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THE VARIETY OF RESIDUATED LATTICES IS

GENERATED BY ITS FINITE SIMPLE MEMBERS

A b s t r a c t. We show that the variety of residuated lattices is

generated by its finite simple members, improving upon a finite model

property result of Okada and Terui. The reasoning is a blend of proof-

theoretic and algebraic arguments.

1. Introduction

In this paper, we will show that the variety of residuated lattices is

generated by finite simple residuated lattices. The “simplicity” part of

the proof is based on Grǐsin’s idea from [5], whereas the “finiteness” part

employs a kind of algebraic filtration argument. Since the set of formulas

valid in all residuated lattices is equal to the set of formulas provable in

the propositional logic FLew, the propositional logic obtained from the
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intuitionistic logic by deleting the contraction rule (see [8], for instance),

our result can be restated as follows: for any formula A, A is provable in

FLew if and only if it is valid in any finite simple residuated lattice.

Our result, on the one hand, strengthens the finite model property

result for FLew, from [6], and, on the other hand, makes a remarkable

contrast with the variety of Heyting algebras, i.e., residuated lattices in

which x ≤ x2 holds, as any simple Heyting algebra is a two-valued Boolean

algebra. Also, it may be interesting to see how nicely proof-theoretic meth-

ods work to bring about a purely algebraic consequence, though the credit,

of course, should go to Grǐsin.

Another consequence is of logical nature. Namely, we identify the limit

of a certain sequence of logics without contraction, which was proposed as

an open question in [8]. Let Ek and EMk be axioms pk ⊃ pk+1 and p∨¬pk,

respectively, and let FLew[Ek] (and FLew[EMk]) be the logic obtained

from FLew by adding the axiom Ek (and EMk, respectively) to it. In

[8], it was shown that the logic FLew[Ek] (and FLew[EMk]) is determined

by the class of all residuated lattices ( and simple residuated lattices, re-

spectively ) satisfying xk = xk+1. Both sequences of logics {FLew[Ek]}k

and {FLew[EMk]}k are monotone decreasing sequences of logics (as sets

of formulas), each of which starts either from intuitionistic logic or from

classical logic. A natural question is what do they converge to, i.e., what

is the intersection of each. In [8], it was proved that the intersection of

FLew[Ek] for k < ω is FLew. We will show in the present paper that the

intersection of FLew[EMk] for k < ω is also equal to FLew.

An algebra M = 〈M ;∩,∪, ·,→, 0, 1〉 is called a residuated lattice if it

satisfies the following:

1. 〈M,∩,∪, 0, 1〉 is a bounded lattice with the greatest element 1 and the

least element 0,

2. 〈M, ·, 1〉 is a commutative monoid,

3. for x, y ∈ M , x · y ≤ z if and only if x ≤ y → z.

For general information on residuated lattices, and their connection with

logics without contraction, we refer the reader to [8]. In the following,
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we will consider only non-degenerate residuated lattices, i.e., residuated

lattices satisfying 0 6= 1. We define ∼x by ∼x = x → 0. Following [8], we

say that a residuated lattice is classical when:

(DN ) ∼∼ x = x, for any x

holds in it.

A residuated lattice M is simple if it is non-degenerate and has only

two (congruence) filters: {1} and M itself. It is easy to see that for any

filter F of a given residuated lattice M∗ the quotient algebra M∗/F is

simple if and only if F is a maximal filter. We can show the following

lemma, where xm denotes the m-fold product of x with itself.

Lemma 1.1. A residuated lattice M is simple iff for any x < 1 in M

there exists a positive integer m such that xm = 0.

A residuated lattice M is semisimple if M can be represented by a

subdirect product of simple residuated lattices. Let ΦM be the set of

all maximal filters of M. Define the radical RadM of M by RadM =
⋂

F∈ΦM
F . Then, without difficulty we can show that a residuated lattice

M is semisimple if and only if RadM = {1}. In [5], Grǐsin proved the

following.

Proposition 1.2. Every free classical residuated lattice is semisimple.

2. Simplicity

The bulk of the present paper (sections 2, 3 and 4) is devoted to proving

the theorem below. As will be clear from what follows, the proof goes

essentially the same way as that of Proposition 1.2.

Theorem 2.1. Every free residuated lattice is semisimple.

