
REPORTS ON MATHEMATICAL LOGIC

33 (1999), 29–44

Diderik BATENS, Kristof De CLERCQ

and Natasha KURTONINA

EMBEDDING AND INTERPOLATION FOR SOME

PARALOGICS. THE PROPOSITIONAL CASE.

A b s t r a c t. We consider the very weak paracomplete and para-

consistent logics that are obtained by a straightforward weakening of

Classical Logic, as well as some of their maximal extensions that are

a fragment of Classical Logic. We prove (for the propositional case)

that these logics may be faithfully embedded in Classical Logic (as

well as in each other), and that the interpolation theorem obtains for

them.

1. Aim of this paper

In the semantics of Classical Logic—henceforth CL—negation is char-

acterized by the consistency requirement—if vM (A) = 1 then vM (∼ A) =

0—and the completeness requirement—if vM (A) = 0 then vM (∼ A) = 1.

By dropping the consistency requirement, the completeness requirement,

Received February 2, 1999
Research for this paper was supported by subventions from Ghent University and

from the Fund for Scientific Research – Flanders, and indirectly by the INTAS-RFBR

contract 95–365.



30 DIDERIK BATENS, KRISTOF DE CLERCQAND NATASHA KURTONINA

or both, we obtain respectively the logics CLuN, CLaN, and CLoN (al-

lowing respectively for gluts, for gaps, and for both gluts and gaps with

respect to negation). These very weak logics are in a sense basic with

respect to CL—see [3]. They contain the full positive part of CL, give

up consistency, completeness or both, and do not compensate for this by

reintroducing double negation, de Morgan properties, etc. 1

Unlike in previous papers on paraconsistent logics, we shall take the

language schema L to contain the constant bottom, written as “⊥” and

defined as usual (viz. semantically as vM (⊥) = 0). Given this conven-

tion, classical negation is definable in the above systems (¬A =df A ⊃ ⊥),

whence CLuN, CLaN, and CLoN may be seen as CL extended with a

negation (∼) that is respectively paraconsistent, paracomplete, and both.

The presence of bottom greatly simplifies the meta-theoretic proofs and

many results may be transferred directly to the systems obtained by re-

moving bottom from the language schema.

The importance of CLuN, CLaN, and CLoN is double. First, many

paralogics are extensions of them. Studying properties of the basic logics

is often a good starting point for studying properties of their extensions.

Next, the very weak basic logics themselves have interesting applications as

the lower limit logic of adaptive logics; for many applications, such adaptive

logics are preferable to adaptive logics based on richer lower limit logics (this

position is defended in [4], [5] and [6] with respect to inconsistency-adaptive

logics—see also [7]).

In the present paper we shall show that the three paralogics may be

faithfully embedded in CL (as well as in each other) and that interpola-

tion holds for them. The results are presented together because the proof

methods are closely related. We restrict ourselves to the propositional level.

The predicative case involves complications of a rather different nature and

1 As a result, these logics do not spread abnormalities: if an abnormality (incon-

sistency or incompleteness) obtains in a model, for example in that the model verifies

both A and ∼ A, this does not entail that any subformula or superformula of A behaves

abnormally in the model.



EMBEDDING AND INTERPOLATION FOR SOME PARALOGICS 31

is studied in a forthcoming paper. We do however extend the results to

several paralogics that are maximal—see section 5.

2. The basic paralogics

Let L (including “⊥”) be the language schema of CL. Let S be the

set of sentential letters, W the set of wffs and ∼W = {∼ A | A ∈ W}.

The paraconsistent and paracomplete CLoN is simply full positive CL,

characterized syntactically by, e.g.,

MP From A and A ⊃ B to derive B

A⊃1 A ⊃ (B ⊃ A)

A⊃2 ((A ⊃ B) ⊃ A) ⊃ A

A⊃3 (A ⊃ (B ⊃ C)) ⊃ ((A ⊃ B) ⊃ (A ⊃ C))

A⊥ ⊥ ⊃ A

A&1 (A&B) ⊃ A

A&2 (A&B) ⊃ B

A&3 A ⊃ (B ⊃ (A&B))

A∨1 A ⊃ (A ∨ B)

A∨2 B ⊃ (A ∨ B)

A∨3 (A ⊃ C) ⊃ ((B ⊃ C) ⊃ ((A ∨ B) ⊃ C))

A≡1 (A ≡ B) ⊃ (A ⊃ B)

A≡2 (A ≡ B) ⊃ (B ⊃ A)

A≡3 (A ⊃ B) ⊃ ((B ⊃ A) ⊃ (A ≡ B))

The paraconsistent CLuN is obtained by adding the axiom

(A ⊃∼ A) ⊃∼ A (alternatively: A∨ ∼ A),

the paracomplete CLaN by adding the axiom

A ⊃ (∼ A ⊃ B).

