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SEMANTIC NORMAL FORM

A b s t r a c t. The idea of semantic normal form originally developed by

Jankov [17] for Brouwerian semilattices is made applicable to the vari-

ety of equivalential algebras and thereby, to a broader family of locally

finite and permutable varieties obeying the conditions of Fregeanity i.e.

point regularity and congruence orderability. It is proved that every

term in the language of such a variety can be equivalently expressed

with the help of a relatively small set of building blocks manufactured

from so-called monolith assignments.

1. Introduction

Generally our notations and nomenclature follow Burris and Sankap-
panavar [8] but with three exceptions: first, we prefer to use German capi-
tals for algebras, second, we seldom bother to make notational distinction
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between an algebra and its underlying set or between a term and the cor-
responding term operation, third, by subdirectly irreducible algebra we
mean an algebra possessing a smallest non-trivial congruence (the mono-
lith congruence). Thus, a one-element algebra will be denied subdirect
irreducibility.

We assume that every similarity type has its corresponding discourse
language and we use the symbol F(X) for the absolutely free algebra of
terms of the considered similarity type freely generated by the set X whose
elements will be called variables.

The set of all variables occurring in terms of a set T will be denoted
by Var(T ) and we shall write Var(t) ,Var(t1, . . . , tn) instead of Var({t}) ,
Var({t1, . . . , tn}) respectively.

Let K be a class of algebras of the similarity type of F(X). By ΘK

we will denote the fully invariant congruence of F(X) determined by K i.e.
the congruence defined by: 〈t1, t2〉 ∈ ΘK iff K |= t1 ≈ t2, for all terms
t1, t2 ∈ F(X). The quotient algebra F(X)/ΘK — which is free in the
variety generated by K — will be denoted by FK(X). If X = {x1, . . . , xn}
then we will write F(n), FK(n) instead of F(X), FK(X) respectively.

By an assignment in an algebra A we mean a mapping whose domain
is a set of variables and whose range is contained in A. The subalgebra
of A generated by the range of an assignment v will be called the target
algebra of v and denoted by [[v ]].

In general, to be sure that [[v ]] �= Ø one has to stipulate: Dom(v) �= Ø.
Here, however, we can afford allowing Dom(v) to be empty because all
algebras we are dealing with have constants among their basic operations.

Definition 1.1 Assignments v and w are said to be equivalent if
Dom(v) = Dom(w) and there exists an isomorphism [[v ]] �→ [[w ]] such that
v(x) is mapped to w(x), for every x ∈ Dom(v) .

1 Earlier attempts at grasping the idea of semantic normal form were presented by the

author in Karpacz, 24–27 April 1997 and 6–10 May 1998 to the Conferences “Applications

of Logic in Mathematics” II and III. The author thanks Professor Piotr Wojtylak, whose

remark at Karpacz Conference III helped him to correct an error in an earlier version of

the Definition 1.
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We adopt the convention of not distinguishing equivalent assignments
and thus, each non-empty class of equivalent assignments will be perceived
as a singleton.

Definition 2. An assignment v will be called a monolith assignment
if Dom(v) is finite and the algebra [[v ]] is subdirectly irreducible.

Let A be an algebra whose discourse language has a constant term 1.
The following two conditions on A are of great importance for the present
work:

(R) If 1/α = 1/β then α = β, for every α, β ∈ Con(A) ,

(≤) If Θ(a,1) = Θ(b,1) then a = b, for every a, b ∈ A.

The condition (R) is known in the literature under several different
names (see [14], [13], [23]). Here - following [2] - we shall call it 1-regularity
or simply regularity. The condition (R) implies that the mapping α �→ 1/α

is an isomorphism of the congruence lattice Con(A) and the lattice of filters
Fil(A) def= {1/α : α ∈ Con(A) }.

The condition (≤) was considered by Büchi an Ovens in [7], where
algebras obeying it were called fission free. It says that the mapping a �→
Θ(a,1) of the underlying set of A into its congruence lattice is 1–1 which
provides a kind of natural ordering of the underlying set of A given by the
obvious stipulation: a ≤ b iff Θ(a,1) ⊆ Θ(b,1).

A prominent place of (≤) in algebraic logic is due to the work of
D. Pigozzi and his collaborators (see [23], [9], [10], [12]). In the paper
[23] of D. Pigozzi, classes of algebras obeying the condition (≤) are named
Fregean.