By our theorem, we have the following corollary immediately.
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Corollary 2.2. The variety of all residuated lattices is generated by

its simple members.

For any element x in a given residuated lattice and a positive integer

m, m̃x denotes ∼(∼x)m. Note that 1̃x = ∼∼x. Similarly to a result in

[5], we can show the following. (See [8] for the proof.)

Theorem 2.3. For any x in a given residuated lattice M, x ∈ RadM

if and only if for any n ≥ 1 there exists m ≥ 1 such that m̃(xn) = 1.

To prove our Theorem 2.1 by using Theorem 2.3, we will introduce the

propositional logic FLew, which is determined by the class of all residuated

lattices. That is, for any formula A, A is provable in FLew if and only if

it is valid in any residuated lattice. As shown in the next section, FLew is

formalized as a sequent calculus, which is obtained from Gentzen’s sequent

calculus LJ for the intuitionistic logic by deleting the contraction rule.

The language of FLew consists of a logical constant ⊥, logical connectives

⊃,∧,∨ and ∗ (called fusion). They correspond to the constant 0 and the

operations →,∩,∪, · of residuated lattices, respectively. The negation ¬A

of a formula A is defined as an abbreviation of A ⊃ ⊥.

Similarly to the corresponding algebraic expressions, we will define also

An and m̃B to be the formula A ∗ · · · ∗A with n times A, and the formula

¬(¬B)m.

Now, since any free residuated lattice can be regarded as a Lindenbaum

algebra of the logic FLew (with a certain set of propositional variables), to

get Theorem 2.1 by the help of Theorem 2.3, it suffices to show the next

lemma, whose proof will be presented in the next two sections.

Lemma 2.4. (main lemma) If a formula A is not provable in

FLew, there exists a number N(≥ 1) such that m̃(AN ) is not provable in

FLew for any m ≥ 1.

We close this section with the following immediate logical consequence

of Corollary 2.2.
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Corollary 2.5. The logic FLew is determined by the class of all simple

residuated lattices.

3. Sequent calculi for FLew

We will introduce first a sequent calculus SFLew for the logic FLew,

which is essentially the same system as one introduced in [8], but in a

slightly modified form. We will both restrict and generalize the form of

initial sequents, and also generalize the form of rules for fusion. This will

allow us to remove the weakening rule. In our new rules for fusion, we

will allow formulas of the form A1 ∗ · · · ∗ Am for any m ≥ 2. The lack of

parentheses in formulas of this form is harmless, since the associativity of

∗ is provable in FLew.

Now, a sequent of SFLew is of the form Γ → B, where Γ is a possibly

empty multiset of formulas. (Note that the right-hand side of → must

always exist.) As usual, when Γ is a multiset {A1, . . . , Am}, the sequent

Γ → B is also expressed as A1, . . . , Am → B. Also, the multiset union

of multisets Γ and ∆ (and of {A} and ∆) is denoted by Γ,∆ (and A,∆,

respectively). In the following, both Γ and ∆ denote arbitrary multisets of

formulas. The system SFLew consists of the following initial sequents:

1. p,Γ → p for any propositional variable p

2. ⊥,Γ → C

and the following rules of inference:

Cut rule:

Γ → A A,∆ → C

Γ,∆ → C

Rules for logical connectives:

A,Γ → B

Γ → A ⊃ B
(→⊃)

Γ → A B,∆ → C

A ⊃ B,Γ,∆ → C
(⊃→)
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Γ → A
Γ → A ∨ B

(→ ∨1) Γ → B
Γ → A ∨ B

(→ ∨2)

A,Γ → C B,Γ → C

A ∨ B,Γ → C
(∨ →)

Γ → A Γ → B
Γ → A ∧ B

(→ ∧)

A,Γ → C

A ∧ B,Γ → C
(∧1 →)

B,Γ → C

A ∧ B,Γ → C
(∧2 →)

Γ1 → A1 · · · Γm → Am

Γ1, . . . ,Γm → A1 ∗ · · · ∗ Am
(→ ∗)

A1, . . . , Am,Γ → C

A1 ∗ · · · ∗ Am,Γ → C
(∗ →)

In each rule I, the formula introduced by it is called the principal for-

mula of I, and formulas in upper sequent(s) of I which become components

of the principal formula are called the auxiliary formulas. Other formulas,

i.e. the formula C and formulas in Γ,Γi,∆, are called the side formulas.