We first present a decent semantic characterization for CLoN in which

vM (A) is fully determined by the assignment values of subformulas of A,



32 DIDERIK BATENS, KRISTOF DE CLERCQAND NATASHA KURTONINA

and that agrees with the semantics for the predicative extension. A CLoN-

model M is a singleton 〈v〉 in which v is an assignment function defined (in

a fully classical meta-language) by:

C1.1 v : S → {0, 1}

C1.2 v : ∼W → {0, 1}

The valuation function vM determined by the model M is defined as follows:

C2.1 vM : W → {0, 1}

C2.2 where A ∈ S, vM (A) = v(A); vM (⊥) = 0

C2.3o vM (∼ A) = 1 iff v(∼ A) = 1

C2.4 vM (A ⊃ B) = 1 iff vM (A) = 0 or vM (B) = 1

C2.5 vM (A&B) = 1 iff vM (A) = 1 and vM (B) = 1

C2.6 vM (A ∨ B) = 1 iff vM (A) = 1 or vM (B) = 1

C2.7 vM (A ≡ B) = 1 iff vM (A) = vM (B)

Truth in a model, semantic consequence and validity are defined as usual.

The semantic characterization for CLuN is obtained by replacing

C2.3o by

C2.3u vM (∼ A) = 1 iff vM (A) = 0 or v(∼ A) = 1,

that for CLaN by replacing C2.3o by

C2.3a vM (∼ A) = 1 iff vM (A) = 0 and v(∼ A) = 1.

It goes without saying that the CL-semantics is obtained by adding

“vM (∼ A) = 1 iff vM (A) = 0” in which case C1.2 becomes pointless.

Remark that we take “∼” to be the original negation symbol of CL, not

to be confused with “¬” that is definable in all logics considered.

3. Embedding the paralogics in CL

In order to show that our paralogics can be faithfully embedded in

CL, we first extend L into L# by extending S with a denumerable set of

new sentential letters: S# = S ∪ {p∼A | A ∈ W}. Let W# be the set of



EMBEDDING AND INTERPOLATION FOR SOME PARALOGICS 33

wffs of L# and let the CL-semantics be extended to L#. Next, we define

a translation function Tr : W → W#. For CLoN, it is defined by:

(i) where A ∈ S, Tr(A) = A; Tr(⊥) = ⊥

(iio) Tr(∼ A) = p∼A

(iii) Tr(A ⊃ B) = Tr(A) ⊃ Tr(B)

(iv) Tr(A ∨ B) = Tr(A) ∨ Tr(B)

(v) Tr(A&B) = Tr(A)&Tr(B)

We extend the translation function to sets: Tr(Γ) = {Tr(A) | A ∈ Γ}.

Replacing (iio) by

(iiu) Tr(∼ A) =∼ Tr(A) ∨ p∼A

we obtain the translation function for CLuN; replacing (iio) by

(iia) Tr(∼ A) =∼ Tr(A)&p∼A

we obtain the translation function for CLaN. The connection with clause

C2.3 of the semantic characterizations is immediate.

Where M = 〈v〉 is a CLoN-model for L and M ′ = 〈v′〉 a CL-model

for L#, let RMM ′ iff, for all A ∈ S, v′(A) = v(A), and, for all ∼ A ∈ ∼W,

v′(p∼A) = v(∼ A).

Lemma 1. R is a bijection that connects each CLoN-model for L to

a CL-model for L# and vice versa.

Proof. Where M = 〈v〉 is a CLoN-model for L, the CL-model

M ′ = 〈v′〉 for L# such that RMM ′ is defined by: for all A ∈ S, v′(A) =

v(A); for all ∼ A ∈ ∼W , v′(p∼A) = v(∼ A). As the assignment function is

completely defined, so is M ′.

