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PRETABULAR VARIETIES OF EQUIVALENTIAL

ALGEBRAS

A b s t r a c t. It is shown that there are precisely two pretabular

varieties of equivalential algebras.

1. Minimal preliminaries

A variety V is called pretabular iff all its proper subvarieties are finitely

generated, but V itself is not. Pretabular varieties have been investigated

mostly in connection to so-called varieties of logic. Thus, [1] and [5] dealt

with modal algebras, [6] with Heyting algebras and [7, 8] with Brouwerian

semilattices, the last being the case closest to ours.

An equivalential algebra is a groupoid A = 〈A; ·〉 such that the opera-

tion · (called equivalence) satisfies the following identities:

(i) (x · x) · y = y;

(ii) ((x · y) · z) · z = (x · z) · (y · z);

(iii)
(

(x · y) · ((x · z) · z)
)

· ((x · z) · z) = x · y.
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Following common practice we will henceforth associate the parenthe-

ses to the left, and leave out the operation symbol ’·’. Thus, the above

identities become: xxy = y, xyzz = xz(yz), and xy(xzz)(xzz) = xy, re-

spectively. Since xx = yy is true in all equivalential algebras, we can define

a constant 1 by putting xx = 1. Congruences on equivalential algebras are

1-regular with respect to this constant, and thus, we can define a natural

partial order among the elements of an algebra A as follows: a ≤E b iff

Θ(b, 1) ⊆ Θ(a, 1). Then, subdirectly irreducible (henceforth, si, as usual)

algebras can be characterised as these which have the largest non-unit el-

ement, traditionally denoted by ⋆. The monolith µ of an si equivalential

algebra has only one non-singleton congruence class, namely, 1/µ = {1, ⋆}.

Although principal congruences in equivalential algebras are not, in gen-

eral, first-order definable, the property of being si is, namely, by the formula

(∃x 6= 1)(∀y 6∈ {x, 1}) xy = y.

The basic tool employed in our argument will be the representation

theorem (see [9]), later on referred to as S lomczyńska representation. Let

us briefly recall how this can be arrived at.

An element a ∈ A\{1} is irreducible iff axx ∈ {a, 1} for all x ∈ A. The

set of all irreducible elements of an algebra A will be denoted by Irr(A),

and if A is generated by Irr(A), we will call it irreducibly generated. All

finite equivalential algebras are irreducibly generated. Recall, that a boolean

group is a group that satisfies: x−1 = x. Every associative (i.e., satisfying

xyz = x(yz)) equivalential algebra is (term equivalent to) a boolean group,

upon defining x−1 = x.

Let now 〈P ;≤〉 be any poset. We define an equivalence relation ∼

on P by: a ∼ b iff for every x ∈ P : x < a ⇔ x < b. Let 1 be any

element not in P . We write U for P ∪ {1} and similarly for an equivalence

class U of ∼. Let ◦ be a partial binary operation on P , whose domain is
⋃

{P ×U : U ∈ P/ ∼}. Then, we say that P = 〈P ;≤, ◦〉 is an equivalential

frame if:

(i) 〈U ; ◦〉 is a boolean group with unit 1, for each ∼-class U .

(ii) x ◦ y < z implies that x < z or y < z, for all x, y, z ∈ P with x ∼ y.
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It turns out that the set Irr(A) with the ordering relation ≤E de-

fined a few lines above (i.e., with the ∼ relation induced), and the original

equivalence operation · restricted to ∼-classes is an equivalential frame.

Conversely, if P is an equivalential frame, we define A(P) to be the set
{

a ∈
∏

j∈J U j | {aj : j ∈ J} \ {1} is a finite ≤-antichain
}

, where J is a

suitable set indexing ∼-classes. Then, we define an operation · on A(P)

coordinatewise, by:

(a · b)i =

{

ai ◦ bi, if this is a minimal element of {aj ◦ bj : j ∈ J}
1, otherwise.

Then, 〈A(P); ·〉 is an equivalential algebra.

