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IMPLICATION SYSTEMS FOR

MANY-DIMENSIONAL LOGICS

A b s t r a c t. The main result of the present paper is equivalence

of the following conditions, for any k-dimensional logic L:

(i) L has a full-replacement implication system, i.e., a finite set of

k-dimensional formulas with 2k variables that in a natural way

adopts the Identity axiom and the Modus Ponens rule for the

ordinary implication connective;

(ii) L has an unary-replacement implication system, i.e., a finite set

of k-dimensional formulas with k+1 variables that in a different

way adopts the Identity axiom and the Modus Ponens rule for

the ordinary implication connective;

(iii) L has a parameterized local deduction theorem;

(iv) L has the syntactic correspondence property that is essentially

the restriction of the filter correspondence property to deductive

L-filters over the formula algebra alone;
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(v) L is protoalgebraic in the sense that the Leibniz operator is

monotonic on the set of deductive L-filters over every algebra;

(vi) L has a system of equivalence formulas with parameters that

defines the Leibniz operator on deductive L-filters over every al-

gebra.

We also present a family of specific examples which collectively

show that the above metaequivalence doesn’t remain true when in

(i) “2k” (resp., in (ii) “k+1”) is replaced by “2k−1” (resp., by “k”).

This, in particular, disproves the statement of [4], Theorem 13.2.

1. Introduction

Many-dimensional propositional systems are introduced in [3] and ex-

amined in [4] to provide a common approach to both ordinary propositional

systems (viz. sentential logics or standard systems in the terminology of

[13]) and quasivarieties in Mal’cev’s sense [11]. Formally speaking, given

any k > 0, a k-dimensional propositional logic (k-logic for short) is a fini-

tary and structural consequence operation on the set of all k-dimensional

propositional formulas (k-formulas for short), that is, k-tuples constituted

by ordinary propositional formulas. In this way the standard systems in

Wojcicki’s sense become exactly the 1-dimensional propositional logics. As

for Mal’cev’s quasivarieties, their equational consequence operations (cf.

[2]) are exactly those 2-dimensional logics which satisfy the rules for equal-

ity. 1 Besides these two basic kinds of many-dimensional logics there are

also some interesting systems that can equally be covered by the formal-

ism under consideration. These are mainly (but certainly not exclusively)

strict universal Horn theories without equality of binary relations like those

of partial orderings, of quasi-orderings, etc. (see [4] for more detail).

Appearance of this general conception of deductive system raises a

number of metalogical issues concerning, in particular, those which have

1 Equations are treated as pairs of propositional formulas.
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been studied within the context of the ordinary (i.e., 1-dimensional) propo-

sitional logics. Being a natural expansion of the concept of standard system,

the one of many-dimensional logic can certainly be studied along the line

of Sentential Logic Theory [13] without any significant problem. A part of

such a straightforward elaboration is presented in [4]. This concerns mainly

the concept of logical matrix, the problems of completeness, axiomatizabil-

ity, etc. In this connection, there have been found no surprising behaviour

of many-dimensional logics in comparison with 1-dimensional ones. How-

ever there are still certain points relevant to standard systems (though not

completely involved in [13]) whose extension to many-dimensional logics

has proved far from being unambiguous. One of them concerns the prob-

lem of existence of what we call here an implication system, that is, a finite

set of many-dimensional formulas which satisfies, with respect to a given

many-dimensional logic, proper analogs of the Modus Ponens rule and the

Identity axiom for the ordinary implication connective. The importance of

this issue within the context of sentential logics has been realized mainly

due to the works [4] and [8], though its roots go back to the papers [6],

[7] where the condition of existence of an implication system appears as a

prerequisite in the formulations of theorems that provide characterizations

of standard systems with a (uniform or local, respectively) deduction the-

orem through behaviour of the lattices of their deductive filters. 2 In [8]

it has been shown that any standard system has an implication system iff

it has a so called parameterized local deduction theorem. A quite different

insight into the conception of implication system for sentential logics can be

found in [Section 13][4] where it has been proved that any standard system

has an implication system iff it is protoalgebraic in the sense of [1] (cf. [4],

Theorem 13.2, for the case k = 1). Protoalgebraicity of a given sentential

logic is also proved to be equivalent to existence of a system of equivalence

formulas with parameters that defines the Leibniz operator (in the sense

of [2]) on deductive filters of the logic (cf. [4], Theorem 13.10). In addi-

tion, the property of being protoalgebraic has far-reaching consequences.