Where M ′ = 〈v′〉 is a CL-model for L#, define the CLoN-model

M = 〈v〉 for L by: for all A ∈ S, v(A) = v′(A); for all ∼ A ∈ ∼W,

v(∼ A) = v′(p∼A). As the assignment function is completely defined, so is

M , and RMM ′. �



34 DIDERIK BATENS, KRISTOF DE CLERCQAND NATASHA KURTONINA

Lemma 2. Where M = 〈v〉 is a CLoN-model for L, M ′ = 〈v′〉 is a

CL-model for L#, and RMM ′, vM (A) = vM ′(Tr(A)) for all A ∈ W.

Proof. We proceed by induction on the complexity of formulas (the

number of connectives occurring in them). Where A has complexity 0,

vM (A) = vM ′(Tr(A)) in view of Tr and R. For the induction step, the

only non-obvious case concerns negation. It is established as follows. We

first recall C2.3o:

(1) vM (∼ A) = 1 iff v(∼ A) = 1.

By the induction hypothesis,

(2) vM (A) = vM ′(Tr(A))

and by the definition of R and C2.2,

(3) v(∼ A) = v′(p∼A) = vM ′(p∼A).

From (1)–(3):

(4) vM (∼ A) = 1 iff vM ′(p∼A) = 1.

By the definition of Tr,

(5) vM (∼ A) = 1 iff vM ′(Tr(∼ A)) = 1.

�

Theorem 1. Γ |=CLoN A iff Tr(Γ) |=CL Tr(A). (Translatability).

Proof. Immediate in view of Lemmas 1 and 2. �

Corollary 1. CLoN can be faithfully embedded in CL.

For CLuN, we first replace “CLoN” by “CLuN” in the definition of

R. The proof of Lemma 3 is identical to that of Lemma 1.



EMBEDDING AND INTERPOLATION FOR SOME PARALOGICS 35

Lemma 3. R is a bijection that connects each CLuN-model for L to

a CL-model for L# and vice versa.

Lemma 4. Where M = 〈v〉 is a CLuN-model for L, M ′ = 〈v′〉 is a

CL-model for L#, and RMM ′, vM (A) = vM ′(Tr(A)) for all A ∈ W.

Proof. As for Lemma 2, except in that

(1) vM (∼ A) = 1 iff vM (A) = 0 or v(∼ A) = 1

and hence

(4) vM (∼ A) = 1 iff vM ′(Tr(A)) = 0 or vM ′(p∼A) = 1.

As M ′ is a CL-model

(5) vM (∼ A) = 1 iff vM ′(∼ Tr(A) ∨ p∼A) = 1.

By the definition of Tr,

(6) vM (∼ A) = 1 iff vM ′(Tr(∼ A)) = 1.

�

Theorem 2. Γ |=CLuN A iff Tr(Γ) |=CL Tr(A). (Translatability)

Proof. Immediate in view of Lemmas 3 and 4. �

Corollary 2. CLuN can be faithfully embedded in CL.

Proceeding in the same way for ClaN, delivers:

Lemma 5. R is a bijection that connects each CLaN-model for L to

a CL-model for L# and vice versa.

Lemma 6. Where M = 〈v〉 is a CLaN-model for L, M ′ = 〈v′〉 is a

CL-model for L#, and RMM ′, vM (A) = vM ′(Tr(A)) for all A ∈ W.

Proof. As for Lemma 2, except in that



36 DIDERIK BATENS, KRISTOF DE CLERCQAND NATASHA KURTONINA

(1) vM (∼ A) = 1 iff vM (A) = 0 and v(∼ A) = 1

and hence

(4) vM (∼ A) = 1 iff vM ′(Tr(A)) = 0 and vM ′(p∼A) = 1.

As M ′ is a CL-model

(5) vM (∼ A) = 1 iff vM ′(∼ Tr(A)&p∼A) = 1.

By the definition of Tr,

(6) vM (∼ A) = 1 iff vM ′(Tr(∼ A)) = 1.

�

Theorem 3. Γ |=CLaN A iff Tr(Γ) |=CL Tr(A). (Translatability)

Proof. Immediate in view of Lemmas 5 and 6. �

Corollary 3. CLaN can be faithfully embedded in CL.