As usual, we say that a formula A is provable in SFLew if the sequent

→ A is provable in it. Since the cut elimination theorem holds for the

calculus SFLew (the proof from [9] works, with obvious modifications),

the cut rule is redundant. Next, we will introduce another sequent calculus

SFLew

+, which is shown to be equivalent to SFLew. Here, we say that A

is a ∗-formula if the outermost logical connective of A is ∗. Now, SFLew

+

is the system obtained from SFLew by deleting the cut rule and by adding

the following condition (+) in any application of the rules (→ ∗) and (∗ →):

none of Ais are ∗-formulas. (+)

We note here that when we show the equivalence of SFLew

+ to SFLew

in the following, we will identify each formula of the form A1 ∗ · · · ∗ Am of

SFLew

+ with any formula of SFLew, which is obtained from A1 ∗ · · · ∗Am

by introducing proper bracketing in it. This doesn’t cause any confusion.

The rest of this section is devoted to the proof of the following lemma.
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Lemma 3.1. For any sequent Γ → D, Γ → D is provable in SFLew

if and only if it is provable in SFLew

+.

Proof. It is enough to show that if a sequent Γ → D is provable in

SFLew then it is provable in SFLew

+. In other words, it suffices to show

that any application of (→ ∗) and (∗ →) not satisfying the condition (+)

in a given cut-free proof P of Γ → D can be replaced by one with (+). Let

B be any formula of the form B1 ∗ · · · ∗ Bk (k > 0), where none of Bjs

are ∗-formulas. Then we define the degree d(B) of B by d(B) = k − 1, i.e.

the number of outermost ∗ in B. Next, when I is either an application of

(∗ →) of the form

A1, . . . , Am,Γ → C

A1 ∗ · · · ∗ Am,Γ → C

or an application of (→ ∗) of the form

Γ1 → A1 · · · Γm → Am

Γ1, . . . ,Γm → A1 ∗ · · · ∗ Am

we define the degree d(I) of I by d(I) = d(A1) + · · ·+ d(Am). It is obvious

that an application I of either (∗ →) or (→ ∗) satisfies the condition (+)

if and only if d(I) = 0.

Assume first that there exists an application of (∗ →) not satisfying the

condition (+) in P. Let us take one of the uppermost applications among

them, which we call J . Obviously, d(J) > 0. We suppose that the lower

sequent of J is A1∗· · ·∗Am,Γ → C with the principal formula A1∗· · ·∗Am.

We will show by induction on the degree d(J) that A1 ∗ · · · ∗ Am,Γ → C

has a cut-free proof in which every application of (∗ →) satisfies (+).

By our assumption, the degree of one of Ais must be nonzero. Without

loss of generality, we can assume that A1 is of the form D1∗· · ·∗Ds for s > 1.

Let Q be the proof of A1 ∗· · ·∗Am,Γ → C which is a subproof of P. We will

trace back ancestors of the auxiliary formula A1 of J in all branches of Q.

Then, we can see that in every sequent in these branches, A1 is introduced

either as the principal formula of an application of (∗ →) (with (+)), or as

a side formula of an initial sequent. Now, we replace any ancestor A1 by
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the multiset D1, . . . ,Ds. If one of such A1 is introduced by an application

of (∗ →) then its lower sequent becomes identical with the upper sequent

by this replacement. In such a case, we eliminate this (∗ →). On the other

hand, if it is introduced as a side formula of an initial sequent, the sequent

obtained by this replacement remains still an initial sequent. Hence, the

figure Q’ obtained from Q by this replacement remains a correct proof of

A1 ∗ · · · ∗ Am,Γ → C whose last inference is an application J ′ of (∗ →),

with the upper sequent D1, . . . ,Ds, A2, . . . , An,Γ → C. Since d(J ′) =

d(J)− d(A1) < d(J), by the hypothesis of induction, A1 ∗ · · · ∗ An,Γ → C

has a cut-free proof in which every application of (∗ →) satisfies (+). In

this way, we have a cut-free proof P′ of Γ → D where every application of

(∗ →) satisfies the condition (+).