For reasons explained elsewhere (see [15]) our usage of the concept of
Fregeanity will follow an earlier paper of Blok, Köhler and Pigozzi [2].

Thus, we say that algebra A is Fregean if both conditions (R) and (≤)
are obeyed and by a Fregean class of algebras we mean a class K of similar
algebras with a distinguished constant term 1 such that all members of K

obey (R) and (≤) wrt 1.
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Among Fregean varieties are many important varieties connected with
logic, such as Boolean algebras, Heyting algebras, Brouwerian semilattices,
and equivalential algebras (see [15]). Note the following:

Fact 3. (see Idziak, S�lomczyńska, Wroński [15])

(i) If A obeys (R) then α ⊆ Θ(1/α), for every α ∈ Con(A) ,

(ii) If A obeying (≤) is subdirectly irreducible and µ is the monolith con-

gruence of A then |1/µ| = 2 and all remaining µ-cosets are singletons,

(iii) If all members of H(A) obey (≤) then α ∨ Θ(a,1) = α ∨ Θ(b,1)
iff 〈a, b〉 ∈ α, for every α ∈ Con(A) and a, b ∈ A.

Thus, if µ is a monolith congruence of a subdirectly irreducible Fregean
algebra then the unique member of 1/µ which is distinct from 1 will be
denoted by �. It is easy to see that the monolith congruence of a subdirectly
irreducible Fregean algebra always has the form Θ(�,1). We also have the
following nice looking:

Theorem 4. (see Idziak, S�lomczyńska, Wroński [15]) For every Fre-

gean variety of algebras K the following conditions are equivalent:

(i) K is congruence permutable

(ii) K has a binary term e satisfying any of the following three equivalent
conditions:

(1) K |= e(x, x) ≈ 1 and e(1, x) ≈ x ≈ e(x,1),

(2) e is a principal congruence term for K in the sense that Θ(a, b) =
Θ(e(a, b),1), for every a, b ∈ A ∈ K,

(3) the e-reduct of every A ∈ K is an equivalential algebra.

2. Equivalential algebras

In several places we employ a somewhat specialized knowledge about
Brouwerian semilattices and equivalential algebras. For detailed informa-
tion pertaining to Brouwerian semilattices one can consult [20] and for
equivalential algebras [19] or better S�lomczyńska [25]. Some amount of
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information about equivalential algebras — which are less well-known then
they deserve — will be repeated here for the reader’s convenience.

Equivalential algebras can be viewed as an algebraic counterpart of
the purely equivalential fragment of the intuitionistic propositional logic
in the same sense as Brouwerian semilattices correspond to the (∧,→)-
fragment of this logical system. They can be characterized as ↔-subreducts
of Brouwerian semilattices with ↔ defined by the term (x → y)∧ (y → x).

It is known (see [19]) that equivalential algebras constitute a variety
E of type 〈2, 0〉 whose operations: ↔ (binary) and 1 (nullary) satisfy the
following identities:

• (x ↔ x) = 1,

• (1 ↔ x) = x,

• ((x ↔ y) ↔ z) ↔ z = (x ↔ z) ↔ (y ↔ z),

• ((x ↔ y) ↔ ((x ↔ z) ↔ z)) ↔ ((x ↔ z) ↔ z) = x ↔ y.

Equivalential algebras can also be characterized in a different manner.
Let S = 〈S,∨,0〉 be an upper-semilattice with zero. Then for some a, b ∈ S

it can happen that the set {c ∈ S : a ∨ c = b ∨ c} has a smallest element.
Such an element – if it exists – will be denoted a ⊕ b and will be called a
symmetric pseudo–difference of a and b in S.

Note the following:

Theorem 5. (see Idziak, S�lomczyńska, Wroński [15]) If S = 〈S,∨,0〉
is an upper-semilattice with zero and a nonempty A ⊆ S is such that for

every a, b ∈ A, the symmetric pseudo–difference of a and b in S exists and

belongs to A then 〈A,⊕,0〉 is an equivalential algebra.

Note that the condition (iii) of Fact 3 says that if H(A) obeys (≤) then
for every a, b ∈ A, the symmetric pseudo-difference Θ(a,1) and Θ(b,1) in
Con(A) exists and equals Θ(a, b).

Thus, if only filters of principal congruences of A were principal as
filters i.e. if for every a, b ∈ A we could find c ∈ A such that 1/Θ(a, b) =
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1/Θ(c,1) then the set of principal filters of A could be endowed with the
structure of an equivalential algebra.