The upshot is that decidability in CLoN, CLuN, and CLaN is re-

duced to decidability in CL, and that all proof search techniques for the

latter are available for the former three. The idea underlying the proofs

derives directly from the semantics. In the paralogics, vM (∼ A) depends

in part on vM (A) and in part on an independent element, viz. v(∼ A)—in

CLoN the former part reduces to nil. The embeddings are realized by

assigning the role of v(∼ A) to a new schematic letter, viz. p∼A, in the

CL-models. Given this convention, the assignment of a paralogic model

corresponds to the assignment of a CL-model and vice versa. As, in our

semantic style, the valuation function is completely determined by the as-

signment function, the result is easily extended to all three paralogics (only

the translation function has to be accommodated to the specific clause for

negation).



EMBEDDING AND INTERPOLATION FOR SOME PARALOGICS 37

Our proof of the theorems is wholly independent of the presence of

bottom in L, and hence holds also for the three systems if bottom is re-

moved from the language. If bottom is present, the reverse embedding is

immediate. If bottom is absent, no finite set of formulas will do as the

translation of a CL-formula ∼ A.

4. Interpolation

The proof of the interpolation theorem for our three paralogics follows

the plot of the proof of the interpolation theorem for CL, as it is presented

by Boolos & Jeffrey’s [8], pp. 235–242. The required changes are due to

the abnormal behaviour of negation. As negation behaves abnormally, we

cannot just apply the ‘replacement procedure’ of Boolos & Jeffrey.

We may assume that A is satisfiable and that C is not valid. For if A

is unsatisfiable, ⊥ will do as B; if C is valid, ⊤ =df ⊥ ⊃ ⊥ will do.

For CLuN and ClaN, A and C have to be ‘prepared’ in a specific

way. CLoN does not require such preparation. However, even for CLoN

the proof is different from the one in Boolos & Jeffrey. The cause is the

role of the independent element mentioned in the next to last paragraph

of the previous section. We shall start with the proof for CLoN, and then

introduce the further complication required by CLuN and ClaN.

Theorem 4. If A ⊢CLoN C, there is a B, such that A ⊢CLoN B and

B ⊢CLoN C, and B contains only non-logical symbols that are contained

in both A and C.

Proof. Our hypothesis is that A is satisfiable, C is not valid, A

⊢CLoN C, and each of A and C is a truth-functional compound 2 of mem-

bers of S ∪ ∼W—let us call these atoms.

We may assume that at least one atom Q is contained in A but not C

(if not, we may take B = A). Let D1 be the result of everywhere replacing

occurrences of Q (outside the scope of a “∼”) in A by ⊤; and D2 the result

2 Negation (∼) is not a truth-function in any of our paralogics.



38 DIDERIK BATENS, KRISTOF DE CLERCQAND NATASHA KURTONINA

of everywhere replacing occurrences of Q (outside the scope of a “∼”), by

⊥. Let D = D1 ∨D2. We have to show that A ⊢CLoN D, and D ⊢CLoN C.

Fact 1. A ⊢CLoN D. For suppose vM (A) = 1. Then if vM (Q) = 1,

it follows that vM (A) = vM (D1), whence vM (D) = 1. And if vM (Q) = 0,

then vM (A) = vM (D2), whence vM (D) = 1.

Fact 2. D ⊢CLoN C. For suppose that vM (D1) = 1 but vM (C) = 0.

Let vM ′ differ from vM (if at all) only in that vM ′(Q) = 1. Then vM ′(A) = 1

and, since C does not contain Q, vM ′(C) = vM (C) = 0, contradicting

the assumption that A ⊢CLoN C. By the same reasoning, D2 ⊢CLoN C.

Therefore D = D1 ∨ D2 ⊢CLoN C.

So, A ⊢CLoN D, D ⊢CLoN C, and every atom in D is in A. Moreover

A contains one more atom foreign to C than D does. So repeating the

construction sufficiently often, using the D of one stage as the A of the next,

eventually yields a sentence B, such that A ⊢CLoN B and B ⊢CLoN C, and

B contains no atoms not contained in both A and C. �

Let us now turn to the preparation of A and C that is required by

CLuN. In both A and C we replace every (sub)formula of the form ∼ E

which itself does not occur within the scope of a “∼”, by (∼ E† ∨ ¬E).3

Eventually we reach the stage where every atom of the form ∼ E that occurs

itself outside the scope of a “∼”, is marked with a “†”. Let the result of these

transformations be A† and C†. Where, for example, A =∼∼ (p& ∼ q), the

successive transformations proceed as follows:

∼∼ (p& ∼ q)† ∨ ¬ ∼ (p& ∼ q)

∼∼ (p& ∼ q)† ∨ ¬(∼ (p& ∼ q)† ∨ ¬(p& ∼ q))

∼∼ (p& ∼ q)† ∨ ¬(∼ (p& ∼ q)† ∨ ¬(p&(∼ q† ∨ ¬q))) = A†

Once the replacement is finished, all occurrences of “†” are removed.

