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SEQUENT CALCULI AND QUASIVARIETIES

A b s t r a c t. We discuss relatively point-regular quasivarieties related

in some special sense to sequent calculi. We show that the free algebra

in such a quasivariety is Fregean iff the sequent calculus has so-called

symmetric contraction rules admissible. In the presence of the fusion

connective this is equivalent to having contraction. With every sequent

calculus G one can associate, in some way, a sequent calculus with

fusion. If this calculus has a separability property then a quasivariety

Q related to G is the class of fusion-less reducts of some quasivariety

of algebras with fusion.

1. Introduction

We are interested in the nature of connection between Gentzen-style
calculi and relatively point-regular quasivarieties of algebras. Our motiva-
tion is, among others, a connection between the sequent calculus LBCK
and the quasivariety of BCK-algebras. An implication t1 ≈ 1, . . . , tn ≈ 1⇒
t ≈ 1 is a quasi-identity of BCK-algebras iff some sequent s1, . . . , sm → t,
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such that the set {s1, . . . , sm} ⊆ {t1, . . . , tn}, is derivable in LBCK. The
proof-theoretical properties of LBCK are reflected in the algebraic proper-
ties of BCK-algebras. Among others, LBCK results from the implicational
fragment of the system LJ by cancelling the contraction rule; this is re-
flected in the loss of the Fregean property in the quasivariety. We focus
here on the quasivarieties that are in a relationship of a similar form with
some sequent calculus.

Assume that for a quasivariety Q and a sequent calculus G, an impli-
cation t1 ≈ 1, . . . , tn ≈ 1 ⇒ t ≈ 1 is a quasi-identity of Q iff some sequent
s1, . . . , sm → t, such that the set {s1, . . . , sm} ⊆ {t1, . . . , tn}, is derivable
in G. We show (Theorem 3.8) that then the free algebra in Q is Fregean iff
a symmetric contraction rule is admissible in Q. If there is a fusion in the
language, then the free algebra in Q is Fregean iff G has the contraction
rule (Proposition 4.4).

In Theorem 5.1 we also show, by adopting the argument used in [7],
that if the sequent calculus obtained from G by adjoing fusion has the
separability property, then every algebra in Q is embeddable into an alge-
bra with fusion. We conclude that the quasivarieties for which a Gentzen
system with the separability property exists, are rare.

The relationship between quasi-identities and derivable sequents dis-
cussed here is very special and there are many Gentzen system — quasiva-
riety correspondences known in the literature which do not satisfy this con-
dition. For example, it does not hold for modal algebras and the Gentzen
system GK, for relevance logic and its Gentzen system and many others.
The Gentzen systems for modal logics and for the relevance logic have
contraction but the corresponding varieties are not Fregean.

In order to capture this general relationship, we propose to use the
condition:

if G ` t1, . . . , tn → t then Q |=
∧n
i=1 ti ≈ 1⇒ t ≈ 1.

In the presence of the (CUT) rule, this is a weaker condition than the
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following:

`G
{→ ti : i = 1, . . . n}

→ t
iff Q |=

n∧
i=1

ti ≈ 1⇒ t ≈ 1,

which we will mention here, but will consider in more details in another
paper. An embedding result, analogous to the one obtained here, also holds
if the relationship between algebras and sequent calculus is defined by this
stronger condition.

2. Preliminaries

We assume the reader’s familiarity with the universal algebraic no-
tions of a variety, quasivariety and a relative congruence as well as with
the idea of a Gentzen-system as a proof-theoretic presentation of a logic.
We will refer to the Gentzen systems LK, LJ, LBCK, FL, FLw, the def-
initions of which can be found, for example, in [5]. The sequent calculus
GK corresponding to the modal logic K results from LK by adding the

rule
Γ→ x

2Γ→ 2x
, where for a sequence Γ = t1, . . . , tn of terms, 2Γ denotes

2t1, . . . ,2tn.

2.1. Point-regularity. Let an algebraic type Λ, containing a constant
1, be fixed throughout the paper. Most of the material of this subsection
can be deduced from, or even found in, [8, Section 2], where the assertional
logic for a pointed class of algebras was defined and properties of point-
regular varieties, similar to the ones dicussed here, were obtained.

A quasivariety Q is relatively point-regular if there is a constant 1 in
its type (i.e., Q is pointed) and for every algebra A ∈ Q, and every pair of
relative Q-congruences θ, ψ on A, if 1/θ = 1/ψ, then θ = ψ. A variety V is
called point-regular, if it is relatively point-regular as a quasivariety. For
a set Γ of terms, the notation Γ ≈ 1 is used instead of:

∧
{γ ≈ 1 : γ ∈ Γ}.

The following proposition in known.
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Proposition 2.1. Let Q be a pointed quasivariety. Then Q is rela-

tively point-regular iff there exists a finite set ∆(x, y) ⊆ Te(x, y)2 such that

Q |= ∆(x, y) ≈ 1⇔ x ≈ y.

Given a relatively point-regular quasivariety Q, the set ∆ of binary
terms such that Q |= ∆(x, y) ≈ 2 ⇔ x ≈ 1 will be called the system of
point-regularity terms for Q. Notice that this condition is equivalent to the
conjunction of: Q |= ∆(x, x) and Q |= ∆(x, y) ≈ 1⇒ x ≈ y.

With every point-regular quasivariety one can associate its assertional
logic, i.e., a logic ALQ such that

Γ
γ

is a rule of ALQ iff Q |= Γ ≈ 1⇒ γ ≈ 1.

If Q is relatively point-regular, then ALQ is algebraizable and Q is an
equivalent algebraic semantics for ALQ. The set ∆(x, y) is a congruence
system for ALQ that satisfies the so-called G-rule ([2], [8]):

x, y

∆(x, y)
.

Suppose that Q is a quasivariety that is not relatively point-regular,
but there is a finite set ∆ of binary terms that forms a congruence system
for ALQ. This means that Q satisfies the following conditions:

1. ∆(x, x) ≈ 1

2. ∆(x, y) ≈ 1, x ≈ 1⇒ y ≈ 1

3. ∆(x, y) ≈ 1 ⇒ ∆(ϕ(x), ϕ(y)) ≈ 1, for every unary polynomial ϕ on
the term algebra.