The above gives rise to two natural maps: µ : A −→ 〈Irr(A);≤E , ·〉

and ν : P −→ 〈A(P); ◦〉. Thus, we have:

Representation Theorem. [S lomczyńska] The maps µ and ν are

mutually inverse and establish a one-to-one correspondence between the

class of irreducibly generated equivalential algebras and the class of equiv-

alential frames.

For more information on equivalential algebras the reader is referred

to [4], where they were first introduced, or to [9] and [10], where the rep-

resentation theorem was proved and many other essential aspects of their

theory were developed.

2. Pretabular varieties

In what follows we will show that, precisely as in the case of Brouwerian

semilattices (see [7, 8]), there are two pretabular varieties of equivalential

algebras.

Two equivalential algebras will play a special role in the sequel. One

is the countable equivalential chain, i.e., the algebra Ω = 〈ω; ·, 0〉, where

the operation · is defined by:

n · m =

{

max{n,m}, if n 6= m
0, if n = m
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with the maximum taken with respect to the natural ordering. The re-

sulting equivalence ordering is the converse of the former, with 0 as the

largest element. The other is the algebra Σ = 〈σ ∪ {⋆}; ·, Ø〉, where σ

is any countably infinite family of sets closed under symmetric difference.

The operation · is defined on σ as the very symmetric difference, whereas

x · ⋆ = ⋆ · x = x for σ ∋ x 6= Ø, ⋆ · ⋆ = Ø, and ⋆ · Ø = Ø · ⋆ = ⋆.

We begin with the following:

Fact 1. If V is a variety of equivalential algebras that is not finitely

generated, then V contains an irreducibly generated infinite si algebra.

Proof. Let V be as in the assumption. Then, V contains an infinite si

algebra A. This follows, for instance, from the fact that in the variety of

equivalential algebras the property of being si carries over to ultraproducts,

which in turn follows by  Loś Theorem from the first-order definability of

that property (cf. [2] or any standard textbook on model theory for the

properties of ultraproducts; we shall use them throughout the proof without

further ado).

Thus, if we had only finite si algebras in V, then there must have been a

finite bound for their cardinalities and V would have been finitely generated

which it is not.

The infinite si algebra A, does not have to be irreducibly generated,

but we will soon show that there must be an irreducibly generated infinite

si algebra in V.

Firstly, we will show that an ultraproduct of finitely generated subal-

gebras of A, into which A is embeddable, itself is si. To see this, let I be

the set of all finite subsets of A and X(a) the set of all finite subsets of

A that contain a, for some a ∈ A. Consider the family F of subsets of I

defined by: F = {X(a) : a ∈ A}. This clearly has the finite intersection

property in the powerset of I and hence can be extended to a free ultrafilter

F . Now, let B =
∏

i∈I Ai/F , where Ai is the subalgebra of A generated

by i, and the desired embedding can be defined in the canonical way by

putting e(a) = x/F , where x(i) = a if a ∈ Ai and is arbitrary otherwise.
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To prove that B is si it suffices to show that {i ∈ I : Ai is si} ∈ F . This,

however, contains the set {i ∈ I : ⋆ ∈ Ai} and this in turn is identical

with X(⋆), since ⋆ cannot be generated by anything except itself. Now,

the ultrafilter F has been so chosen as to contain X(a), for all a ∈ A; in

particular it contains X(⋆). Hence, {i ∈ I : Ai is si} ∈ F as needed.