2 In [7] standard systems with an implication system are even referred to as non-

pathological.
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In particular, many important results that have been obtained for quasiva-

rieties (this concerns mainly the problem of finite axiomatizability, various

forms of deduction theorem and related issues) can easily be extended to

protoalgebraic logics. We regret of not having the space here to describe

the great amount of work done in this connection in detail and to present

the full list of references relevant to the issue. We believe the paper [4] as

well as its bibliography can provide the reader with, at least, a preliminary

comprehension of the issue involved.

It appears that, being true for the case k = 1, the statement of The-

orem 13.2 in [4] is erroneous when k > 1, as we argue in Section 5. 3 On

the other hand, the extrapolation of the concept of protoalgebraicity stud-

ied in [4] seems to be perfectly right. This implies that the extrapolation

of the concept of implication system from 1- to k-dimensional logics with

k > 1 chosen in Definition 13.1 in [4] is incorrect.4 It is worth mentioning

that Blok and Pigozzi suggested such schema of Modus Ponens for many-

dimensional logics that replaces just a single propositional formula in a

many-dimensional premise and leaves the rest unchanged. We suggest here

another approach to a “many-dimensional Modus Ponens” that consists in

dealing with the following schema

~ϕ,∆(~ϕ, ~ψ) ⊢ ~ψ (1)

where ~ϕ and ~ψ are many-dimensional formulas and ∆(~x, ~y) is a finite set

of many-dimensional formulas with variables ~x, ~y. In this way, the identity

law is expressed as follows

⊢ ∆(~ϕ, ~ϕ). (2)

Any set ∆ of such a kind satisfying the conditions (1) and (2) with respect

to the consequence ⊢ of a given many-dimensional logic is called a full-

replacement implication system for the logic (cf. Definition 3.1.). We prove

3 As a consequence, the proofs and, in some cases, even statements presented further

in [4], Section 13, become incorrect as well, because they rely upon Theorem 13.2 of [4].
4 To be more precise, Blok and Pigozzi use the term system of equivalence formulas

for their extension of the concept involved to many-dimensional logics.



IMPLICATION SYSTEMS FOR MANY-DIMENSIONAL LOGICS 15

that a many-dimensional logic has a full-replacement implication system

iff it has a parameterized local deduction theorem iff it is protoalgebraic

iff it has a system of equivalence formulas with parameters (cf. Theorem

4.1.). In this way, the main results on the issue that have been proved

for 1-dimensional logics become generalized to k-dimensional ones. As a

by-product, we prove that the statement (but not the proof!) of Theorem

13.10 of [4] is still correct. This implies that the statements of further

results of Section 13 in [4] are correct as well, for their proofs are based

upon Theorem 13.10 of [4] alone in the sense that they do not involve

Theorem 13.2 of [4] directly. Furthermore, the issue of parameterized local

deduction theorem has been examined for quasivarieties in [9]. Actually,

our main result gives new proofs to some results in Universal Algebra (for

more detail, see the comments after Theorem 4.1.).

In order to trace more close connections with Blok and Pigozzi’s con-

ception of implication system and to show how the statement of Theorem

13.2 in [4] can be corrected “gently”, we consider also a proper “unary-

replacement Modus Ponens schema” and a corresponding notion of an un-

ary-replacement implication system (cf. Definition 3.2.). Unlike Blok and

Pigozzi’s systems of equivalence formulas, our unary-replacement implica-

tion systems contain, generally speaking, more than two variables. We

prove that full-replacement and unary-replacement implication systems are

definable in terms of one another (cf. Proposition 3.3.).

The rest of the paper is as follows. Section 2 provides a brief summary

of basic concepts concerning the general topic of many-dimensional logics.