As ⊢CLuN∼ E ≡ (∼ E ∨ ¬E) and the rule of replacement of equivalents

3 The “†” in “E†” is merely a mark indicating that the atom ∼ E has been replaced

by the equivalent wff ∼ E∨¬E. The mark prevents us to perform the same replacement

over and over again.



EMBEDDING AND INTERPOLATION FOR SOME PARALOGICS 39

outside the scope of a negation holds in CLuN, A ⊢CLuN A† (and vice

versa) and C ⊢CLuN C† (and vice versa), and thus also A† ⊢CLuN C†.

Moreover, no new non-logical symbols are introduced in the transition from

A and C to A† and C† respectively. So if B is an interpolant for A† ⊢CLuN

C†, B is also an interpolant for A ⊢CLuN C.

An important heuristic remark is at hand here. For CLoN we might

have reasoned as follows: A ⊢CLoN C; hence Tr(A) ⊢CL Tr(C); hence

there is an interpolant B such that Tr(A) ⊢CL B and B ⊢CL Tr(C); as the

converse of Tr is a function, there is a D such that B = Tr(D); hence D is

an interpolant for A and C. However, for CLuN (and ClaN) the converse

of Tr is not a function, and hence the presence of a CL-interpolant for

Tr(A) and Tr(C) does not warrant that there is a CLuN-interpolant for

A and C. This is why we need the preparation of A and C. The preparation

does not introduce any symbols beyond L, but still has the same effect as

the translation function: any truth-functional effect of a formula on its

subformulas is made explicit when the preparation comes to an end. If

the resulting formula has a subformula of the form ∼ E† this subformula

functions as an ‘independent element’. However, the problem connected to

back-translation is avoided: the occurrences of “†” are removed and ∼ E is

CLuN-equivalent to ∼ E ∨ ¬E.

The previous paragraph is not only important from a heuristic point of

view. It also clarifies why, after the transformation is performed, formulas

of the form ∼ E may be considered as atomic.

Theorem 5. If A ⊢CLuN C, there is a B, such that A ⊢CLuN B,

B ⊢CLuN C, and B contains only non-logical symbols that are contained

in both A and C.

The proof proceeds exactly as that of Theorem 4, except that CLoN,

A, and C are replaced by CLuN, A†, and C† respectively. As pointed out

before, the interpolant B for A† and C† is an interpolant for A and C.

For CLaN, the matter is as for CLuN, except that A and C have

to be prepared differently, viz. by replacing every (sub)formula of the form



40 DIDERIK BATENS, KRISTOF DE CLERCQAND NATASHA KURTONINA

∼ E which itself does not occur within the scope of a “∼”, by (∼ E†&¬E).

By a proof wholly analogous to that of Theorem 5, one establishes:

Theorem 6. If A ⊢CLaN C, there is a B, such that A ⊢CLaN B and

B ⊢CLaN C, and B contains only non-logical symbols that are contained

in both A and C.

Our interpolation results are not independent of the presence of bottom

in L, mainly because, if bottom were absent, D2 could not be defined. It

remains an open problem whether the Interpolation Theorems are provable

in the absence of bottom.

5. Extending the results to some maximal paralogics

We now extend our results to six paralogics that are maximal in that

their only proper extensions are CL and richer systems—at the proposi-

tional level these reduce to the trivial system. The logics CLoNs, CLuNs,

and CLaNs (the “s” refers to Schütte who devised the propositional frag-

ments in [9]) are obtained from respectively CLoN, CLuN, and CLaN

by adding all properties that drive negations inwards. For the syntactic

characterization, the following axioms are added to the weak systems:

A∼∼ ∼∼ A ≡ A

A∼⊃ ∼ (A ⊃ B) ≡ (A& ∼ B)

A∼ & ∼ (A&B) ≡ (∼ A∨ ∼ B)

A∼ ∨ ∼ (A ∨ B) ≡ (∼ A& ∼ B)