For example, consider the following (sub)proof whose last inference is

an application of (∗ →) without the condition (+).

r ∗ s, p, p ⊃ (r ⊃ q) → p

r, s, p, p ⊃ (r ⊃ q) → q

r ∗ s, p, p ⊃ (r ⊃ q) → q

r ∗ s, p, p ⊃ (r ⊃ q) → p ∧ q

r ∗ s ∗ p, p ⊃ (r ⊃ q) → p ∧ q

The replacement mentioned above will change the above proof into the

following one.

r, s, p, p ⊃ (r ⊃ q) → p r, s, p, p ⊃ (r ⊃ q) → q

r, s, p, p ⊃ (r ⊃ q) → p ∧ q

r ∗ s ∗ p, p ⊃ (r ⊃ q) → p ∧ q

Next, we will remove any application of (→ ∗) not satisfying the condi-

tion (+) in P’. Suppose that there exists such an application. Similarly to

the above, take one of the uppermost applications of (→ ∗) not satisfying

(+), called J , which is of the form given above. We will show by induction

on d(J) that the lower sequent Γ1, . . . ,Γm → A1 ∗ · · · ∗ Am has a cut-free

proof in which every application of (→ ∗) satisfies (+). Without loss of

generality, we can assume that d(A1) = k > 0 and that A1 is of the form

D1 ∗ · · · ∗ Dk, where none of Djs are ∗-formulas. Let R be the proof of
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Γ1 → A1, which is a subproof of P’. We will trace back the branches in R

which consist of sequents having A1 in the conclusion (such an A1 must

clearly be an ancestor of the A1 from Γ1 → A1) to the places where this

A1 is introduced. There are two possibilities. It is introduced either as an

initial sequent of the form: ⊥,∆ → A1, or as the principal formula of an

application of (→ ∗) of the form:

∆1 → D1 · · · ∆k → Dk

∆1, . . . ,∆k → A1

We will modify the proof R as follows. If the first case happens, we replace

the above sequent by ⊥,∆,Γ2, . . . ,Γm → A1 ∗ · · · ∗ Am, which is still an

initial sequent. For the second case, we replace it by:

∆1 → D1 · · · ∆k → Dk Γ2 → A2 · · · Γm → Am

∆1, . . . ,∆k,Γ2, . . . ,Γm → A1 ∗ A2 ∗ · · · ∗ Am

and put the subproof of each Γi → Ai in R over it for each i = 2, . . . ,m.

Note that the degree of the above application of (→ ∗) is d(J) − d(A1),

which is smaller than d(J). Therefore, by the hypothesis of induction

the lower sequent of this inference has a cut-free proof in which every

application of (→ ∗) satisfies (+). Finally, we replace every sequent Σ → A1

in a branch which we have traced, by the sequent Σ,Γ2, . . . ,Γm → A1∗· · ·∗

Am. Then, after this replacement, we get a proof R′ of Γ1,Γ2, . . . ,Γm →

A1 ∗ · · · ∗Am in which every application of (→ ∗) satisfies (+). (Note that

when (⊃→) is used somewhere in these branches, this replacement will

be done only for the right upper sequent. Thus, this replacement never

cause unnecessary duplications of Γ2, . . . ,Γm.) By repeating this, we have

a proof of Γ → D in SFLew

+.

4. Proof of main lemma

We will give a proof of our main lemma, Lemma 2.4, in this section.

The proof is obtained by modifying the proof given by Grǐsin slightly. For

each formula A, l(A) denotes the length of A (as a sequence of symbols).
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For a sequence Γ of formulas A1, . . . , Am, the length l(Γ) of Γ is defined by

l(Γ) = l(A1) + · · · + l(Am). We will prove the following stronger form of

Lemma 2.4. In the following, we will express the multiset ¬AN , . . . ,¬AN

with m times ¬AN as {¬AN}
m

.

Lemma 4.1. Suppose that a formula A is not provable in SFLew

+

and that N is any positive integer greater than l(A). Then, for any se-

quent Γ → C such that l(Γ, C) ≤ l(A) and any positive integer m, if

{¬AN}
m

,Γ → C is provable in SFLew

+ then Γ → C is provable in

SFLew

+.

Since → ⊥ is not provable in SFLew

+, Lemma 2.4 follows immediately

from Lemma 4.1 by taking the sequent → ⊥ for Γ → C. We will give a

proof of Lemma 4.1 in the rest of this section.