The fact that such a situation occurs in permutable Fregean varieties
clearly explains why the conditions (2) and (3) of Theorem 4 are equivalent.

Returning to technicalities we introduce the generalized equivalence
operation

⊕
applicable to any finite sequence of elements of an equivalen-

tial algebra. The value of the operation
⊕

is the left associated equivalence
of all successive elements of the sequence. Thus we put:

⊕
Ø def= 1 and

⊕
(a1 . . . an+1) def= (

⊕
(a1 . . . an)) ↔ an+1.

Below we give a list of useful identities that hold in the variety of
equivalential algebras. To enhance readability we adopt the convention of
associating to the left and denoting ↔ by juxtaposition.

1. xy = yx,

2. xx = yy,

3. xyy(yxx) = xy,

4. xyyy = xy,

5. xyzz = xzz(yzz),

6. xyyzz = xzzyy,

7. xyy(yzz)(yzz) = xyy,

8. xyy(yz)(yz) = xyyzz,

9. x(yz)y = xyzy,

10. xyyxzz(xyyx) = xzzxyy(xzzx),

11. xyy(xzz)(xww) = xyy(xzz(xww)).

For every finite set X of elements of an equivalential algebra we have
a very useful unary polynomial &X defined by putting:

a&Ø def= a, a&(X ∪ {b}) def= (a&X)bb

The identities 2.6 and 2.4 imply that the value of &X does not depend
on permuting or repeating elements of X.
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Important features of polynomials &X are listed below:

1. a&X ∈ 1/Θ(a,1),

2. If X ⊆ 1/α then 〈a&X,a〉 ∈ α,

3. (ab)&X = (a&X)(b&X),

4. (a&X)&Y = a&(X ∪ Y ),

5. (a&X)(a&Y )(a&Z) = (a&X)((a&Y )(a&Z)),

6. If X ⊇ {a1, . . . , an} and b1, . . . , bn is a permutation of a1, . . . , an then
(
⊕

(a1, . . . , an))&X = (
⊕

(b1, . . . , bn))&X.

Note that if X is a finite set of elements of an equivalential algebra
and {a1, . . . , an} ⊆ X then we can write (

⊕ {a1, . . . , an})&X instead of
(
⊕

(a1, . . . , an))&X because order of elements of the sequence is irrelevant
(see 2.6).

For the same reason, if {X1, . . . ,Xn} is a finite family of finite sets
then we can write

⊕ {a&X1, . . . , a&Xn} instead of
⊕

(a&X1, . . . , a&Xn)
(see 2.5).

In general, the operation ↔ of an equivalential algebra does not need
to be associative but every set of the form {a&X : X ⊆ A, |X| < ℵ0} is
an associative subalgebra of the equivalential algebra A or, in other words,
it is a Boolean group.

It is known (see [19]) that a filter of an equivalential algebra can be
characterized as a subset Φ of the underlying set such that:

1. 1 ∈ Φ,

2. if a, ab ∈ Φ then b ∈ Φ,

3. if a ∈ Φ then a&X ∈ Φ, for every finite subset X of the underlying
set.

Equivalential algebras are locally finite, congruence permutable but
not congruence distributive (see [16]). The important congruence extension
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property which is known to hold for Brouwerian semilattices fails to hold
for equivalential algebras.

3. Brouwerian paradise

Let B be the variety of Brouwerian semilattices. It is known that B is
a Fregean variety (see [2]) and moreover, for every subdirectly irreducible
A ∈ B, the set of the form A \ {∗} is a subuniverse of A. This fact can
be used in a simple proof of local finiteness of B (see [22]). Thus, if v

is a monolith assignment such that [[v ]] = A ∈ B then the algebra A -
being finitely generated - must be finite and one can define a so-called
characteristic term of v putting:

χv
def= (

∧
((ta ∧ tb) ↔ ta∧Ab : a, b ∈ A)∧

∧
((ta → tb) ↔ ta→Ab : a, b ∈ A)∧

∧
(x ↔ tv(x) : x ∈ Dom(v) )) → t�

where for every a ∈ A, ta is a fixed term such that v(ta) = a and Var(ta) ⊆
Dom(v) .