Symmetry and transitivity:

∆(x, y) ≈ 1⇒ ∆(y, x) ≈ 1,

∆(x, y) ≈ 1, ∆(y, z) ≈ 1⇒ ∆(x, z) ≈ 1

follow from the conditions 1–3. For example, to show symmetry, suppose
that A ∈ Q and a, b ∈ A. Let δ(x, y) ∈ ∆(x, y) and let ϕ(x) = δ(x, z).
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Then ϕ is a unary polynomial on the term algebra and by 3, we obtain
that A |= ∆(x, y) ≈ 1 ⇒ ∆(δ(x, z), δ(y, z)) ≈ 1. Assume that ∆(a, b) =
1A. Then ∆(δ(a, a), δ(b, a)) = 1A, for all δ(x, y) ∈ ∆(x, y). By 1 and 2,
δ(b, a) = 1A, for all δ(x, y) ∈ ∆(x, y), finishing the proof of the symmetry
condition.

We can also show that for an algebra A ∈ Q, if ∆′(x, y) is another set
of binary terms that satisifies the conditions 1–3 on A, then

A |= ∆(x, y) ≈ 1⇔ ∆′(x, y) ≈ 1. (1)

For let A ∈ Q. Suppose ∆(a, b) = 1, for some elements a, b ∈ A. Let
δ(x, y) ∈ ∆′(x, y). It follows that ∆(δ(a, a), δ(a, b)) = 1 by the condition 3
above. But δ(a, a) = 1 in A. So for each δ(x, y) ∈ ∆′(x, y), we have that
δ(a, b) = 1, so ∆(a, b) = 1.

Adding
∆(x, y) ≈ 1⇒ x ≈ y (2)

to the axiomatization of Q we get an axiomatization of a relatively point-
regular quasivariety Qr. The assertional logic ALQr equals the assertional
logic ALQ.

Proposition 2.2. If Q is a variety, with a set ∆ satisfying 1–3 in Q,

then Qr is the largest relatively point-regular quasivariety contained in V.

Proof. Suppose that Q′ ⊆ Q is a relatively point-regular subqua-
sivariety of Q, and that ∆′(x, y) is a system of point-regularity terms
for Q′. Let A ∈ Q′. Then A |= ∆′(x, y) ≈ 1 ⇒ x ≈ y. By (1),
A |= ∆′(x, y) ≈ 1⇒ x ≈ y and A ∈ Qr.

For example, let L be some propositional logic axiomatized, Hilbert
style, by a set of axioms Ax and rules R. Assume that the connectives in
the language of L are from Λ\{1}, but that L satisfies the G-rule. Suppose
that there exists a finite set ∆ that is a congruence system for L, i.e., the
following three conditions hold.

1. `L ∆(x, x)
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2. ∆(x, y) `L ∆(y, x)

3. ∆(x, y) ` ∆(ϕ(x), ϕ(y)), for every unary polynomial ϕ on the formula
algebra determined by the language of L.

Let Q be the quasivariety of type Λ, axiomatized by {α ≈ 1 : α ∈ Ax}∪

{
∧

Γ ≈ 1 → α ≈ 1 :
Γ
α
∈ R}. Then, if 1 is interpreted as the value of

any tautology, Q is an algebraic semantics for L. Now define the relatively
point-regular quasivariety Qr as above. Then Qr is an equivalent algebraic
semantics for the logic L.

An example of a quasivariety obtained this way is the class of all BCK-
algebras, the equivalent algebraic semantics for the BCK-logic. This logic
is axiomatized by three axioms: (B) ((p ⊃ q) ⊃ ((q ⊃ r) ⊃ (p ⊃ r))),
(C) ((p ⊃ (q ⊃ r)) ⊃ (q ⊃ (p ⊃ r) and (K) (p ⊃ (q ⊃ p)), and the modus
ponens rule. The set ∆(x, y) = {x ⊃ y, y ⊃ x} is a congruence system
that satisfies the G-rule. Let V be the variety axiomatized by setting the
(B), (C) and (K) axioms equal to 1 and let Q be the quasivariety obtained
by further adding the modus ponens: x = 1, ∆(x, y) = 1 ⇒ y = 1.
Neither V nor Q is (relatively) point-regular. To get a relatively point-
regular quasivariety one adds the condition (2) to the axiomatization of
Q. The resulting quasivariety is the quasivariety of all BCK-algebras. In
the presence of (2), the modus ponens rule is derivable in Vr, so Qr =
Vr. Thus the class of all BCK-algebras is the largest relatively point-
regular quasivariety contained in V and the only proper quasi-identity in
the axiomatization of this class is the quasi-identity (2) needed to ensure
the point-regularity.

2.2. Sequent calculi. Below, the Greek capital letters will represent
sequences or sets of terms, depending on the context. We use the following
abbreviations. The concatenation of sequences Γ and Σ is denoted by
juxtaposition ΓΣ. By {Γ} we mean the set of all terms that are entries in
Γ. If Γ is a sequence of terms, then Γ̃ is used to denote some sequence such
that {Γ̃} ⊆ {Γ}. So Γ̃ may have less terms than Γ and may differ from Γ
in their order and numbers of repetition.
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By a sequent we mean a pair 〈Γ, t〉, written as Γ → t, such that Γ
is a finite, possibly empty, sequence of terms and t is a term. A sequent
calculus is a deductive system, usually defined in terms of rules, in which
the role of the formulas is played by sequents. More technically, let Λ be
a fixed type. Then (TeΛ(X))+ is the set of Λ sequents, and 〈t1, . . . , tn〉 for
n ≥ 1, is written as 〈t1, . . . , tn−1〉 → tn. A sequent calculus is then defined
as a pair 〈Λ,Cn〉, for some consequence operator Cn : P((TeΛ(X))+) →
P((TeΛ(X))+). As is true for deductive systems in general, the operator
Cn is uniquely determined by the set of its rules. These rules are also being
referred to as derived rules of the calculus, as opposed to the admissible
rules, i.e., rules that do not lead out of the set of the theorems of the
calculus. The theorems of the calculus will be called its derived, or derivable
sequents.