Proof of Lemma 4.1. The proof will proceed by double induction

on (m, l(Γ, C)). So, we assume that our Lemma holds for m′ < m and it

also holds for (m, l(∆,D)), whenever l(∆,D) < l(Γ, C). We suppose that

A is not provable but {¬AN}
m

,Γ → C is provable in SFLew

+. Suppose

first that {¬AN}
m

,Γ → C is an initial sequent. Then, either C is a propo-

sitional variable which occurs also in Γ, or ⊥ occurs in Γ. It is clear that

Γ → C is provable in either case.

Next, suppose that the sequent {¬AN}
m

,Γ → C is the lower sequent

of an inference rule I. We first assume that the principal formula of I

is either in Γ or in C. Then, (each of) upper sequent(s) of I is of the

form {¬AN}
mi ,∆i → Di with mi ≤ m and l(∆i,Di) < l(Γ, C) (by the

subformula property and the fact that SFLew

+ has no contraction rule).

Thus, by the hypothesis of induction, (each) ∆i → Di is provable. Then

Γ → C is also provable by applying the same inference rule I.

Finally suppose that the principal formula of I is one of ¬AN . Then,

I must be an application of (⊃→). Recall here that a formula ¬B is

the abbreviation of B ⊃ ⊥. The upper sequents must be of the form

{¬AN}
m1 ,Γ1 → AN and ⊥, {¬AN}

m2 ,Γ2 → C such that m1 +m2 = m−1

and Γ1,Γ2 is equal to Γ. Now consider the proof R of the left upper sequent
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{¬AN}
m1 ,Γ1 → AN . As we did in the proof of Lemma 3.1, we trace back

branches in R, which consists of sequents having AN in the conclusion,

to the places where these AN are introduced. It is easy to see that each

AN is introduced either as an initial sequent of the form ⊥,∆ → AN ,

or by an application of (→ ∗). Suppose that in at least one place, AN is

introduced by an application J of (→ ∗), whose lower sequent is of the

form {¬AN}
k
,Σ → AN . Clearly, k ≤ m1. We assume here that A is of

the form D1 ∗ · · · ∗ Dw such that none of Dj are ∗-formulas. (Only for the

simplicity’s sake, we assume in the following that D1, . . . ,Dw are mutually

distinct.) Then, I must have N ·w upper sequents, each of which is of the

form {¬AN}
ti ,Ξi → Dni

, where 1 ≤ ni ≤ w, k = t1 + · · · + tN ·w and the

multiset Ξ1, . . . ,ΞN ·w is equal to Σ. For each j such that 1 ≤ j ≤ w, there

exist exactly N sequents with the conclusion Dj among these sequents. We

enumerate them as Sj
1, . . . , S

j
N . Next, for each h such that 1 ≤ h ≤ N ,

take S1
h, . . . , Sw

h for upper sequents and apply (→ ∗) to them. Then,

we can get a sequent of the form {¬AN}
uh ,Πh → A for 1 ≤ h ≤ N such

that k = u1 + · · · + uN and the multiset Π1, . . . ,ΠN is equal to Σ. Now,

l(Σ) ≤ l(Γ1) ≤ l(Γ, C) ≤ l(A) < N . If l(Πh) > 0 for any h such that

1 ≤ h ≤ N then l(Σ) ≥ N , which is a contradiction. Thus, Πh must be

empty for some h. Let it be f . Then, {¬AN}
uf → A is provable. By

our assumption that A is not provable, uf must be positive. Then, since

uf ≤ m1 ≤ m − 1 < m and l(A) ≤ l(A), → A must be provable by the

hypothesis of induction. This is a contradiction.

Thus, we have shown that in any place AN is introduced as an ini-

tial sequent of the form ⊥,∆ → AN . We will modify the proof R of

{¬AN}
m1 ,Γ1 → AN as follows. We replace every sequent Λ → AN in

a branch which we have traced in R, including initial sequents of the

form ⊥,∆ → AN mentioned above, by the sequent Λ,Γ2 → C. Then

we will get a proof R∗ whose end sequent is {¬AN}
m1 ,Γ → C. Note that

m1 ≤ m − 1 < m. Hence, by the hypothesis of induction, Γ → C is

provable. This completes the proof.
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5. Embeddings

In this section we show that the class RS of simple residuated lattices

enjoys the finite embeddability property, which we are now going to define

(cf. e.g., [4], for more details).