A∼≡ ∼ (A ≡ B) ≡ ((A ∨ B)&(∼ A∨ ∼ B))

For the semantic characterization, we first weaken clause C2.3 for the

respective systems as follows:4

C2.3os where A ∈ S, vM (∼ A) = 1 iff v(∼ A) = 1

C2.3us where A ∈ S, vM (∼ A) = 1 iff vM (A) = 0 or v(∼ A) = 1

C2.3as where A ∈ S, vM (∼ A) = 1 iff vM (A) = 0 and v(∼ A) = 1

4 Clause C1.2 may obviously be restricted to “v : ∼S → {0, 1}” (where ∼S = {∼

A|A ∈ S}). The same obtains for the Vasil’ev systems discussed below in the text.



EMBEDDING AND INTERPOLATION FOR SOME PARALOGICS 41

and then add the clauses:

C2.3.1 vM (∼∼ A) = vM (A)

C2.3.2 vM (∼ (A ⊃ B)) = vM (A& ∼ B)

C2.3.3 vM (∼ (A&B)) = vM (∼ A∨ ∼ B)

C2.3.4 vM (∼ (A ∨ B)) = vM (∼ A& ∼ B)

C2.3.5 vM (∼ (A ≡ B)) = vM ((A ∨ B)&(∼ A∨ ∼ B))

Alternatively, CLuNs and CLaNs are characterized by three-valued ma-

trices (with one value designated for CLaNs and two values designated for

CLuNs) and CLoNs is characterized by four-valued matrices. These sys-

tems are among the most popular many-valued logics. The ∼-∨-&-fragment

of CLaNs is Kleene’s SK3, that of CLuNs is Priest’s LP, and the first

degree fragment of CLoNs characterizes tautological entailments (see [1]).5

The logics CLoNv, CLuNv, and CLaNv (the “v” refers to Arruda’s

Vasil’ev system from [2], which is the propositional fragment of CLuNv)

are obtained from respectively CLoN, CLuN, and CLaN by making nega-

tion behave classically in front of complex formulas. For the syntactic char-

acterization, the addition of the two following axiom schemes is sufficient:6

A∼uv where A ∈ W − S, ∼ A ⊃ (A ⊃ B)

A∼av where A ∈ W − S, (A ⊃∼ A) ⊃∼ A

For the semantics, the negation clause is again restricted to C2.3os, C2.3us,

and C2.3as respectively, and the following clause is added:

C2.3v where A ∈ W − S, vM (∼ A) = 1 iff vM (A) = 0

In order to extend our embedding result to these six logics, we modify

the translation function as follows. For all systems, we restrict clause (ii)

to

5 ‘Material implication’ is often defined by ∼ A ∨ B, and hence is not detachable.

The detachable material implication of the systems CLoNs, CLuNs, and CLaNs is

somewhat tricky: although ∼ (A ⊃ B) is equivalent to A& ∼ B and hence also to

∼ (∼ A ∨ B), ∼ A ∨ B is derivable from A ⊃ B but not conversely.
6 A∼uv is redundant in CLaNv, A ∼av in CLuNv.



42 DIDERIK BATENS, KRISTOF DE CLERCQAND NATASHA KURTONINA

(iiop) where A ∈ S, Tr(∼ A) = p∼A

for CLoNs and CLoNv and similarly for the other systems. Next one

paraphrases the semantic clauses. For the Schütte systems:

(iis) Tr(∼∼ A) = Tr(A); Tr(∼ (A ⊃ B)) = Tr(A& ∼ B); etc.

and for the Vasil’ev systems;

(iiv) where A ∈ W − S, Tr(∼ A) =∼ Tr(A).

Given these modifications, the proofs from section 3 are easily adapted

to show that CLoNs, CLuNs, CLaNs, CLoNv, CLuNv, and CLaNv

can be faithfully embedded in CL.