Gentzen-style systems are a special case of sequent calculi in this sense.
In a Gentzen system, the axiomatic rules are called initial sequents and are
limited usually to the ones of the form x → x, x → 1, → 1, or 0 → x.
The rules take the form of schemata, with second-order variables ranging
over sequences of formulas. More precisely, a generalized sequent is an
expression of the form Γ0, t1, . . . ,Γn−1, tn,Γn → t, where each Γi is either
a second-order variable or the empty sequence, t and ti’s are terms. A rule

schema is a pair
S1, . . . , Sm

S
, where, for i = 1, . . . ,m, Si and S are gen-

eralized sequents. A second-order substitution ([9]) is a pair of mappings:
one assigns finite sequences of terms to the second-order variables and the
other is a substitution in the usual sense.

A rule schema encodes the set of all rules that can be obtained from it
by a second-order substitution. We say that a sequent calculus G has a rule
schema (r) if all second-order substitutions of (r) are among the rules of G.
Gentzen systems known in the literature, are presented by means of only
finitely many rule schemata which can be classified as either structural or
else connective-introduction rules.

Among structural rules, the following rule schema, called (CUT), plays

a special role:
Γ→ x, Σ1xΣ2 → y

Σ1ΓΣ2 → y
. A sequent calculus G has (CUT)
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elimination if every sequent that can be derived in G can be derived in
G without an application of (CUT). We will review in Section 4 other
standard structural rules: weakening (W), contraction (C) and exchange
(E). In substructural logics, some structural rules may be just missing or
replaced by some nonstandard ones ([1]). We will consider later certain
non-standard structural rules: a modification of (C) and a modification of
(W).

The purpose of a Gentzen system is to model the derivation process in
a logic in a constructive way. With properly chosen rules, the (CUT) eli-
mination property leads to the separability and to a decision procedure for
the logic. Also, algebraic results can be proved using this sequent calculi,
like for example [11], [6], [7]).

If the assertional logic of a quasivariety has a Gentzen style presenta-
tion, then some model theoretic properties of the quasivariety are reflected
particularly simply in the rules of the Gentzen system. For example, drop-
ping the contraction rule from the Gentzen system LJ for the intuitionistic
propositional calculus results directly in the loss of the so-called Fregean
property in the related quasivariety.

A sequent calculus G will be called congruential if for every unary
polynomial ϕ(x) on the term algebra, it has a rule schema of the following
form:

Γ1xΣ1 → y Γ2yΣ2 → x

Γϕ(x)Σ→ ϕ(y)
,

for some Γ, Σ such that {ΓΣ} ⊆ {Γ1Γ2Σ1Σ2}; Γ and Σ depend on Γ1,
Γ2, Σ1, Σ2 in the sense that they can be obtained as concatenation terms
depending on Γ1, Γ2, Σ1, Σ2; moreover, how this concatenation term is
formed depends on the polynomial ϕ.

Finally, we say that a sequent calculus G defines a polarity if for every
unary polynomial ϕ(x) either

ΓxΣ→ y

Γϕ(x)Σ→ ϕ(y)
or

ΓxΣ→ y

Γϕ(y)Σ→ ϕ(x)

is a rule schema of G. A polarity is a pair M = 〈M+,M−〉 and in the first
case ϕ ∈M+, in the second: ϕ ∈M−.
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2.3. Gentzen system and logic. The connection between a Gen-
tzen-system G and a “corresponding” logic L involves, first of all, the con-
dition that for every term (formula) t,

t is a tautology of L iff the sequent → t is derivable in G. (3)

If Q is a quasivariety and L its assertional logic, then the condition (3)
translates to

Q |= t ≈ 1 iff → t is derivable in G.

This is regarded as our basic adequacy condition. The condition does not,
however, characterize the relationship between the derived sequents and the
quasi-identities of the quasivariety, although, in the presence of (CUT), it
implies that if a sequent Γ → t is derivable in G then Γ ≈ 1 ⇒ t ≈ 1
is an admissible quasi-identity of Q. More generally, (3) implies that if

`G
{→ γ : γ ∈ Γ}

→ t
is a rule of G then Γ ≈ 1⇒ t ≈ 1 is an admissible quasi-

identity of Q. Recall, that for a deductive system a rule is admissible if it
does not lead outside the set of tautologies of the system; a quasi-identity
is admissible for a quasivariety Q iff it is a quasi-identity of the free algebra
in Q.

For one quasivariety Q there may be many sequent calculi satisfying
our basic condition. For example, for the calculus defined as follows:

`G Γ→ γ iff
{Γ}
γ

is a rule of ALQ. (4)

with all admissible rules the property (3) obviously holds. The sequent cal-
culus defined this way has all structural rules. In general, it need not have
properties significant from the proof-theoretical point of view, like (CUT)-
elimination, while for many nonclassical logics, sequent calculi with such
properties exist. In fact, most nonclassical sequent calculi known in the
literature, do not satisfy (4). In other words, if there is a general charac-
terization of the quasi-identities of a quasivariety Q in terms of sequents
derivable in a sequent calculus G adequate for Q, then it should be a weaker
condition than the one used in (4).
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In this paper, we will require that if a Gentzen system G is adequate
for a quasivariety Q then:

if G ` Γ→ t then ALQ `
{Γ}
t
. (5)

We will also consider another condition:

if `G
{→ γ : γ ∈ Γ}

→ t
then ALQ `

{Γ}
t
. (6)

Note that in the presence of (CUT), (6) implies (5).