In Section 3 we specify and examine key notions of the present paper.

Next, in Section 4 we prove the main result of our paper (see Theorem

4.1.). Finally, in Section 5 we consider a family of counterexamples which,

in particular, disprove the statement of Theorem 13.2, [4].

2. Preliminaries

Throughout the paper, we fix a countable set Var of (propositional)

letters or variables. Small Italic letters p, q, u, v, w, x, y and z (possibly
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with indices) are used as metavariables ranging over the set Var.

A (propositional) language is any set L of (propositional) connectives

of arbitrary finite arity. These are treated naturally as operation symbols.

Then, the L-terms with variables in the set Var are referred to as (proposi-

tional) formulas over L. The set of all formulas over L will be denoted by

FmL.

The notion of an L-algebra and related concepts are standard. In order

to unify notations, algebras will be denoted by Calligraphic letters, their

carriers being denoted by the corresponding capital Italic letters.

The absolutely free L-algebra freely generated by the set Var (notice

that its carrier coincides with the set FmL) is called the formula L-algebra

and is denoted by FmL. The endomorphisms of FmL are called substitu-

tions over L. The set of all substitutions over L is denoted by SbL. Given

a sequence of distinct variables x and a sequence of formulas ϕ over L of

the same length, by [ϕ/x] we denote the substitution over L defined by

[ϕ/x]x := ϕ and [ϕ/x]v := v, for all v ∈ Var \ {x}.

A dimension is any number k > 0. We will follow the general rule,

according to which a k-tuple 〈a1, . . . , ak〉 is briefly written as ~a. Likewise,

f~a is used as an abbreviation for the k-tuple 〈fa1, . . . , fak〉.

A k-dimensional (propositional) formula, or briefly k-formula, over L

is any k-tuple constituted by propositional formulas over L. The set of all

k-formulas over L is denoted by Fmk
L. Given a set Γ consisting of formulas

and many-dimensional formulas, Var(Γ ) denotes the set of all variables

occurring in Γ . As usual, we will also write Γ (x) to express the fact that

Var(Γ ) ⊆ {x}.

Let A be a non-empty set. By ℘(A) we denote the set of all subsets of

A. We also write X ⊆ω A for “X is a finite subset of A”.

A closure operator on A is any unary operation C on ℘(A) such that,

for all X ⊆ Y ⊆ A, it holds that X ∪C(C(X)) ⊆ C(X) ⊆ C(Y ). A closure

operator C on A is said to be finitary provided, for all X ∪ {a} ⊆ A, from

a ∈ C(X) it follows that a ∈ C(Y ) for some Y ⊆ω X.
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Let L be a propositional language and k a dimension. A closure oper-

ator C on Fmk
L is said to be structural provided, for all Γ ⊆ Fmk

L and all

σ ∈ SbL, it holds that σC(Γ ) ⊆ C(σΓ ). A k-dimensional (propositional)

logic, or simply k-logic, over L is any triple of the form L = 〈L, k,CnL〉

where CnL is a finitary and structural closure operator on Fmk
L, called the

consequence (operation) of L. In order to make notations more natural,

we will normally write Γ ⊢L ∆ for ∆ ⊆ CnLΓ . Related abbreviations like

~ϕ, Γ ⊢L
~ψ for {~ϕ} ∪ Γ ⊢L {~ψ} are then supposed to be clear as well.

A k-dimensional (propositional) rule, or briefly k-rule, over L is any

couple 〈Γ, ~ϕ〉, normally written as Γ ⊢ ~ϕ, constituted by a finite set Γ of

k-formulas over L and by a single k-formula ~ϕ over L. A k-rule over L

of the form Ø ⊢ ~ϕ is called a k-axiom over L, and is identified with the

k-formula ~ϕ. An L-instance of a k-rule Γ ⊢ ~ϕ over L is any k-rule over L

of the form σΓ ⊢ σ~ϕ where σ ∈ SbL.