Let K be a class of algebras and P be a partial subalgebra of an algebra

B from K. We say that B has the finite embeddability property in K iff

any finite partial subalgebra of B can be embedded into a finite algebra C

from K. The class K has the finite embeddability property iff every algebra

B from K has the finite embeddability property in K.

Thus, our task in this section is to produce for any M ∈ RS , and any

finite partial P ⊆ M, a finite A ∈ RS , into which P can be embedded.

Let M and P be as above. Our construction of a finite algebra into

which P will be embeddable is to be carried out in two stages.

Firstly, observe that since M is simple, for any x ∈ M if x < 1 there

exists a positive integer m such that xm = 0. We will show that we can

always embed P into an M for which the m above is uniform, i.e., there

exists a positive integer m that xm = 0 for any x < 1. This is equivalent

to saying that M can always be so chosen that it satisfies EMm, for some

m.

For any residuated lattice M, let M− stand for its {∩,∪, ·}-reduct. For

an element a ∈ M \ {1}, M−

a denotes the algebra 〈(a] ∪ {1};∩,∪, ·, 0, 1〉,

where (a] denotes the set {x : x ≤ a}. Clearly, M−

a is a subalgebra of M−.

Lemma 5.1. For any a, b, c ∈ M , the set U = {x ≤ a : x · b ≤ c} has

the greatest element equal to a ∩ (b → c).

Proof. We have both a∩ (b → c) ≤ a and (a∩ (b → c)) · b ≤ c, clearly.

Now suppose that z ≤ a and z · b ≤ c hold. Then, z ≤ a ∩ (b → c). Thus

we have our lemma.
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Let M be any simple residuated lattice, and a ∈ M \ {1}. We will

define a binary operation →∗ on M−

a , by putting:

x→∗y =

{

a ∩ (x → y), if x 6≤ y,

1, otherwise.

By Lemma 5.1, the operation →∗ is well-defined. Let us call the resulting

algebra M+
a . In what follows, we will refer to the universe of either M−

a or

M+
a , by Ma. This is unambiguous, as they share the same universe.

Lemma 5.2. M+
a is a simple residuated lattice. Moreover, EMk is

valid in M+
a for some k.

Proof. To show that M+
a is a residuated lattice, we only have to check

whether, for any x, y ∈ Ma, the element x →∗ y is the largest among all

z ∈ Ma with z · x ≤ y. This was already assured by Lemma 5.1.

To show that M+
a is simple, take any element x ∈ Ma such that x < 1.

Then, x ≤ a. As M is simple, we have that for some k < ω, ak = 0 in M.

Thus, xk ≤ ak = 0. Since the fusion in M+
a coincides with the fusion in

M, xk = 0 also in M+
a . Hence M+

a is simple and EMk is valid in M+
a .

Now, let P be the original partial algebra, and M the algebra into

which P is embedded. We have:

Lemma 5.3. There exists an algebra N ∈ RS such that N ⊇ P and

N satisfies EMk, for some positive integer k.

Proof. Define P0 to be P \ {1}. As P0 is finite, the join
⋃

P0 is well-

defined in M, although not necessarily in P. Since M is simple (hence

subdirectly irreducible),
⋃

P0 < 1 in M, for otherwise, by Theorem 4.2 in

[8], for some p ∈ P0, p = 1, which is a contradiction.

Thus, the element c =
⋃

P0 is different from 1. Now, consider M+
c

defined as above. By Lemma 5.2, EMk is valid in M+
c for some k. Observe

also that, for any a, b ∈ P , and ⋆ ∈ {∪,∩, ·,→}, if a⋆b is defined in P , then

a ⋆ b in P is equal to a ⋆ b in M+
c . This is trivial for all operations except

→. However, if a → b is defined, then a → b belongs to P , and therefore it

is either equal to 1 or smaller than c in M. Thus, it remains unaltered in
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M+
c . Therefore, M+

c may be taken as the algebra N whose existence was

required by the lemma.

Before entering the second stage of our construction, we will define

an auxiliary notion. Let us call the algebra W = 〈W ;∪, ·, 0, 1〉 a bounded,

commutative, semilattice-ordered monoid (or, for short, a bocsoid, although

we do not particularly like this acronym) iff:

1. 〈W ;∪, 0, 1〉 is a join-semilattice with the greatest element 1 and the

smallest element 0,

2. 〈W ; ·, 1〉 is a commutative monoid satisfying: x·(y∪z) = (x·y)∪(x·z).