There are many examples that the converse of (5) does not hold. For
example let G equal to LBCK and Q equal to the class of all BCK-algebras.
Then

`BCK
X

γ
iff LBCK ` Σ→ γ for some Σ such that {Σ} = X. (7)

Due to the weakening rule present in LBCK, the right-hand side of (7) can
be replaced by a weaker condition: for the quasivariety Q of BCK-algebras
and G = LBCK we have

`ALQ

X

γ
iff G ` Σ→ γ for some Σ such that {Σ} ⊆ Γ. (8)

Clearly, the condition (8) implies (5) but it need not imply (6). Also,
(8) characterizes the sequent calculus-quasivariety relationship only in some
cases; in particular, it does not hold for the system GK corresponding to
the modal logic K (and, in fact, for the Gentzen systems defined for other
modal logics: T,S4 and S5):

For the logic K we have: `K
{t1, . . . , tn}

γ
iff there are m1, . . . ,mn,m

such that GK ` [m1]t1, . . . , [mn]tn → [m]γ, where for m and γ, [m]t :=
t∧2t∧ · · ·2mt. This is directly related to the local deduction theorem for
K (see [3]) and the fact that if there are the implication introduction rules
and (CUT), then the derivability of a sequent t1, . . . , tn → t is equivalent to
the derivability of the sequent→ t1 ⊃ · · · ⊃ tn ⊃ t, association to the right,
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which by the basic adequacy condition is equivalent to this last formula
being a tautology.

3. Sequent calculi and quasivarieties.

If Γ is a sequence of terms, and Σ is either a set or a sequence of terms,
then the notation Γ→ Σ abbreviates a collection of sequents Γσ → σ such
that Γ is the concatenation of all Γσ. The notation Γ̃ → σ or Γ̃ → Σ
abbreviates that there is a sequence Π such that {Π} ⊆ {Γ} that can be put
in the place of Γ̃ and turn true the expression in which the original sequent
occurs. For example, for terms t, s and a sequence Γ, by `G Γ̃ → ∆(t, s),
we abbreviate the statement that there are some sequences Γδ, one for each
δ ∈ ∆(x, y), such that

⋃
{{Γδ} : δ ∈ ∆(x, y)} ⊆ Γ and `G Γδ → δ(x, y),

for each δ ∈ ∆. Finally, for a set ∆(x, y) of binary terms, we use ∆̃(x, y)
to denote certain sequence Γ such that {Γ} ⊆ ∆(x, y). Intuitively, but
less precisely, Γ̃ → σ may be understood as: the sequent Γ → σ up to
structural rules.

For the rest of the paper assume that G is a congruential sequent
calculus that has the (CUT) rule and such that the sequents x → x are
among the axioms of G.

Define
Q̃ := Mod({Γ} ≈ 1⇒ t ≈ 1 : `G Γ→ t}).

Then Q is the largest quasivariety such that (5) holds.

Suppose that ∆(x, y) is a finite set of binary terms and consider the
following conditions:

`G
Γ→ x, Σ1yΣ2 → z

Σ1Γ∆̃(x, y)Σ2 → z
and `G

Γ→ y, Σ1xΣ2 → z

Σ1Γ∆̃(x, y)Σ2 → z
; (9)

`G
Γ1xΣ1 → y, Γ2yΣ2 → x

Π̃→ ∆(x, y)
, (10)

where Π = Γ1Σ1Γ2Σ2.
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If G has weakening then (10) implies

`G
Γ→ x, Σ→ y˜(ΓΣ)→ ∆(x, y).

(11)

Observe that (9) holds iff

`G x ∆̃(x, y)→ y and `G y ∆̃(x, y)→ x (12)

and that (11) is equivalent to

`G x̃, y → ∆(x, y). (13)

Also, (10) implies that

`G
x→ y y → x

→ ∆(x, y)
(14)

and therefore (9) and (10) yield that the sequent→ ∆(x, y) is interderivable
with the pair of sequents x→ y; y → x.

Proposition 3.1. Suppose G satisifies (9) and (10). The following

are derivable in G:

`G→ ∆(x, x) (15)

`G ∆̃(x, y)→ ∆(y, x) (16)

`G ∆̃(x, y)∆̃(y, z)→ ∆(x, z) (17)

`G ∆̃(x, y)→ ∆(λ(x, ~z), λ(y, ~z)), (18)

for all operations λ from the type Λ.

Proof. Recall that (14) follows from (10). By (14) and the axiom
x→ x we get (15). By (10), the following is a derived rule

y∆̃(x, y)→ x x∆̃(y, x)→ y

∆̃(x, y)→ ∆(y, x)
,
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the premisses of which are derived sequents, by means of (12). This gives
(16). To derive (18) we use again the same premisses and the following
derivations

x ∆̃(x, y)→ y y ∆̃(x, y)→ x

λ(x, ~z) Γ1(x, y)→ λ(y, ~z)
and

x ∆̃(x, y)→ y y ∆̃(x, y)→ x

λ(x, ~z),Γ2(x, y)→ λ(y, ~z)
,

for some {Γ1Γ2} ⊆ ∆(x, y), existing by the assumption that G is congru-
ential. Then (18) follows from (10). Next, using (18) we get `G ∆(x, y)→
∆(δ(y, z), δ(x, z)) for all δ ∈ ∆(x, y). So `G ∆̃(x, y)∆̃(y, z) → ∆(x, z),
(17).

Corollary 3.2. Under the assumptions of Proposition 3.1, ∆(x, y) is

a congruence system for Q̃.

Proof. The properties: Q̃ |= ∆(x, x) ≈ 1 and Q̃ |= ∆(x, y) ≈ 1 ⇒
∆(λ(x, ~z), λ(y, ~z)) follow from the above proposition. Also, `G x,∆(x, y)→
y, so the modus ponens property: Q̃ |= ∆(x, y) ≈ 1, x ≈ 1⇒ y ≈ 1 holds.

Definition 3.3. Let Q be a relatively point-regular quasivariety with
a point-regularity system ∆(x, y). Let G be a congruential sequent calculus
with (CUT) and such that the sequents x → x are initial in G. Then we
say that G is adequate for Q if the conditions (9)–(11) hold, and for all
sequences Γ of terms and for every term t:

Q |= t ≈ 1 iff `G→ t

and (5), i.e., if `G Γ→ t then Q |= Γ ≈ 1⇒ t ≈ 1.

Recall the definition of Qr from subsection 2.1. For a sequent calculus
G satisfying (9)–(11), define Q(G) := (Q̃)r. Then

Q(G) := Mod
(
{Γ} ≈ 1⇒ t ≈ 1 : `G Γ→ t} ∪ {∆(x, y) ≈ 1⇒ x ≈ y}

)
.