A k-calculus over L is a set of k-rules over L. Any k-calculus D over

L defines a k-logic L over L in the standard proof-theoretical manner as

follows. For all Γ ∪ {~ϕ} ∈ Fmk
L, put Γ ⊢L ~ϕ iff ~ϕ is derivable from Γ by

means of rules in D in the sense that there exists a non-empty sequence
~ψ1, . . . , ~ψn ∈ Fmk

L, called a D-derivation of ~ϕ from Γ , such that ~ϕ = ~ψn

and, for all 1 ≤ i ≤ n, either ~ψi ∈ Γ or there exist k ≥ 0 and j1, . . . , jk < i

such that ~ψj1 , . . . ,
~ψjk

⊢ ~ϕi is an L-instance of a rule in D. The so-defined

logic L is said to be axiomatized by D.

Let L be a k-logic over L and A an L-algebra. A set F ⊆ Ak is called

a (deductive) L-filter over A provided, for all Γ ∪ {~ϕ} ⊆ Fmk
L and all

h ∈ Hom(FmL,A),

Γ ⊢L ~ϕ ⇒ (hΓ ⊆ F ⇒ h~ϕ ∈ F ).

The set of all L-filters over L is denoted by FiLA.

3. Basic notions and results

Throughout this and the next sections we fix a dimension k, a propo-

sitional language L and a k-logic L over L.
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Definition 3.1. Let ~x, ~y be 2k distinct variables. A finite set ∆(~x, ~y)

of k-formulas over L is called a full-replacement implication system for L

provided the following conditions are satisfied:

~x,∆(~x, ~y) ⊢L ~y (3)

⊢L ∆(~x, ~x) (4)

Below (see Lemma 4.3.) we show how full-replacement implication

systems arise naturally in logics having a deduction theorem of a general

form (cf. Definition 3.4.).

Definition 3.2. Let x, y, z1, . . . , zk−1 be k + 1 distinct variables. A

finite set of k-formulas ∆(x, y, z1, . . . , zk−1) over L is called an unary-

replacement implication system for L provided the following conditions are

satisfied:

〈z1, . . . , zi−1, x, zi, . . . , zk−1〉,

∆(x, y, z1, . . . , zk−1) ⊢L 〈z1, . . . , zi−1, y, zi, . . . , zk−1〉,

for all 1 ≤ i ≤ k, (5)

⊢L ∆(x, x, z1, . . . , zk−1) (6)

As opposed to full-replacement implication systems, unary-replace-

ment ones arise naturally in equivalential logics (cf. Definition 3.7. and

Proposition 3.8.). However, in view of the following statement (whose

proof is straightforward and, for this reason, is omitted), both kinds of

implication system are essentially equivalent.

Proposition 3.3.

(i) If ∆(~x, ~y) is a full-replacement implication system for L then

⋃

1≤i≤k

∆(z1, . . . , zi−1, x, zi, . . . , zk−1, z1, . . . , zi−1, y, zi, . . . , zk−1)

is an unary-replacement implication system for L.
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(ii) If ∆(x, y, z1, . . . , zk−1) is an unary-replacement implication system for

L then ⋃

1≤i≤k

∆(xi, yi, y1, . . . , yi−1, xi+1, . . . , xk)

is a full-replacement implication system for L. In particular, L has a full-

replacement implication system iff it has an unary-replacement one.

The concept defined below has been introduced and examined in [8] for

the case k = 1. In case k = 2 and L is the 2-logic defined by a quasivariety,

we also get exactly the concept of parameterized local deduction theorem

for quasivarieties specified in [9].

Definition 3.4. Let ~x, ~y be 2k distinct variables. Then L is said

to have the parameterized local (~x, ~y)-deduction theorem with respect to a

system Φ of finite sets of k-formulas over L provided, for all Γ ∪ {~ϕ, ~ψ} ⊆

Fmk
L, it holds that

Γ, ~ϕ ⊢L
~ψ ⇔ Γ ⊢L Ξ(~ϕ, ~ψ, ξ) for some Ξ(~x, ~y, z) ∈ Φ and some ξ ∈ FmL.