Some more embedding results are easily obtained. Replacing (iiop),

(iiup), and (iiap) by

(iip) where A ∈ S, Tr(∼ A) =∼ A

the proofs from section 3 are easily adapted to show that CLoNs and

CLoNv can be faithfully embedded in CLoN, CLuNs and CLuNv in

CLuN, and CLaNs and CLaNv in CLaN. Weakening (iio), (iiu), and

(iia) in the translation functions from section 3 to

(iioc) where A ∈ W − S, Tr(∼ A) = p∼A

etc., and adding, for all systems,

(iip) where A ∈ S, Tr(∼ A) =∼ A

one easily adapts the proofs from section 3 to show that CLoN can be

faithfully embedded in CLoNs as well as in CLoNv, etc. We leave it to the

reader to adapt the translation functions to show that CLoNs and CLoNv

can be embedded in each other. So, the upshot is that all systems can be

embedded in CL, that CLoN, CLoNs and CLoNv can be embedded in

each other, and similarly for the other two groups. Remark that classical

negation can be defined in the Vasil’ev systems without relying on bottom,

e.g., by ¬A =df∼ (A&A); hence all systems can be embedded in the Vasil’ev

systems. All these results are independent of the presence of bottom in L.



EMBEDDING AND INTERPOLATION FOR SOME PARALOGICS 43

In the presence of bottom, all systems can obviously be embedded in each

other.

As the reader might expect, also our interpolation result is easily ex-

tended to the six maximally paraconsistent logics. Three kinds of modifi-

cations are required; the first two concern the preparation, the third the

interpretation of “atom” in the proofs. (i) For the Schütte systems, a first

preparatory step consists in driving negations inwards: for all subformulas

D of A and C: if D =∼∼ E, replace it by E; if D =∼ (A ⊃ B), replace

it by A& ∼ B; etc. Nothing should be done at this stage for the Vasil’ev

systems. (ii) The preparation required for CLuN, respectively CLaN, in

section 4, is restricted (for CLuNs and CLuNv, respectively CLaNs and

CLaNv) to members of ∼S. (iii) In the proofs, only schematic letters and

negations of schematic letters (instead of negations of wffs) are treated as

atoms. Given these modifications, the proofs of the Interpolation Theorem

for the six logics can be left as an easy exercise for the reader.

6. In conclusion

The embedding results obviously extend to fragments of the logics

(even in the absence of bottom), such as SK3 and LP. They also easily

extend to some other maximal paralogics. We have some results on the

application of our method to systems (such as da Costa’s C1) between the

basic logics (such as CLuN) and the maximal paralogics (such as CLuNv),

but many open problems remain.

Other open problems concern the Interpolation Theorem for related

logics, partly because our method requires the presence of bottom, partly

because it is not obvious how the method should be adapted if, for example,

A ⊃∼∼ A (without its converse) is added as an axiom to CLuN.



44 DIDERIK BATENS, KRISTOF DE CLERCQAND NATASHA KURTONINA

References

[1] Anderson A. R. and Belnap N. D., Jr., Entailment. The Logic of Relevance and

Necessity, volume 1. Princeton University Press, 1975.

[2] Arruda A. I., On the imaginary logic of N.A. Vasil’ev. In Ayda I. Arruda, New-

ton C.A. da Costa, and R. Chuaqui, editors, Non-classical Logics, Model Theory

and Computability, pages 3–24. North-Holland, Amsterdam, 1977.

[3] Batens D., Paraconsistent extensional propositional logics. Logique et Analyse,

90–91:195–234, 1980.

[4] Batens D., Dynamic dialectical logics. In Graham Priest, Richard Routley, and

Jean Norman, editors, Paraconsistent Logic. Essays on the Inconsistent, pages

187–217. Philosophia Verlag, München, 1989.

[5] Batens D., Inconsistency-adaptive logics. In Ewa Or lowska, editor, Logic at Work.

Essays Dedicated to the Memory of Helena Rasiowa, pages 445–472. Physica Verlag

(Springer), Heidelberg, New York, 1998.

[6] Batens D., Rich inconsistency-adaptive logics. The clash between heuristic effi-

ciency and realistic reconstruction. In print.

[7] Batens D., A survey of inconsistency-adaptive logics. In Diderik Batens, Chris

Mortensen, Graham Priest, and Jean Paul Van Bendegem, editors, Frontiers of

Paraconsistent Logic, pages 59–83. Research Studies Press, Baldock, UK, in print.

[8] Boolos G. S. and Jeffrey R. J., Computability and Logic. Cambridge University

Press, 1989. (Third edition).

[9] Schütte K., Beweistheorie. Springer, Berlin, 1960.

Centre for Logic and Philosophy of Science

Department of Philosophy

Wijsbegeerte

Universiteit Gent

Blandijnberg 2

B-9000 Gent (Belgium)

e-mail: Diderik.Batens@rug.ac.be


