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A COMPACTNESS THEOREM FOR INFINITE

CONSTRAINT SATISFACTION

A b s t r a c t. A useful compactness theorem for constraint satisfac-

tion problems is proved equivalent to BPI, the Boolean Prime Ideal

Theorem. The relation of various restricted versions of the Theorem

to each other and to BPI is also explored.

1. Introduction

Constraint satisfaction problems are very common in computer sci-

ence; in fact it has been claimed in [2] that most of the problems in Garey

and Johnson [5] can be naturally expressed as constraint satisfaction. Since

many of these problems have infinite analogues it seems reasonable to con-

sider infinite constraint satisfaction. Then by proving a compactness result

for the infinite constraint satisfaction, a useful general theorem is obtained

which gives immediately various well known compactness results for propo-

sitional logic, graph coloring, etc.
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2. Finite constraint satisfaction

Diverse problems such as satisfiability of a finite set of propositional

formulas, solving a finite set of equations over a finite field, choosing a set

of distinct representatives for a collection of finite sets (marriage problem),

vertex coloring a finite graph with k colors, etc., can all be expressed in the

following format. Given a setD and a set of variables V , each one associated

with a finite set of ‘allowable’ values in D so that all assignments made to

the variables must select only from the allowable values for each variable.

Can an assignment to the variables be made, such that the conjunction,

∧

1≤i≤m

Ri(xi1 , ..., xiki
)

is satisfied where the xij
are occurrences of the variables and the Ri are

ki-ary relations on D? This is the general constraint satisfaction problem

(see [2],[8]). We shall refer to conjunctions of the above form as constraint

formulas or cfs.

For example the existence of a k-coloring of a graph G is equivalent

to satisfying:
∧

{v,w}∈E xv 6= xw, where E is the set of edges of G, and

where all variables range over {1, ..., k}; however, if each vertex variable is

allowed to range over its own list of “colors”, satisfaction is equivalent to a

list coloring of the vertices (see West[9] for more on list colorings).

The general constraint satisfaction problem is NP-Complete and re-

mains NP-Complete even if (1) each relation is binary and each variable

has only three possible values, or, (2) each relation is ternary and each

variable has only two possible values (see [2]); however, it is polynomial

if (3) each relation is binary and each variable has only two possible val-

ues. In case (3) it is easily shown to be equivalent to 2-SAT, satisfiability

of propositional cnfs with only 2 literals per clause which is known to be

solvable in polynomial time (see [5]).
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3. Infinite constraint satisfaction

All of the problems mentioned above have infinite analogues that can

be considered to be special cases of the following problem.

Let I be an index set of arbitrary cardinality. Is there an assignment

of allowable values to the variables which satisfies,

∧

i∈I

Ri(xi1 , ..., xiki
)

where the variables range over finite subsets of D and the Ri are ki-ary

relations on D? To say that an assignment satisfies the above infinite

conjunction, merely means that it satisfies all Ri(xi1 , ..., xiki
), i ∈ I.

The following compactness theorem for constraint satisfaction prob-

lems will be referred to as the Constraint Compactness Theorem or CCT.

Theorem 3.1. (CCT) Let {Ri(xi1 , ..., xiki
)}i∈I be given, where the

Ri represent ki-ary relations onD and the variables range over finite subsets

of D. If
∧

i∈W Ri(xi1 , ..., xiki
) is satisfiable for each finite W ⊂ I, then∧

i∈I Ri(xi1 , ..., xiki
) is satisfiable.

It is not hard to show that CCT can be given an equivalent formulation,

as follows.

Theorem 3.2. (CCT) Let {ϕi}i∈I be a collection of constraint for-

mulas on D and suppose that every finite subset is satisfiable. Then {ϕi}i∈I

is satisfiable.

The Constraint Compactness Theorem will be proved to be equivalent

in Zermelo–Fraenkel Set Theory to the Prime Ideal Theorem for Boolean

algebras (BPI). BPI is weaker than the Axiom of Choice but is a most

useful Theorem in its own right with many equivalent formulations (see
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Howard and Rubin [6]). In fact even restricting CCT by requiring (1) each

relation is binary and each variable has only three possible values, or, (2)

each relation is ternary and each variable has only two possible values, still

gives theorems equipotent to BPI. However, maintaining the analogy with

finite constraint satisfaction and NPC, if (3) each relation is binary and

each variable has only two possible values, a weaker theorem results.

The claims made above will now be proven. In what follows we regard

functions as special sets of ordered pairs and if g is a function and W is

a subset of its domain, g|W will denote the restriction of g to W . The

following theorem was proved in [3] to be equivalent to BPI in ZF.

Theorem 3.3. Let H be a set of partial functions on I such that

{h(i)|h ∈ H} is a finite set for each i ∈ I. Suppose for each finite W ⊂ I

there is a non empty set HW ⊂ H whose domains include W and such

that W1 ⊂ W2 implies HW2
⊂ HW1

. Then there exists a function g in H,

with domain I, such that for any finite W ⊂ I there exists h ∈ HW with

g|W ⊂ h.

Theorem 3.4. BPI implies CCT in ZF.