Proposition 3.4. A Gentzen system G satisfying (9)–(11) is adequate

for Q(G). The quasivariety Q(G) is the largest relatively point-regular

quasivariety for which G is adequate.

Proof. The first statement is clear. Suppose that Q′ is a relatively
point-regular quasivariety, such that G is adequate for Q′. Then Q′ ⊆ Q̃.
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Since ∆(x, y) is a system of point-regularity terms for Q̃, it follows from
Proposition 2.2 that Q′ ⊆ (Q̃)r.

For the next lemma we require that the sequent calculus G has weak-

ening and axiom → 1. So Γ → 1 and
Γ1Γ2 → x

Γ11Γ2 → x
are a derivable sequent

and a rule of G. This yields that the sequents Γ1Γ2 → x and Γ11Γ2 → x

are interderivable.

Lemma 3.5. Assume that G satisfies (9)–(11), has weakening and

axiom: → 1.

1. Suppose that Q(G) |=
∧n
i=1 ti ≈ si ⇒ t ≈ s. Then `G tΓ → s and `G

sΣ→ t for some sequences Γ and Σ such that {ΓΣ} ⊆
⋃n
i=1 ∆(ti, si).

2. If
α1, . . . , αn

α
is a rule of ALQ, then a sequent β1 . . . βn → α is derivable

in G, for some terms β1, . . . , βm ∈ {α1, . . . , αn}.

Proof. Let us first observe that sequents ∆̃(t, 1)→ t and t→ ∆(t, 1)
are derivable in G for every term t, because 1, ∆̃(t, 1)→ t and t, 1→ ∆(t, 1)
are derivable, by (12) and (13). By this observation, the second part of the
lemma follows from the first.

To prove the first part of the lemma, let S be the set of all quasi-
equations of the form

∧n
i=1 ti ≈ si ⇒ t ≈ s for which there is {Γ} ⊆⋃n

i=1 ∆(ti, si) such that `G Γ, t → s. We prove by induction that every
quasi-identity of Q(G) is in S. Suppose that

∧n
i=1 ti ≈ 1 ⇒ t ≈ 1 is in

the basis of Q̃. Then there exists a derivable sequent Γ → t such that
{Γ} ⊆ {t1, . . . , tn}. By our assumption on weakening and → 1, also the
sequents 1,Γ → t and t,Γ → 1 are derivable. In view of our observation,
this suffices to show that

∧n
i=1 ti ≈ 1⇒ t ≈ 1 ∈ S. Also, the quasi-identity

∆(x, y) ⇒ x ≈ y belongs to S, as well as the following axiom and quasi-
identities: x ≈ x, x ≈ y, y ≈ z ⇒ x ≈ z, x ≈ y ⇒ λ(x, ~z) ≈ λ(y, ~z), for
every λ ∈ Λ.

Clearly, S is closed under substitution. The quasi-identity x ≈ y ⇒
x ≈ y is in S, because `G x,∆(x, y) → y. For a subset {ti ≈ si : i =
1, . . . , n} of {ti ≈ si : i = 1, . . . ,m}, if

∧n
i=1 ti ≈ si ⇒ t ≈ s is in S, then so
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is
∧m
i=1 ti ≈ si ⇒ t ≈ s. Finally, suppose that for each j = 1, . . . ,m a quasi-

identity
∧nj

i=1 t
j
1 ≈ sji ⇒ tj ≈ sj is in S and that

∧m
j=1 t

j ≈ sj ⇒ t ≈ s

is in S as well. Then for each j, the sequents tj ,Γj → sj and sj ,Γj →
tjare derivable for some {ΓjΣj} ⊆

⋃nj

i=1 ∆(tji , s
j
i ). Then Πj → ∆(tj , sj) is

derivable as well, for a sequence Πj such that Π̃j ⊆
⋃nj

i=1 ∆(tji , s
j
i ). Using

the sequent the derivability of which is implied by the assumption that∧m
j=1 t

j ≈ sj ⇒ t ≈ s belongs to S, and the (CUT) rule, we obtain that

m∧
j=1

nj∧
i=1

tji ≈ s
j
i ⇒ t ≈ s

is in S as well.

Corollary 3.6. Let G be as above. Then t ≈ s is an identity of Q(G)
iff the sequents t→ s and s→ t are derivable in G.

Recall that the filters of the logic ALQ on an algebra A ∈ Q coincide
with the equivalence classes of the element 1A modulo the Q-congruences
on A. The filters of the logic ALQ will be called Q-filters. The symbol
FgA

Q(a) denotes the Q-filter on A generated by a. Our next lemma and
theorem refer to Q = Q(K). Let F be the free algebra in Q and let ≡Q

be the congruence such that F = Te/≡Q. Then t ≡Q s iff Q |= t ≈ s. By
Corollary 3.6, t ≡Q s iff the sequents t→ s and s→ t are derivable in G.

Lemma 3.7. Suppose that G is a sequent calculus with weakening

and axiom → 1, such that (9)–(11) hold. Let F ∈ Q(G) be the free algebra

in Q(G) and let t and s be terms. Then

t/≡Q ∈ FgA
Q(s/≡Q) iff a sequent s, . . . , s→ t is derivable in G,

for some number, possibly 0, of repetitions of the term s.

Proof.

The implication from right to left is clear. In the other direction, let
Q = Q(G) and assume that t/≡Q∈ FgA

Q(s/≡Q). If t/≡Q = s/≡Q then in
view of discussion preceeding the lemma, the sequent s → t is derivable.
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For the inductive step, suppose that there is a rule
α1, . . . , αn

α
of ALQ and

a homomorphism h : Te −→ F such that for each i = 1, . . . , n, h(αi) ∈
FgA

Q(s/≡Q) and h(α) = t. For every generator x of the term algebra, let sx
be a term such that h(x) = sx/≡Q. Define a function f on the generators,
by putting f(x) = sx. Then f extends to a homomorphism such that
for every term γ, h(γ) = f(γ)/≡Q. In particular, for each i = 1, . . . , n,
h(αi) = f(αi)/≡Q. By the induction hypothesis, for each i = 1, . . . , n,
a sequent s, . . . , s → f(αi) is derivable in G. By lemma 3.5, a sequent
β1, . . . , βm → α is derivable for some {β1, . . . , βm} ⊆ {α1, . . . , αn}. So also
`G f(β1), . . . , f(βm) → f(α), and by (CUT), a sequent s . . . , s → f(α) is
derivable as well. But `G f(α) → t because h(α) = t. Applying (CUT)
again yields `G s, . . . , s→ t.