Secondly, the set Irr(B) of all irreducible elements in B must be infi-

nite. To see that, remind that irreducibility is a first-order property, and

thus we have b ∈ Irr(B) iff {i ∈ I : b(i) ∈ Irr(Ai)} ∈ F . Moreover,

for any n ∈ ω there is an algebra Ai with |Irr(Ai)| ≥ n. If it were oth-

erwise, the cardinalities of algebras Ai, and hence of their ultraproduct,

would be bounded by a finite number f(n) where f is the spectrum func-

tion for the variety of equivalential algebras, and this would contradict A’s

being infinite. Now, by an appropriate renumbering, we can ensure that

|Irr(Ai)| ≥ |Irr(Aj)| iff i ≥ j. Let, card(i) stand for |Irr(Aj)|. Take any

sequence a = 〈a(i) : i ∈ I〉 with a(i) ∈ Irr(Ai). Starting from this sequence,

we can proceed in the following recursive manner: We put a0 = a, and de-

fine an+1 = 〈an+1(i) : i ∈ I〉 as the sequence an+1(i) ∈ Irr(Ai), such that:

an+1(i) = an(i), if card(i) ≤ {ak(i) : k ≤ n}; and an+1(i) is an arbitrary

member of Irr(Ai) \{ak(i) : k ≤ n}, otherwise. Then, it is easily seen that

for all k 6= n, an(i) = ak(i) on at most finite number of coordinates. Thus,

clearly, ak/F 6= an/F iff k 6= n, and for all n ∈ ω, an is irreducible in B.

Then, we let C be the subalgebra of B generated by the set of irre-

ducibles in B, and thus we obtain the algebra with all the desired properties.

�

Fact 2. If V is a variety of equivalential algebras that is not finitely

generated then Ω ∈ V or Σ ∈ V.

Proof. By Fact 1. we have that V contains an irreducibly generated

infinite si algebra C. Its equivalential frame P(C) is also infinite, and thus

must contain an infinite chain or an infinite antichain. If the former, then,

by the properties of S lomczyńska representation, any countable subchain S

with the unit element 1 of C belonging to S is the universe of a subalgebra

of C isomorphic to Ω.
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Suppose now that P(C) contains an infinite antichain. Then, we take

a countable antichain D ⊆ P(C), and, by the properties of S lomczyńska

representation again (cf. [9], Proposition 1.1), it follows that the subal-

gebra generated by D is associative, and its cardinalty equals to this of

the set of all finite subsets of D. Thus, the subalgebra generated by D is

countable. Moreover, as C is si, there is a unique element ⋆ ∈ P(C) such

that augmenting W by ⋆ we obtain the universe of an algebra isomorphic

to Σ. �

Corollary. The only pretabular varieties of equivalential algebras are

V(Ω) and V(Σ).

Proof. In view of Fact 2. it suffices to show that V(Ω) and V(Σ)

are pretabular. Firstly, we show that neither is finitely generated. For

suppose V (with V being either of V(Ω), V(Σ)) is finitely generated. Then,

it is also generated by a single finite algebra A. Combining an extension

of Jónsson Lemma for congruence modular varieties with the fact that the

monolith µ of any si equivalential algebra is Abelian (see [3], Theorem 10.1,

for the former, and [12] for the latter), we obtain that for any si algebra B

from V we have: B/µ ∈ HS(A). Thus, B/µ must be finite. However, as

the monolith of an si equivalential algebra has precisely one non-singleton

congruence class—the coset of 1, of cardinality 2—neither Ω/µ, nor Σ/µ

is finite. A contradiction.

Secondly, suppose W is a proper subvariety of V(Ω), yet W is not

finitely generated. By Fact 2, W contains Ω or Σ. The latter is impossible

as V(Ω) satisfies the linearity condition (see [4], [11]), i.e., the identity:

(λ) (x(yzz)(yzz))(x(zyy)(zyy))(x(yz)(yz)) = x,

which is falsified by Σ. Thus, Ω ∈ W, and thus W = V(Ω) contradicting

the assumption.

Suppose now that W is a proper subvariety of V(Σ), but W is not

finitely generated. By Fact 2 again, W contains Ω or Σ. However, the



PRETABULAR VARIETIES OF EQUIVALENTIAL ALGEBRAS 9

former is impossible since V(Σ) satisfies the height 3 condition (see [4],

[11]), i.e., the identity:

(χ3) x(yzzy)(yzzy)x = 1,

which is falsified by Ω. Thus, Σ ∈ W, and thus W = V(Σ) contradicting

the assumption. This finishes the argument. �
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