If, in addition, Var(Ξ) ⊆ {~x, ~y}, for all Ξ ∈ Φ, then L is said to have

the local deduction theorem with respect to Φ (cf. [7], [3]). If, moreover,

Φ = {Ξ} is a singleton, then L is said to have the uniform deduction

theorem with respect to Ξ (cf. [6], [3]).

What is defined below is essentially the restriction of the filter cor-

respondence property (cf. [Definition 7.5][4]) to deductive filters over the

formula algebra alone.

Definition 3.5. L is said to have the syntactic correspondence prop-

erty provided, for every surjective σ ∈ SbL and all Γ∪{~ϕ} ⊆ Fmk
L, it holds

that

σ−1CnL(σ~ϕ,Γ) = CnL(~ϕ, σ−1CnLΓ).

Finally, we recall several concepts that are mainly due to Blok and

Pigozzi [4].
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Let A be an L-algebra and F ⊆ Ak. A congruence θ of A is said to be

compatible with F provided, for all ~a,~b ∈ Ak such that 〈ai, bi〉 ∈ θ for each

1 ≤ i ≤ k, it holds that ~a ∈ F ⇔ ~b ∈ F . The binary relation ΩAF on A

defined by

〈a, b〉 ∈ ΩAF
def
⇐⇒ ~ψA(a, c) ∈ F ⇔ ~ψA(b, c) ∈ F,

for all ~ψ(p, q) ∈ Fmk
L and all c ∈ A, (7)

for all a, b ∈ A, is called the Leibniz (or indiscernability) relation of F over

A. This is the greatest congruence of A compatible with F (cf. [Section

5][4]). The function ΩA with domain ℘(A) is called the Leibniz operator

over A.

Definition 3.6. L is said to be protoalgebraic provided, for each L-

algebra A, the Leibniz operator ΩA over A is monotonic on FiLA in the

sense that

F ⊆ G⇒ ΩAF ⊆ ΩAG,

for all F,G ∈ FiLA.

Definition 3.7. Let x and y be two distinct variables. A set Θ ⊆ Fmk
L

is called a system of (x, y)-equivalence formulas, or congruence formulas

according to [4], with parameters for L provided, for each L-algebra A,

each F ∈ FiLA and all a, b ∈ A, it holds that

〈a, b〉 ∈ ΩAF ⇔~ϕA(a, b, c) ∈ F,

for all ~ϕ(x, y, z) ∈ Θ and all c ∈ A. (8)

If, in addition, Θ = Θ(x, y) then Θ is called a system of equivalence for-

mulas, or congruence formulas according to [4], without parameters for L.

A logic is said to be (resp., finitely) equivalential, or weakly congruential

(resp., congruential) according to [4], whenever it has a (resp., finite) sys-

tem of equivalence formulas without parameters.
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Due to [5] it is well known that a 1-logic is (resp., finitely) equivalential

in the above sense iff it is (resp., finitely) equivalential in the original sense

of Prucnal and Wroński [12]. 5

Proposition 3.8. Assume L is (resp., finitely) equivalential and

Θ(x, y) is a (resp., finite) system of equivalence formulas without param-

eters for L. Then some set ∆ ⊆ω Θ (resp., the set Θ itself) is an unary-

replacement implication system for L.

Proof. Observe that Θ satisfies the conditions (5) and (6) mutatis

mutandis. In case Θ is infinite, by finitariness of CnL there is some ∆ ⊆ω Θ

which satisfies the mentioned conditions as well. �

In case k = 2 and L is the 2-logic defined by a quasivariety, the pair

〈x, y〉 alone is well-known to be a single equivalence formula without pa-

rameters for L. Hence {〈x, y〉} is an implication system for such a logic.

In that case a logic always possesses an implication system with at most

two variables. However this is not, generally speaking, the case for any

dimension k > 1, as it is shown in Section 5. 6

4. Main issues

Now we are in a position to prove the main result of the present paper.