An algebra A in a relatively point-regular quasivariety Q is Fregean
relatively to Q if for all a, b ∈ A, FgA

Q(a) = FgA
Q(b) iff a = b. A quasivariety

Q is Fregean iff every algebra in it is Fregean relatively to Q.

A symmetric contraction rule is any rule of the form

(sCnm)
x . . . x→ y y . . . y → x

x→ y
,

where m ≥ 1 is the number of the occurrences of x in the first premiss and
n ≥ 1 the number of the occurrences of y in the second premiss of the rule.

Theorem 3.8. Assume that the quasivariety Q is Fregean and that

there is a sequent calculus G with weakening and axiom → 1, such that

(9)–(11) hold and such that Q = Q(G). Then all the symmetric contrac-

tion rules are admissible in G. If all the symmetric contraction rules are

admissible in G then the free algebra in Q is Fregean.

Proof. First suppose that Q is Fregean and that, for some terms t and
s and numbers m and n, sequents s · · · s → t and t · · · t → s are derivable
in G. Then t/≡Q ∈ FgA

Q(s/≡Q) and s/≡Q ∈ FgA
Q(t/≡Q), so the two filters

are equal. Hence t/≡Q = s/≡Q and therefore, s → t is derivable. This
shows that the symmetric contraction rules are admissible.
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For the other direction, consider the free algebra F in Q. Let t/≡Q

and s/≡Q ∈ F b e such that FgA
Q(t/≡Q) = FgA

Q(s/≡Q). By the preceeding
lemma, s . . . , s → t and t . . . , t → s are derivable sequents. If the number
of repetitions of s in the first of these sequents is 0 then → t is derivable
and t ≈ 1 is an identity of Q. Then also s ≈ 1 is an identity and the
sequents s→ t and t→ s are derivable. Now suppose that the number of
repetitions in neither of the two derivable sequents equals 0. Then by the
admissibility of the symmetric contraction, t→ s and s→ t are derivable.

Let us finish this section by a remark that in general, a quasivariety
corresponding to a sequent calculus is not of the form Q(G). A stronger
condition, namely (6) is more appropriate in these cases. One can define a
quasivariety K(G) as the class of models of all quasi-identities

∧n
i=1 ti ≈ 1⇒

t ≈ 1 such that `G
→ ti, . . . ,→ tn

→ t
. Then K(G) ⊆ Q̃(G). The quasivarieties

of this kind will be considered in another paper. Even for substructural
logics, the two classes need not be the same. For example, consider the

system FLw. The rule
q

p ⊃ p& q
is a rule of the assertional logic of K(FLw),

while not of Q(FLw), for no sequent q . . . q → p ⊃ p & q can be derived
in FLw.

4. The fusion connective

For a logic that has a Gentzen-style presentation, a connective & is
called a fusion if it repaces the comma in the sequences of terms occurring
in the antecedents of the sequents. The algebraic models of a Gentzen
system with fusion are monoids with some additional operations. In this
section, we consider three notions of fusion: algebraic fusion, fusion in
ordered algebras and fusion defined by a Gentzen system or a sequent
calculus. The first two notions differ, while the fusion in sequent calculi
can be regarded as a fusion in ordered algebras.

We say that a binary connective & is an a-fusion (algebraic fusion) on
an algebra A if & is associative and, moreover, A satisfies the following
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conditions:
1 & 1 = 1 (19)

x& y = 1⇒ x = 1 (20)

x& y = 1⇒ y = 1 (21)

Our definition implies that x & 1 = 1 iff x = 1, but does not imply that
x & 1 = x. If also implies that the relative-congruence classes of 1, i.e.,
filters of the assertional logic of A are closed under the a-fusion. It follows
from (19)–(21) that on A, the finitely generated filters, are principal: for
all a, b ∈ A, Fg(a, b) = Fg(a& b). In particular, Fg(a) = Fg(a& a).

A deductive system S is Fregean, if for every matrix model A of S and
for all a, b ∈ A, we have: FgS(a) = FgS(b) implies that a = b. A relatively
point-regular quasivariety Q is Fregean, if the logic ALQ is Fregean. The
next proposition follows.

Proposition 4.1. If a relatively point-regular quasivariety Q has an

a-fusion and is Fregean, then the fusion is idempotent and commutative

in Q.

An ordered algebra is a structure A = 〈A,≤〉, where A is an algebra
and ≤ is a partial order relation. We will also assume, in addition, that
the constant 1 is a maximal element of A. Suppose that all the unary
polynomials on the term algebra of the given type are classified into two
subsets: M+ and M−. The pair M = 〈M+,M−〉 is called a polarity. We
say that A is M -ordered if every polynomial from M+ defines a monotone
operation on A, and every polynomial from M− defines an antimonotone
operation on A.

We say that an operation & on an ordered algebra A = 〈A,≤〉 is
a ≤-fusion on A if it is an a-fusion on A and A satisfies the following
condition:

x ≤ y, z ≤ u
x& z ≤ y & u

. (22)

One can consider order-filters on an ordered algebra with an ≤-fusion.
Without any special conditions connecting orders with congruences, the
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order filters are not the same as the filters of the assertional logic. By a
(≤,&)-filter we mean an upward closed subset of A that is closed under &
and contains the 1. It follows that an (≤,&)-filter Fg(≤)(a, b) generated by
a, b is a sub-(≤,&)-filter of the (≤,&)-filter Fg(≤)(a&b) generated by a&b:
Fg(≤)(a, b) ⊆ Fg(≤)(a & b) The inclusion can be reversed if the ≤-fusion
satisfies also the condition

(w) x& y ≤ x; x& y ≤ y.

The meet operation, if it exists, will be called conjunction on an ordered
algebra A. Notice that if & is an ≤-fusion on A, then & is a conjunction
on A iff it is a commutative and idempotent operation that satisfies (w).
The commutativity of & is expressed as

(e) x& y ≤ y & x.

and the idempotency as the conjunction of the following two conditions:

(c) x ≤ x& x

and

(ww) x& x ≤ x.

