliato
and Verdú’s theory of algebraizability of Gentzen systems [21]. A system
S is selfextensional if the relation that holds between the formulas ϕ and
ψ when they are interderivable (i.e., ϕ �S ψ and ψ �S ϕ) is a congruence
relation on the formula algebra. It is proved in [15, Theorem 4.45] that,
if S is selfextensional and satisfies the uniterm DD theorem, then it has a
fully adequate Gentzen system. In Corollary 5.7 we have shown that, if S is
weakly algebraizable and has the multiterm DD theorem, then it has a fully
adequate Gentzen system. These two cases seem to be orthogonal: there are
selfextensional deductive systems with the uniterm DD theorem that are
not weakly algebraizable, such as the quasi-normal modal logics, and there
are weakly algebraizable systems with the multiterm DD theorem that are
not selfextensional, such as the normal modal logics corresponding to S4
or S5, or �Lukasiewicz’s finitely valued logics �Ln for n > 2. However, the
two cases have nonempty intersection, namely the weakly algebraizable and
selfextensional deductive systems having the uniterm DD theorem, such as
the classical or intuitionistic propositional calculi and all their fragments
containing implication. All these systems have a fully adequate Gentzen
system, and both Corollary 5.7 and the results in [15] provide presentations
of this Gentzen system. It is interesting to observe that in this case the
presentation in [15] is a redundant version of that given in the present
paper, since it has the same initial sequents or axioms (the Hilbert-style
rules of S), the rules (cut) and (structure), and the rules (RΩ,n), as in our
Corollary 5.7, plus the so-called congruence rules:

x0 � y0 ; y0 � x0 ; . . . ; xk−1 � yk−1 ; yk−1 � xk−1

λx0 · · · xk−1 � λy0 · · · yk−1
(16)

for each basic operation λ of Λ; k is the arity of the operation. By Theo-
rem 4.8 and Corollary 5.7 we know these rules are no longer needed.

The other case treated in [15] concerns (not necessarily protoalgebraic)
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selfextensional deductive systems having a conjunction, that is, a term
ε(x, y) in two variables such that CnS

({ε(x, y)}) = CnS
({x, y}). In [15,

Theorem 4.27] it is proved that any selfextensional deductive system with
conjunction has a fully adequate Gentzen system. This is used to show
for instance that the conjunction-disjunction fragment of classical propo-
sitional calculus has a fully adequate Gentzen system, and to determine
it. This deductive system fails to have the multiterm DD theorem, but
is not a counterexample to the implication from (I) to (V) because it is
not protoalgebraic. Merging these results of [15] with those of the present
paper we unexpectedly find another class of deductive systems that falls
simultaneously under both approaches:

Corollary 5.13. Assume the deductive system S is selfextensional and
weakly algebraizable. If S has conjunction then it has the uniterm DD
theorem.

Proof. From the assumption that S is selfextensional and has conjunc-
tion we have by [15, Theorem 4.27] that S has a fully adequate Gentzen
system. Since S is also weakly algebraizable, it has the multiterm DD the-
orem by Corollary 5.7. Finally, the conjunction operation transforms the
finite set of formulas satisfying the DD theorem into a single formula, hence
S has the uniterm DD theorem. �

By this result, a presentation of the fully adequate Gentzen system for
these deductive systems can be obtained by two methods: In both cases one
takes all Hilbert-style rules of S as axioms (initial sequents); to these and
to the rules (cut) and (structure) one has to add either the congruence rules
(16), by [15, Definition 4.23], or the rules (RΩ,n), by Corollary 5.7. Neither
presentation is a subsystem of the other. Thus, a proof-theoretic conse-
quence of this is that the sets of rules (16) and (RΩ,n) are interderivable
modulo the Hilbert-style rules of S and the rules (cut) and (structure).

A more restricted and well behaved subcase of weak algebraizability is
that of finite algebraizability. By [15, Proposition 4.29], a selfextensional
and finitely algebraizable deductive system with conjunction is strongly
finitely algebraizable (i.e., its equivalent quasivariety is actually a variety).
There are selfextensional and finitely algebraizable systems that have the
uniterm DD theorem but not a conjunction, such as the implication frag-
ments of the classical or intuitionistic propositional calculi. Corollary 5.13
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shows that the dual situation is not possible. It is also interesting to observe
that under somewhat stronger assumptions the conclusion of this corollary
is almost straightforward: In [11, Theorem 2.22] it is easily shown that a
protoalgebraic and Fregean deductive system with at least one theorem and
having conjunction has the uniterm DD theorem. A deductive system S
is Fregean if, for every theory T of S, the interderivability relation mod-
ulo T (i.e., the relation that holds between ϕ and ψ when T,ϕ �S ψ and
T,ψ �S ϕ) is a congruence on FmΛ; every Fregean system is trivially self-
extensional. The property of being protoalgebraic is a priori weaker than
that of being weakly algebraizable, but for Fregean systems it is actually
stronger than the assumptions of Corollary 5.7 because by [13, Theorem 2]
a Fregean protoalgebraic logic with theorems is regularly finitely algebraiz-
able. Fregean deductive systems are thoroughly investigated in [11, 12].
A more detailed analysis of examples concerning the existence and precise
presentation of fully adequate Gentzen systems is contained in [15, Chapter
5] and in the last section of [16].

Finally, we pose an open problem that was suggested by the referee con-
cerning the possibility of giving a Hilbert-style characterization of PGDD
systems over all Leibniz theories; what we have in mind here is the way
the standard deduction theorem of the classical and intuitionistic calculus
is characterized in terms of modus ponens, Frege’s syllogism (x → (y →
z)) → ((x → y) → (x → z)), and the axiom x → (y → x). If S has a
PGDD system 〈∆n(x0, . . . , xn−1, y, ū) : n ∈ ω 〉 over the Leibniz theories,
then by the graded modus ponens property (Lem. 4.6)

∀ϑ̄∆n(x0, . . . , xn−1, y, ϑ̄), x0, . . . , xn−1

y

is an infinite rule of S. Hence, for each n < ω there exists a finite subset
∆′

n(x0, . . . , xn−1, y, u0, . . . , umn−1) of ∀ϑ̄∆n(x0, . . . , xn−1, y, ϑ̄) such that

∆′
n(x0, . . . , xn−1, y, u0, . . . , umn−1), x0, . . . , xn−1

y

is a finite rule of S. It is an interesting open problem whether every deduc-
tive system S with a PGDD system over Leibniz theories has a presentation
in which the above rules are the only proper rules of inference.
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