Theorem 4.1. The following are equivalent:

(i) L has a full-replacement implication system;

(ii) L has an unary-replacement implication system;

(iii) L has a parameterized local deduction theorem;

(iv) L has the syntactic correspondence property;

(v) L is protoalgebraic;

5 This is why we have preferred here the standard terminology that is different from

the one adopted in [4].
6 This is why the statement of [Theorem 13.2][4] is erroneous.
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(vi) L has a system of equivalence formulas with parameters.

Proof. The metaequivalence (i) ⇔ (ii) is by Proposition 3.3.. The

metaimplication (vi) ⇒ (v) is obvious. The metaimplication (v) ⇒ (iv) is

a particular case of [Theorem 7.6][4]. The metaimplications (i) ⇒ (vi) and

(iii) ⇒ (i) are, respectively, by the following two lemmas, which are also

interesting in their own right.

Lemma 4.2. Let ~x, ~y be 2k distinct variables. Assume ∆(~x, ~y) is a

full-replacement implication system for L. Then, for any distinct u, v ∈ Var,

the set

Θ := {~ϕ(~ψ[u/w], ~ψ[v/w]) : ~ϕ ∈ ∆, ~ψ ∈ Fmk
L, w ∈ Var, u, v 6∈ Var(~ψ)}

is a system of (u, v)-equivalence formulas with parameters for L.

Proof. Take any L-algebra A, any F ∈ FiLA and arbitrary a, b ∈ A.

First, assume 〈a, b〉 ∈ ΩAF . Then, for every ~ϕ(~x, ~y) ∈ ∆, every
~ψ(w, z) ∈ Fmk

L and all c ∈ A, we have

~ϕA(~ψA(a, c), ~ψA(b, c)) ∈ F ⇔ ~ϕA(~ψA(a, c), ~ψA(a, c)) ∈ F.

By (6) we get

~ϕA(~ψA(a, c), ~ψA(b, c)) ∈ F. (9)

Thus the right part of (8) holds.

Conversely, assume the right part of (8) holds. Then (9) holds for every

~ϕ(~x, ~y) ∈ ∆, every ~ψ(w, z) ∈ Fmk
L and all c ∈ A. Take any ~ψ(p, q) ∈ Fmk

L

and arbitrary c ∈ A. By (9) and (3) we get

~ψA(a, c) ∈ F ⇒ ~ψA(b, c) ∈ F.

For proving the converse, observe that, for all ~φ(~x, ~y) ∈ ∆, by (9) we have

~φA(~ϕA(~ψA(a, c), ~ψA(a, c)), ~ϕA(~ψA(b, c), ~ψA(a, c))) ∈ F.

By (4) and (3) we then get

~ϕA(~ψA(b, c), ~ψA(a, c)) ∈ F.

Applying (3) once more, we eventually conclude that

~ψA(b, c) ∈ F ⇒ ~ψA(a, c) ∈ F.

Thus 〈a, b〉 ∈ ΩAF . �
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Lemma 4.3. Let ~x, ~y be 2k distinct variables. Assume L has the

parameterized local (~x, ~y)-deduction theorem with respect to a system Φ

of finite sets of k-formulas over L. Then there are some Γ (~x, ~y, z) ∈ Φ and

some η(~x, ~y) ∈ FmL such that Γ (~x, ~y, η) is a full-replacement implication

system for L.

Proof. As ~x ⊢L ~x, there are some Γ (~x, ~y, z) ∈ Φ and some ξ ∈ FmL

such that ⊢L Γ (~x, ~x, ξ). On the other hand, Γ (~x, ~y, ξ) ⊢L Γ (~x, ~y, ξ), so

~x, Γ (~x, ~y, ξ) ⊢L ~y. Let σ be the substitution over L defined by σ~x := ~x,

σ~y := ~y and σv := x1 for all v ∈ Var \ {~x, ~y}. Put η(~x, ~y) := σξ. By

structurality of CnL we then get ~x, Γ (~x, ~y, η) ⊢L ~y and ⊢L Γ (~x, ~x, η(~x, ~x)).

�

Finally, we prove (iv) ⇒ (iii). Suppose L has the syntactic correspon-

dence property. Put

Φ := {Ξ ⊆ω Fmk
L : ~x,Ξ ⊢L ~y}.