The following fact is an immediate consequence of the definition:

Fact 6. Let v, w be monolith assignments with the same domain

and with Brouwerian semilattices as target algebras. Then the following

conditions are equivalent:

(i) w(χv) = �,

(ii) v and w are equivalent (recall Definition 1).

Let Mn
B

be the set of all monolith assignments having the set of variables
{x1, . . . , xn} as the domain and Brouwerian semilattices as target algebras.
For every term t of the discourse language of Brouwerian semilattices such
that Var(t) ⊆ {x1, . . . , xn} by Mn

B
(t) we denote the subset of Mn

B
containing

all monolith assignments of t i.e.:
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Mn
B
(t) def= {v ∈ Mn

B
: v(t) = �}.

Then we have the following:

Fact 7. If v is a monolith assignment, [[v ]] ∈ B, Var(t1, t2) ⊆ Dom(v)
and B |= t1 ∧ t2 ≤ χv then B |= ti ≤ χv, for some i ∈ {1, 2}.

And next:

Theorem 8. [Jankov] If t is a term of the language of Brouwerian

semilattices such that Var(t) ⊆ {x1, . . . , xn} then the following conditions

are equivalent:

(i) t/ΘB is ∧-irreducible in FB(n),

(ii) |Mn
B
(t)| = 1,

(iii) there exists v ∈ Mn
B

such that B |= χv ≈ t.

Theorem 8. [Jankov normal form] B |= t ≈ ∧
(χv : v ∈ Mn

B
(t)).

The idea of defining characteristic terms of monolith assignments and
using them as building blocks, with a view to recovering all ΘB cosets of
n-variable Brouwerian terms is due to V. A. Jankov [17] and the above
presentation is a paraphrase of his work. The practical value of Jankov’s
approach seems to be the fact that the set of building blocks one needs for
the job is relatively small and can be manufactured in a simple manner
just from monolith assignments of Mn

B
.

Moreover, by inspecting possible homomorphisms of target algebras
one can endow the set Mn

B
with a structure (partial ordering relation) which

yields complete information about the free algebra FB(n) together with a
practical method of counting the number of its elements (see [22]).

The reason why all this works so nicely is clear. In finite Brouwerian
semilattices ∧-irreducibility of elements is equivalent to join-irreducibility
of corresponding filters and all filters are principal. Thus, a finite Brouw-
erian semilattice is in fact isomorphic with the lattice of its own filters,
which is isomorphic with the congruence lattice. But a finite distributive
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lattice can always be recovered from the poset of its own join irreducibles
(see [1]).

Virtually no changes are needed to extend the method of Jankov to
Brouwerian semilattices with some additional operations that do not harm
the local-finiteness, such – for example – as pseudo-complementation (see
[18]). It is also possible – due to some tricks of Urquhart [27] – to apply the
method to so-called Hilbert algebras i.e. groupoids arising from the purely
implicational fragment of the intuitionistic propositional logic (see [11]).
Hilbert algebras are not congruence permutable but they are congruence
distributive.

In the next section we will show that the method of Jankov can be
made usable beyond the Brouwerian paradise.

4. Malcev Purgatory

Let us consider the variety E of equivalential algebras. Let the sets
of assignments Mn

E
,Mn

E
(t), the congruence relation ΘE and the free algebra

FE(n) be defined analogously to their corresponding B-variants.

To apply the method of Jankov, we shall need an equivalential analog
of Jankov’s theorem providing a means of recognizing cosets t/ΘE whose
corresponding filters are join-irreducibles of the lattice Fil(FE(n)) which —
as we already know — is isomorphic with Con(FE(n)) .

We hope to be able to recognize t/ΘE by inspecting its corresponding
set of monolith assignments Mn

E
(t) and thus, the following:

Definition 10. A Jankov-set (J-set) is a subset of Mn
E

having the
form Mn

E
(t) where Var(t) ⊆ {x1, . . . , xn} and Θ(t/ΘE,1) is join-irreducible

in Con(FE(n)) .

Now, if Θ(t/ΘE,1) is join-irreducible in Con(FE(n)) then the set Mn
E
(t)

no longer has to be a singleton, because of the lack of congruence distribu-
tivity.

Nevertheless, we shall see that all assignments in such a set must be
in a precise sense similar and have certain, easy to recognize, distinctive
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qualities — in particular — all such assignments have the same target
algebra.

The family of all J-sets can be equipped with a structure (this time
richer than partial ordering) providing full information about the free al-
gebra FE(n) and a practical method of counting the number of its elements
(see [26]).