Lemma 5.4. Any finite bocsoid is a reduct of a residuated lattice.

Proof. Let W be a finite bocsoid. Define the following two operations

on its universe W :

• x ∩ y =
⋃

{z | z ≤ x & z ≤ y},

• x → y =
⋃

{w | w · x ≤ y}.

Under these definitions 〈W ;∪,∩, ·,→, 0, 1〉 becomes a residuated lat-

tice, as it is straightforward to check. Note that if · is idempotent, then we

get the well-known fact that every finite distributive lattice is a Heyting

algebra.

Let us call a bocsoid W k-potent iff there is a positive integer k such

that W satisfies xk+1 = xk.

Lemma 5.5. All k-potent bocsoids are locally finite.

Proof. Let W be a k-potent bocsoid, and Z be a finite subset of W .

By distributivity of · over ∪ each element generated by Z is of the form
⋃j−1

i=0
zi, for some positive integer j, where each zi is either 1, or 0, or a

fusion of some elements from Z.

As fusion is associative and commutative, we can dispense with paren-

theses and write each zi as an0

0 . . . a
nl−1

l−1
, with a0, . . . , al−1 ∈ Z. Since

xk+1 = xk holds, for a certain fixed k, the exponents in this expression

are bounded from above by k, i.e., if nj > k, then an0

0 . . . a
nj

j . . . a
nl−1

l−1
=
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an0

0 . . . ak
j . . . a

nl−1

l−1
. It follows, that an X ⊆ W , with X = {a0, . . . , al−1},

can generate, by means of fusion alone, at most (k + 1)l + 1 distinct ele-

ments. Thus, as there are only finitely many subsets of Z, the closure of Z

under fusion is finite. As semilattices are locally finite, the closure of the

latter under join is finite as well. This proves the lemma.

Theorem 5.6. The class RS of simple residuated lattices has the

finite embeddability property.

Proof. We have to show that every finite partial algebra P embeddable

in RS can be embedded into a finite algebra from RS . ¿From Lemma 5.3

we know that there is a simple residuated lattice N satisfying xk+1 = xk,

for some positive integer k, and such that N ⊇ P. In fact we can take

N = M+
c
, where the latter has been defined in the proof of Lemma 5.3.

Let also P0 and c be the same as in that proof.

Let N− be the {∪, ·, 0, 1}-reduct of N. Thus, N− is a bocsoid. Let

W be the sub-bocsoid of N− generated by P . By the properties of N, the

bocsoid N− is k-potent, indeed, it satisfies:

xk =

{

1, if x = 1

0, otherwise
(simp)

because, by Lemma 5.3, so does N. As P is finite, it follows, by Lemma 5.5,

that so is W. Now, let S be the residuated lattice resulting from endowing

W with the operations defined in the proof of Lemma 5.4. Clearly, S is a

finite residuated lattice; since W satisfies (simp), S is simple.

All that remains is to show that P is indeed a partial subalgebra of S.

There are two operations, for which something could go wrong, the ones

that have been defined anew: ∩ and →. However, if x, y ∈ P and x∩ y, or

x → y, is defined in P , then, it is not difficult to verify from the definitions

that the original operations coincide with the new ones. This finishes the

proof.

Let Ek stand for the variety of k-potent residuated lattices, defined

relative to R by the identity: xk = xk+1. Thus, Ek corresponds to the

logic FLew[Ek]. Analogously, let EMk stand for the variety of k-potent

residuated lattices, defined relative to R by the identity: x∨¬xk = 1; this

corresponds to FLew[EMk].
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Theorem 5.7. Both Ek and EMk have the finite embeddability prop-

erty.

Proof. Let P be a partial subalgebra of an algebra N from Ek (EMk).

Let N− and W be as in the proof of Theorem 5.6. Then, W is a finite

bocsoid satisfying xk = xk+1 (x ∨ ¬xk = 1), and the rest of the proof

applies without any changes.

6. Conclusions and other remarks

Let us start with proving what we have announced in the title, namely:

Theorem 6.1. The variety R of residuated lattices is generated by

its finite simple members.