We claim that L has the parameterized local (~x, ~y)-deduction theorem with

respect to Φ. For take any Γ ∪ {~ϕ, ~ψ} ⊆ Fmk
L. Assume ~ϕ, Γ ⊢L

~ψ. Con-

sider any surjective σ ∈ SbL such that σ~x = ~ϕ and σ~y = ~ψ. Then, by the

syntactic correspondence property, we have ~x, σ−1CnLΓ ⊢L ~y. By finitari-

ness of CnL there is some Ξ(~x, ~y, z) ∈ Φ such that Ξ ⊆ σ−1CnLΓ . Setting

ξ := σz, we then get Γ ⊢L Ξ(~ϕ, ~ψ, ξ). Conversely, assume Γ ⊢L Ξ(~ϕ, ~ψ, ξ)

for some Ξ(~x, ~y, z) ∈ Φ and some ξ ∈ FmL. By structurality of CnL one

can easily see that ~ϕ, Γ ⊢L
~ψ. �

By this theorem we immediately conclude that the 2-logic defined by

any quasivariety has a parameterized local deduction theorem (cf. the com-

ments in the end of Section 3). This fact has been noticed independently

in [9] as a direct corollary of [Theorem 2.1] [9] that states that every qua-

sivariety has locally definable principal congruences (see also [p. 206] [10])

and [Theorem 3.1] [9] that states that any quasivariety has locally defin-

able principal congruences with respect to a given family of finite sets of
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equations (viz. 2-formulas in our terms) iff the 2-logic defined by the quasi-

variety has the parameterized local deduction theorem with respect to the

same family (cf. the comments after the formulation of the mentioned the-

orem). On the other hand, Theorem 4.1. collectively with [Theorem 3.1] [9]

gives a new proof to Gorbunov’s result [p. 206] [10] explicitly formulated

in [Theorem 2.1] [9].

As for the item (iv) of Theorem 4.1., remark that, as opposed to the

filter correspondence property [Definition 7.5][4], the syntactic one does not

imply protoalgebraicity immediately. The problem here is that a quotient

of a formula algebra need not be isomorphic to the same formula algebra.

Therefore the arguments used in proving [Theorem 7.6][4] cannot be applied

to proving the metaimplication Theorem 4.1. (iv) ⇒ (v) directly. So this

metaimplication does give a new insight into the concept of protoalgebraic

logic.

It is also worth to notice that Theorem 4.1. solves positively the prob-

lem whether a many-dimensional logic having a local deduction theorem is

protoalgebraic. 7

In case L is protoalgebraic, it does not however possess, generally

speaking, a full-replacement (resp., unary-replacement) implication system

with less than 2k (resp., k + 1) variables. We show it in the next section.

This, in particular, disproves the statement of [Theorem 13.2][4].

5. Examples

Take an arbitrary dimension k. Consider the propositional language

L⊃ := {⊃} where ⊃ is an infix binary connective. Let Lk
⊃ be the k-logic

over L⊃ axiomatized by the calculus Dk
⊃ constituted by the following k

7 The fact that the problem whether a k-logic having a uniform deduction theorem

is protoalgebraic was open for the case k > 1 was pointed out to the author by Don

Pigozzi.



IMPLICATION SYSTEMS FOR MANY-DIMENSIONAL LOGICS 25

axioms and k rules:

⊢〈z1, . . . , zi−1, x ⊃ x, zi, . . . , zk−1〉,

〈z1, . . . , zi−1, x, zi, . . . , zk−1〉,

〈z1, . . . , zi−1, x ⊃ y, zi, . . . , zk−1〉 ⊢〈z1, . . . , zi−1, y, zi, . . . , zk−1〉,

for all 1 ≤ i ≤ k.

The proof of the following statement is straightforward and, for this

reason, is omitted.

Proposition 5.1. The set

{〈z1, . . . , zi−1, x ⊃ y, zi, . . . , zk−1〉}1≤i≤k

is an unary-replacement implication system for Lk
⊃. In particular, Lk

⊃ is

protoalgebraic.