This can be done by applying the representation theory of S�lomczyńska
and in particular, the fact that Θ(t/ΘE,1) is join-irreducible in Con(FE(n))
iff t/ΘE is irreducible in FE(n) in the sense of S�lomczyńska [24], [25].

We introduce a family of subsets of Mn
E

– to be called S-sets – by the
following definition:

Definition 11. A set of assignments V ⊆ Mn
E

is an S-set if the follow-
ing conditions (S1),(S2) and (S3) hold:

(S1) V �= Ø and for every v,w ∈ V, [[v ]] = [[w ]]

(S2) For every v,w ∈ V , for every i = 1, . . . , n , 〈v(xi), w(xi)〉 ∈ Θ(�,1) .

The condition (S2) implies that for every v,w ∈ V, v−1{�,1} =
w−1{�,1}. This means that all assignments in V have the same large vari-
ables i.e. variables taking the value � or 1. Consequently, all assignments
in V have the same set of small variables S (V ) containing those among
x1, . . . , xn that are not large. The following observation is an important
consequence of the condition (S2):

• All assignments of V agree on S (V ) i.e. v|S(V ) = w|S(V ), for every
v,w ∈ V .

To express the condition (S3) it will be convenient to define first an
important set of variables I (V ), whose elements will be called internal
variables of V .

We say that x ∈ I (V ) if x is a large variable of V and there exists
v ∈ V such that vx �∈ V , where vx is the unique assignment such that
{v(x), vx(x)} = {�,1} and v(y) = vx(y) for every y ∈ {x1, . . . , xn} \ {x}.

Now the condition (S3) can be expressed in the following simple man-
ner:
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(S3) I (V ) �= Ø and for every w ∈ Mn
E
, if |w−1{�} ∩ I (V ) | is odd and there

exists v ∈ V such that v|S(V ) = w|S(V ) then w ∈ V .

A useful characterization of S-sets is given by the following:

Fact 12. For every V ⊆ Mn
E
, the following conditions are equivalent:

(i) V is an S-set,

(ii) There exist pairwise disjoint sets of variables S, I,O such that S ∪ I ∪
O = {x1, . . . , xn}, I �= Ø and for some subdirectly irreducible A ∈ E,

there exist an assignment v0 such that Dom(v0) = S, [[v0 ]] = A \ {�}
and for every w ∈ Mn

E
, w ∈ V iff w|S = v0, w−1{�,1} = I ∪ O and

|w−1{�} ∩ I| is odd.

Now we can state the sought after equivalential analog of Jankov’s
theorem:

Theorem 13. If t is a term in the discourse language of E such that

Var(t) ⊆ {x1, . . . , xn} then the following conditions are equivalent:

(i) t/ΘE is S-irreducible in FE(n),

(ii) Mn
E
(t) is an S-set,

(iii) Mn
E
(t) is J-set, i.e. Θ(t/ΘE,1) is join-irreducible in Con(FE(n)) .

To be able to recover the free algebra FE(n) we have to endow the
family of S-sets with a S�lomczyńska-type structure comprising a partial
ordering relation, an equivalence relation and a partial binary operation
turning each equivalence class augmented with Ø into a Boolean group
(see [24], [25]).

We already know that all assignments of an S-set share the same set of
small variables S (V ) and v|S(V ) = w|S(V ), for every v,w ∈ V . One could
say that all assignments of V are outgrowths of the same trunk, by which
we mean the unique assignment v0 such that v0 = w|S(V ), for every w ∈ V .
It is important to remember that:

• the case: v0 = Ø is not excluded.

The concept of trunk can be used to define the equivalence relation we
need for S�lomczyńska-type structure.
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Definition 14. Two S-sets V1, V2 ⊆ Mn
E
, will be declared equivalent

iff both have the same trunk.

Clearly, if S-sets V1 and V2 have the same trunk and the same set of
internal variables then they are equal.

Thus a difference between V1 and V2 from the same equivalence class
can only be due to different sets of internal variables. This means that
members of the equivalence class of an S-set V are in 1-1 correspondence
with non-empty subsets of the set of large variables of V i.e. with sets of
internal variables of members of the equivalence class of V .

The operation of symmetric difference performed on sets of internal
variables of S-sets equivalent to V is just what we need to turn the equiv-
alence class of V augmented with Ø into a Boolean group.