Proof. It suffices to show that for any non-theorem A of FLew there

is a finite simple residuated lattice S falsifying A. By Theorem 2.1, there

exist a simple residuated lattice M, and a valuation v on M , with v(A) < 1.

Let Σ be the set of all subformulas of A. Take P = v(Σ)∪{0, 1}, and define

a partial algebra P putting, for ⋆ ∈ {∩,∪,→, ·}, v(B) ⋆ v(C) = v(B ⋆ C),

if B ⋆ C belongs to Σ, and leaving it undefined otherwise1 . Thus defined,

P is a finite partial algebra from RS , and P ⊆ M. The construction from

Section 5 yields a finite simple residuated lattice S, into which P can also

be embedded. For a variable p, let us put w(p) = v(p), if p occurs in A,

and be arbitrary otherwise. Extending w to a valuation, and, as usual,

retaining the same symbol for it, we obtain, w(A) < 1 in S, which ends

the proof.

As mentioned already in Corollary 2.5, from Theorem 2.1 we can de-

rive that FLew is determined by the class of all simple residuated lattices.

It is shown in [8] that the logic FLew[EMk], which is obtained from FLew

1 Strictly speaking, we use ⋆ somewhat ambiguously here, as it stands for an algebraic

operation in one context and for a logical connective in the other. However, as this

ambiguity causes no harm (logical formulae are elements of the absolutely free algebra

of the appropriate type anyway) we rely on the reader to sort it out.
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by adding the axiom EMk: p ∨ ¬pk, is determined by the class of all

simple residuated lattices satisfying xk = xk+1. The sequence of logics

{FLew[EMk]}k is a monotone decreasing sequence of logics, whose first

member is classical logic. It is interesting to see to which logic this se-

quence will converge, more precisely, what is the intersection of them. As

a corollary of Theorem 6.1, we have:

Theorem 6.2. The intersection of the logics FLew[EMk] for k < ω is

equal to FLew.

Proof. We only have to show that any non-theorem can be falsified

on an algebra that satisfies:

xk =

{

1, if x = 1

0, otherwise

for some positive integer k. The algebra S from the previous proof is such.

The argument employed in Section 5 bears certain resemblance to the

filtration method best known in the context of semantic structures for

modal logics. Note that similar techniques were used in [7] and [3] to show

finite model property of some intuitionistic modal logics.

It should also be obvious that the technique can be employed to show

that some subvarieties of R are generated by their finite members. For in-

stance it follows from Theorem 5.7 that the varieties associated with logics

FLew[EMk], for any positive k, are generated by their finite simple mem-

bers, and the varieties associated with logics FLew[Ek], for any positive k,

are generated by their finite (not necessarily simple) members.

We finish off with two questions. The first concerns possible analogues

of our result for other varieties of residuated lattices. Although, as the

situation within the variety of Heyting algebras suggests, any thorough

characterisation of subvarieties of R generated by their finite members is

rather elusive, we would like to ask:
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Question 6.3. Which (well-known) subvarieties of R are generated

by their finite/simple/finite and simple members?

We do not even know whether the variety of classical residuated lattices

is generated by its finite simple members, although this seems a plausible

conjecture, as it is generated both by its finite members and by its sim-

ple members. Other natural candidates to consider are: linear residuated

lattices, distributive residuated lattices.

Among residuated structures a prominent place occupy partially or-

dered commutative residuated integral monoids, commonly referred to as

pocrims (cf. [2] for more about pocrims). The class Pk of k-potent (i.e.,

satisfying xk+1 = xk; some authors prefer to call these k+1-potent) pocrims

is a variety, for each positive integer k. After [1], we ask:

Question 6.4. Does Pk have the finite embeddability property for

k > 1?

For k = 1 the answer is affirmative and easy. For it can easily be

checked that the technique from [9] embeds any idempotent pocrim into an

idempotent residuated lattice. This actually only restates the well-known

fact that idempotent pocrims are precisely Brouwerian semilattices. Thus,

if P is a finite partial subalgebra of an algebra A ∈ P1, then it is also a

partial subalgebra of an algebra B from E1. Thus, by Theorem 5.7, P is

finitely embeddable in E1; hence, by taking the appropriate reduct, also in

P1. This simple reasoning, however, fails for k > 1, for whereas it remains

true that any k-potent pocrim can be embedded into a residuated lattice,

the latter may in general fail to be k-potent.
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