Notice that although the idempotency and commutativity of fusion can be
expressed both algebraically and in terms of the orders, the conditions (w)
and (ww) do not have purely algebraic versions. For a fixed polarity M ,
an ≤-fusion & is called an M -fusion if for every ϕ ∈ M+ and for every
ψ ∈M−

x& y & z ≤ u
x& ϕ(y) & z ≤ ϕ(u)

and

x& y & z ≤ u
x& ψ(u) & z ≤ ψ(y)

(23)

Finally, suppose that G is a Gentzen system. A connective & is called
a g-fusion for G if the following two rules are admissible for G:

(&→)
Γ, x, y,∆→ z

γ, x& y,∆→ z
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(→ &)
Γ→ x ∆→ y

Γ,∆→ x& y

If the Gentzen system G with a g-fusion has the (CUT) rule, then
it is easy to show, that a sequent t1, . . . , tn → γ is derivable in G& iff
t1 & · · · & tn → γ is derivable in G. A connective ∧ is a conjunction in a
Gentzen system G iff G has the following two rules:

(∧ →)
Γ, x,∆→ z

Γ, x ∧ y,∆→ z
,

Γ, y,∆→ z

Γ, x ∧ y,∆→ z

(→ ∧)
Γ→ x Γ→ y

Γ→ x ∧ y

Suppose that G has (CUT). If & is a g-fusion for G and G the following
rules (C) and (W):

(C)
Γ, x, x,∆→ y

Γ, x,∆→ y

(W)
Γ,∆→ z

Γ, x,∆→ z

then the connective & is a conjunction in G. Conversely, in the presence
of (C) and (W), a connective ∧ such that the two rules for conjunction are
admissible in G, is also a fusion in G. In fact,

Proposition 4.2. Suppose that & is a g-fusion in G. Then the fol-

lowing are equivalent:

(i) & is a conjunction in G,

(ii) G has (W) and (C),

(iii) G has (W), (C) and (E).
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Proposition 4.3. Suppose that ∧ is a conjunction for G. Then the

following are equivalent:

(i) ∧ is a g-fusion for G,

(ii) G has (W) and (C),

(iii) G has (W), (C) and (E).

The Gentzen systems LJ and GK, for example, have conjunction and
all structural rules; so the conjunction is fusion for these systems. In
the proofs from left to the right of the above propositions, it is essential
that there is a connective that satisfies both the rules for g-fusion and
the rules for conjunction. In the deductions, the (CUT) rule must be
used. It was remarked in [5, page 225] that although in FLcw (which is
the sequent calculus defined as FL with (C) and (W) added) the rule (E)
can be derived from the other rules, the (CUT) rule is necessary for this
derivation and moreover, (CUT) cannot be eliminated from FLcw, while it
can be eliminated from FLcew (the calculus obtained from FLcw by adding
(E), i.e., LJ). Recall that (CUT) elimination means that if a sequent is
a theorem of the system, then there is a proof of this sequent that does
not use the (CUT) rule. So there are sequents derivable by means of the
rules of FL, (C), (W) and (E); and if we want to replace the use (E) by its
derivation from FL with (C) and (W), we have to use (CUT) that cannot
be eliminated. If we do not want to use (CUT) we do not have to, but we
need to use (E) instead.

The following proposition can also be easily observed.

Proposition 4.4. Suppose that G is congruential, has (W) and the

following axiom → 1. Let Q = Q(G) be a relatively point-regular quasiva-

riety with a-fusion. Then the free algebra in Q is Fregean iff G has (C)

Proof. First observe that if & is a g-fusion then its interpretation in Q
is an a-fusion. As observed earlier, Fg(x) = Fg(x&x) in the free algebra of
Q. So if it is Fregean, x = x&x is an identity of Q and x −→ x&x, which
yields (C). Conversely, (C) implies all the rules of symmetric contraction,
so the free algebra in Q is Fregean.
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Let us also remark that in the presence of a g-fusion & and the following
weakened version of (W):

(WW)
ΓxΣ→ y

ΓxxΣ→ y
,

contraction follows directly from the admissibility of symmetric contrac-
tion. Indeed, x, x→ x& x and x& x→ x are derived sequents, whenever
we have a g-fusion and (WW). By symmetric contraction, x → x & x is
also a derived sequent. This yields (C). If the nature of the sequent cal-
culus – quasivariety relationship is different than the one considered in the
assumption of Proposition 4.4, the conclusion of the proposition need not
hold. For example, the Gentzen system GK, strongly adequate to the class
of modal algebras, has conjunction. In the presence of all the structural
rules, this conjunction is also a fusion. GK has contraction but the class
of modal algebras is not Fregean.

Defining the class of ordered algebras as the class of models of the
theory of the axioms of partial order and the following implications:

t1 ≤ s1, . . . , tn ≤ sn ⇒ t ≤ s,

for every

`G
t1 → s1, . . . , tn → sn

t→ s

of G, we obtain a so-called ordered quasivariety 〈K̃(G),≤〉 such that G is
strongly adequate for K̃(G). Suppose that G has a g-fusion. Then 〈K̃(G),≤〉
has a ≤-fusion and G has rules: (W), (WW), (E) and (C) respectively, iff
〈K̃(G),≤〉 satisfies (w), (ww), (e) and (c) respectively. Also, if G defines a
polarity M then the fusion in 〈K̃(G),≤〉 is an M -fusion. A connective ∧
is a conjunction in G iff its interpretation in 〈K̃(G),≤〉 is a meet operation
on the members of 〈K(G),≤〉. Conversly, for a quasivariety K of ordered
algebras, one can introduce a sequent calculus that is strongly adequate
for K. This idea will also be discussed elsewhere.
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5. Embedding

5.1. The quasivariety Q&. For a quasivariety Q let Q& be the
class {〈A,&〉 : A ∈ Q,& is an a-fusion}. Thus, Q& is a quasivariety ax-
iomatized by the quasi-identities of Q and (26)–(28). Observe that if Q is
relatively point-regular, then so is Q&. Let 〈A,&〉 ∈ Q& and let F ⊆ A.
Then F is a Q&-filter on 〈A,&〉 iff F is a Q-filter on A and is closed under
the & operation. For a sequent calculus G = 〈Λ,Cn〉 let G& be the sequent
calculus 〈Λ&,Cn&〉, where Λ& results from Λ by adjoining the binary con-
nective symbol & and Cn& results from Cn by adding the two rules for
fusion: (&→) and (→ &).