It is clear that all assignments of an S-set V have the same target
algebra [[V ]] generated by the range of an arbitrary member of V . Moreover,
if V1 and V2 are equivalent in the sense of Definition 14 then [[V1 ]] = [[V2 ]].

Now the family {V ⊆ Mn
E

: V is an S-set} will be partially ordered, as
required for a S�lomczyńska-type structure.

Definition For every S-sets V1, V2 ⊆ Mn
E

we put: V1 ≤ V2 iff there
exists an epimorphism h : [[V1 ]] �→ [[V2 ]] such that h(V1) ⊆ V2, where h(V1)
is defined by the obvious stipulation: (h(v))(x) = h(v(x)), for every v ∈
V1, x ∈ {x1, . . . , xn}.

Let V ⊆ Mn
E

be an S-set and let [[V ]] = A. We will now proceed to
define a characteristic term χV of V .

Let pairwise disjoint sets of variables S, I, O be such that S = S (V ),
I = I (V ), O = {x1, . . . , xn} \ (S ∪ I) and let an assignment v0 : S �→
A \ {�,1} be the trunk of V .

Since [[v0 ]] = A \ {�} then for every a ∈ A \ {�} we can pick a term ta
such that v0(ta) = a and Var(ta) ⊆ S.

We shall also need a special term t� such that Var(t�) = I and for
every v ∈ V, v(t�) = �. Such a term we get by putting:
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t�
def= (

⊕
I)&I

Define now two auxiliary sets of terms ∆0 and ∆1 putting:

∆0
def=

{
(ta ↔ tb) ↔ ta↔Ab : a, b ∈ A \ {�,1}, a �= b

}

∆1
def=

{
x ↔ tv0(x) : x ∈ S

}

Finally, we are ready to state the definition of the characteristic term
of the S-set V .

Definition 16.

χV
def= (

⊕
{t�&X : X ⊆ S})&(∆0 ∪ ∆1 ∪ O)

Note the following:

Fact 17. If V ⊆ Mn
E

is an S-set then v ∈ V iff v(χV ) = �, for every

assignment v ∈ Mn
E
.

It is easy to see that characteristic terms can be used to capture the
partial ordering of S-sets introduced by the Definition 15. Indeed, for every
S-sets V1, V2 ⊆ Mn

E
:

V1 < V2 iff E |= χV1 ↔ χV2 ≈ χV2 .

Thus, V1 < V2 iff for every v ∈ V1, v(χV2) is a small element of [[V1 ]].

The above ordering is used to determine maximal S-sets mentioned in
the following:

Theorem 18. [normal form] For every term t of the discourse lan-

guage of equivalential algebras such that Var(t) ⊆ {x1, . . . , xn}:

E |= t ≈
⊕

{χV : V is a maximal S-set such that V ⊆ Mn
E
(t)}

Let us consider now a permutable and locally finite variety K obeying
the conditions of Fregeanity (R) and (≤). We should not expect miracles
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because the only structure we can be sure to find in an algebra A ∈ K

is that of an equivalential algebra, provided by a binary term e known to
exist by Theorem 4. Taking advantage of this situation we shall use the
notation 〈A, e〉 for the e-reduct of A ∈ K.

First thing to realize is the fact that, in general, lattices: Fil(FK(n))
and Fil(〈FK(n), e〉) are different and it happens that a filter of a coset t/ΘK

is join-reducible in Fil(FK(n)) but join-irreducible in Fil(〈FK(n), e〉) .

Nevertheless, S�lomczyńska’s representation theory (see [25], [24]) works
for every finite equivalential algebra and thus we can just single out all
cosets t/ΘK whose corresponding filters are join-irreducible in the lattice
Fil(〈FK(n), e〉) and successfully recover the whole of FK(n) using them as
building blocks just as we used terms χV in Theorem 18.
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[9] J. Czelakowski, Consequence Operations, Foundational Studies, (Report of the Re-

search Project: Theories, Models, Cognitive Schemata), Institute of Philosophy and

Sociology, Polish Academy of Sciences, Warsaw, 1992.

[10] J. Czelakowski and D. Pigozzi, Relatively Point-Regular Quasivarieties, manuscript.
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[25] K. S�lomczyńska, Equivalential algebras, Part I: Representation Theorem, Algebra

Universalis, 35(1996), 524–547.



SEMANTIC NORMAL FORM 21
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