On the other hand, we have

Theorem 5.2.

(i) Assume ∆(~x, ~y) is a full-replacement implication system for Lk
⊃. Then

Var(∆) = {~x, ~y}.

(ii) Assume ∆(x, y, z1, . . . , zk−1) is an unary-replacement implication sys-

tem for Lk
⊃. Then Var(∆) = {x, y, z1, . . . , zk−1}.

Proof. We start from proving the following lemma.

Lemma 5.3. Let Γ ∪{~ϕ} ⊆ Fmk
L⊃

. Assume Γ ⊢Lk

⊃

~ϕ. Then either ~ϕ

is an L⊃-instance of one of the axioms in Dk
⊃ or there is some ~ψ ∈ Γ such

that Var(~ϕ) ⊆ Var(~ψ).

Proof. By induction on the minimal length n of a Dk
⊃-derivation

~φ1, . . . , ~φn of ~ϕ from Γ . If n = 1 then either ~ϕ is an L⊃-instance of one

of the axioms in Dk
⊃ or ~ϕ ∈ Γ , in which case the claim of the lemma is

obvious. If n > 1 then, by minimality of the length of the Dk
⊃-derivation

under consideration, ~ϕ 6∈ Γ and ~ϕ is not an L⊃-instance of any axiom
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in Dk
⊃. In particular, there are 0 < l,m < n such that, for some ζ ∈

FmL⊃
and some 1 ≤ i ≤ k, ~φl = 〈ϕ1, . . . , ϕi−1, ζ, ϕi+1, . . . , ϕk〉 and ~φm =

〈ϕ1, . . . , ϕi−1, ζ ⊃ ϕi, ϕi+1, . . . , ϕk〉. By minimality of the length of the Dk
⊃-

derivation involved, ~φl 6= ~ϕ. Hence ζ 6= ϕi, so ~φm is not an L⊃-instance of

any axiom in Dk
⊃. Therefore, by induction hypothesis there is some ~ψ ∈ Γ

such that Var(~φm) ⊆ Var(~ψ). On the other hand, Var(~ϕ) ⊆ Var(~φm). �

Return to proving the theorem as such.

(i) As ~y is not an L⊃-instance of any axiom in Dk
⊃ and Var(~y) 6⊆

Var(~x), by (3) and Lemma 5.3. we conclude that yi ∈ Var(∆) for all

1 ≤ i ≤ k. Let us prove by contradiction that xi ∈ Var(∆) for every

1 ≤ i ≤ k. For suppose xi 6∈ Var(∆) for some 1 ≤ i ≤ k. Then ∆(~y, ~y) =

∆(y1, . . . , yi−1, xi, yi+1, . . . , yk, ~y). In that case by (4)-(3) we would have

〈y1, . . . , yi−1, xi, yi+1, . . . , yk〉 ⊢Lk

⊃

~y.

However ~y is not an L⊃-instance of any axiom in Dk
⊃ and

yi 6∈ Var(〈y1, . . . , yi−1, xi, yi+1, . . . , yk〉).

This would contradict Lemma 5.3..

(ii) Take any 1 ≤ i ≤ k. As 〈z1, . . . , zi−1, y, zi, . . . , zk−1〉 is not an L⊃-

instance of any axiom in Dk
⊃ and y 6∈ Var(〈z1, . . . , zi−1, x, zi, . . . , zk−1〉),

by (5) and Lemma 5.3. we conclude that y, z1, . . . , zk−1 ∈ Var(∆). Let

us prove by contradiction that x ∈ Var(∆) too. For suppose x 6∈ Var(∆).

Then ∆ = ∆(y, y, z1, . . . , zk−1). In that case by (6)-(5) we would have

〈z1, . . . , zi−1, x, zi, . . . , zk−1〉 ⊢Lk

⊃

〈z1, . . . , zi−1, y, zi, . . . , zk−1〉.

This would contradict Lemma 5.3.. Therefore x ∈ Var(∆) as required. �

Thus, in particular, the statement of [Theorem 13.2][4] is indeed erro-

neous (except for the case k = 1, of course).
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