Observe that always Q(G&) ⊆ (Q(G))& and K(G&) ⊆ (K(G))&.

5.2. Embedding theorems. We discuss two related embedding
results. The proofs are based on [7]. We say that a sequent calculus G&

has the separability property over & if every sequent S derivable in G and
such that & does not occur in S, has a derivation in the &-less fragment
of G. This property is usually a consequence of the (CUT)-elimination
property for G&, which in turn, when the introduction rules are standard,
often is a consequence of the (CUT)-elimination in G.

For the second theorem in this section we consider the strong separa-
bility property. A sequent calculus G has this property if every rule of the

form
→ t1, . . . ,→ tn

Γ→ t
in G& in which & does not occur, can be derived by

means of the rules of G. If B is an algebra the type of which has fusion,
then by Br we denote the fusion-less reduct of B.

Theorem 5.1.

(i) Let Q be a point-regular quasivariety with the point-regularity system

∆(x, y) and let G be a congruential sequent calculus satisfying (9)–(11)

and such that G& has separability property.
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(ii) Assume that G is adequate for Q. Then for every algebra A ∈ Q there

is an algebra B ∈ Q& such that A is embeddable into Br. In fact, the

algebra B ∈ Q(G&).

Proof. Let A ∈ Q and define XA := {xa : a ∈ A} to be a set of
distict variables. Define also v0 : Te(XA) → A by v0(xa) = a. For a
term t ∈ Te(XA), let tA := v0(t), and if Γ = t1, . . . , tn is a sequence of
terms, then let ΓA = tA1 , . . . , t

A
n . We write ΓA = 1A to abbreviate the

statement that tA1 = 1A, . . . , tAn = 1A. Let Te&(XA) be the algebra of
terms in the type of A extended with the binary operation symbol of &.
Define a congruence relation ≡ on Te&(XA) as follows: s ≡ t iff there exist
sequences of terms Γ,Σ from Te(XA) such that

`G& Γ, s→ t and `G& Σ, t→ s

and such that ΓA = 1A,ΣA = 1A. Then ≡ is a congruence relation on
Te&(XA): it is reflexive, because x→ x is an initial sequent; it is transitive,
because (CUT) is a rule of G and hence also of G&; it is symmetric by def-
inition and since G, and therefore G&, are congruential, ≡ is a congruence.

Suppose that t, s ∈ Te(XA). If s ≡ t, then for some sequences Γ,Σ from
Te(XA) such that ΓA = 1A,ΣA = 1A, we have: G& ` Γ, s→ t and Σ, t→ s.
By the separation property of G&, the sequents Γ, s→ t and Σ, t→ s also
are derivable in G. By (12),G ` Γ,Σ→ ∆(s, t), so ∆A(s, t) = 1A. It follows
that tA = sA. Conversely, suppose that t, s ∈ Te(XA) and tA = sA. Then
∆(t, s)A = 1A and by (15), the sequents t,∆(t, s) → s and s,∆(s, t) → t

are derivable. So s ≡ t. Hence for t, s ∈ Te(XA), we have: t ≡ s iff
tA = sA.

The mapping f : A→ Te&(XA)/≡ defined by f(a) = xa/≡ is therefore
1− 1. It also is a homomorphism. For let λ be an n-ary operation symbol
and let a1, . . . , an be a sequence of elements of A. We want to show that
xλ(a1,...,an

≡ λ(xa1 , . . . , xan). But xA
λ(a1,...,an) = λ(xa1 , . . . , xan)A and both

terms are members of Te(XA). So the equivalence follows from our previous
claim.

We claim that B ∈ Q(G&). For let Γ→ t be a sequent derivable in G&

and assume that for some homomorphism h, {h(Γ)} = 1B. Then for each



SEQUENT CALCULI AND QUASIVARIETIES 131

γ ∈ {Γ} there is a sequence of terms Σγ from Te(XA) such that Σγ → h(γ)
is derivable in G& and ΣA

γ = 1A. Applying the substitution h to Γ→ t and
then the (CUT), we obtain the derivable sequent Σ→ h(t), where Σ is the
concatenation of all the Σi’s and as such has the property that {Σ}A = 1A.
It follows that h(t) = 1B, which finishes the proof that B ∈ Q(G&).

Corollary 5.2. Suppose that a sequent calculus G is congruential and

satisfies the conditions (12)–(13) with a set ∆(x, y). Suppose that G& has

separability property. Then

Q(G) = {Br : B ∈ Q(G&)}.

In a similar manner, one can prove that if G is a sequent calculus
strongly adequate to a relatively point-regular quasivariety K then every
algebra A from K is embeddable into some algebra from K(G&), under
assumption that G& has a strong version of the separability property, i.e.,

every rule of the form
→ t1, . . . ,→ tn

Γ→ t
in G& in which & does not occur,

can be derived by means of the rules of G.

The separability property of G& plays an essential role in the proof of
Theorem 5.1. Usually, this property follows from the (CUT) elimination
for G. We can conclude from the theorem that we can’t define a notion,
applying to any quasivariety Q, of a Gentzen system “corresponding” to a Q
and expect that such a system would have “nice” proof-theoretic properties
(leading to the separability) and be adequate for Q. For if such a Gentzen
system exists, then Q must be embeddable in Q&, which is a rare property.
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[6] M. Pa lasiński, On BCK-algebras with the operation (S), Bull. of the Section of Logic

PAN 13 (1984), 13–20.
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[11] A. Wroński, Interpolation and amalgamation of BCK-algebras, Math. Japonica 29

(1984), 115–121.

Cracow University of Technology
Department of Mathematics
Warszawska 24, PL 31-155 Kraków
Poland

kpalasin@usk.pk.edu.pl