Proof. We prove CCT from Theorem 3. Assume the hypothesis

of CCT. For each i ∈ I, let Ai be the set of assignments to the variables,

{xi1 , ..., xiki
}, which satisfy Ri(xi1 , ..., xiki

). Ai is necessarily finite since

the variables range over finite sets. Let H be the set of partial functions

on I with the property that h(i) ∈ Ai, for i ∈ domain(h). For each finite

W ⊂ I, let HW be those functions h in H, whose domain includes W, with

the property that ∪{h(i)|i ∈ W} is a function (which must then satisfy∧
i∈W Ri(xi1 , ..., xiki

)). Then the hypothesis of CCT implies HW is non

empty, since
∧

i∈W Ri(xi1 , ..., xiki
) is satisfiable. Surely W1 ⊂ W2 implies

HW2
⊂ HW1

. Thus, BPI (in the form of Theorem 3) gives a function g,

with domain I, such that for any finite W ⊂ I there exists h ∈ HW

with g|W ⊂ h. We claim that ∪g satisfies
∧

i∈I Ri(xi1 , ..., xiki
). It only

remains to show that if i, j ∈ I then g(i), g(j) agree on their common

variables; however, if W = {i, j}, there exist h ∈ HW with g|W ⊂ h. Thus
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g(i) ∪ g(j) ⊂ h(i) ∪ h(j), a function, which implies g(i), g(j) agree on their

common variables. �

Theorem 3.5. CCT implies BPI in ZF, even if (a) all relations are

binary and all variables have only three possible values or (b) all relations

are ternary and all variables have only two possible values.

Proofs.

(a) It has been proved by Läuchli ([7]) that the compactness for 3-

colorable graphs implies BPI. Since, as mentioned above, graph coloring is

equivalent to a conjunction of terms of the form x 6= y, the theorem easily

follows.

(b) 3-SAT is equivalent to BPI, where 3-SAT is the compactness the-

orem for propositional logic, restricted to formulas in conjunctive normal

form, each conjunct of which is a disjunction of at most three literals (a

literal is a statement letter or its negation). See [4]. �

Theorem 3.6. Restricting CCT by requiring all relations must be

binary and all variables have only two possible values results in a theorem

which is weaker than BPI in ZF.

Proof. P. Wojtylak [10] has proved that 2-SAT, the compactness

result for propositional clauses with at most two literals each, is weaker

than BPI in ZF. He also shows that 2-SAT implies the Axiom of Choice

for pairs. We claim that 2-SAT implies CCT restricted by allowing only

binary relations and 2-valued variables.

Suppose now that {Ri(xi1 , xi2)}i∈I is given, where each variable is

allowed only 2 values, and {Ri(xi1 , xi2)}i∈W is satisfiable for every finite

W ⊂ I. Because we have the Axiom of Choice for pairs, we can assume

that each variable ranges over an ordered pair, (a0, a1). For each variable

x which appears, we take a new variable vx which ranges over {0, 1}.

For any R(x, y) in the indexed set, where x ranges over (a0, a1) and y

ranges over (b0, b1), we form a cnf, XR(x,y), as follows:

(1) If (a0, b0) /∈ R, add (vx ∨ vy) to XR(x,y).
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(2) If (a0, b1) /∈ R, add (vx∨ ∼ vy) to XR(x,y)

(3) If (a1, b0) /∈ R, add (∼ vx ∨ vy) to XR(x,y).

(4) If (a1, b1) /∈ R, add (∼ vx∨ ∼ vy) to XR(x,y).

Then, as easily shown, x = ai, y = bj satisfies R(x, y) if and only if vx =

i, vy = j satisfies XR(x,y), 0 ≤ i, j ≤ 1. We can then replace questions about

the satisfiability of {Ri(xi1 , xi2)}i∈I and its subsets by equivalent questions

about the satisfiability of {XRi(xi1
,xi2

)}i∈I and its subsets. Therefore the

satisfiability of {Ri(xi1 , xi2)}i∈W , for finite W ⊂ I implies the satisfiability

of {XRi(xi1
,xi2

)}i∈W . Then, by 2-SAT, {XRi(xi1
,xi2

)}i∈I is satisfiable; but

this implies that {Ri(xi1 , xi2)}i∈I is satisfiable as well.

Thus 2-SAT implies CCT, restricted to binary relations and 2-valued

variables. Since 2-SAT is weaker than BPI, so is this restricted version of

CCT. �

4. Relative Compactness

In the absence of BPI, one cannot, of course, prove CCT in ZF. How-

ever, it can often be shown that a class of constraint satisfaction problems

is compact (CCT holds for that class) if some other class is assumed to

be compact. This “relative compactness” result is often proved by “em-

bedding” one class of problems in the other and then using the assumed

compactness of the second class to prove the compactness of the first class.

Most often this is used to embed a class whose compactness is provably

equivalent to BPI in some subclass thereby showing the compactness of the

subclass is equivalent to BPI as well. We shall formalize this method as

follows.

If ϕ is a cf and var(ϕ) is its set of constrained variables, sat(ϕ)

will denote the set of those assignments with domain var(ϕ) which sat-

isfy ϕ. If ϕ, ψ are cfs with var(ϕ) ⊆ var(ψ), then ϕ ≺ ψ shall denote:

sat(ψ)|var(ϕ) = sat(ϕ).Thus, if ϕ ≺ ψ, every satisfying assignment of ϕ

can be extended to a satisfying assignment of ψ and any satisfying assign-

ment of ψ, if restricted to the variables of ϕ will satisfy ϕ; in particular ϕ
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is satisfiable if and only if ψ is satisfiable. It is easily proved that ≺ is a

transitive relation.

Let R be a set of relations on D. We shall say, R is compact, and write,

compact(R), if CCT holds when restricted to relations in R. The following

definition is useful in showing that the compactness of one class implies

that of another.

Let R and S be sets of relations on D. A conjunctive embedding

from R to S is a mapping ϕ which associates with each R(x1, ..., xk),

R ∈ R, a cf, ϕ(R(x1, ..., xk)) =
∧

1≤i≤m Si(xi1 , ..., xiki
), Si ∈ S, such

that, R(x1, ..., xk) ≺ ϕ(R(x1, ..., xk)). If there is a conjunctive embedding

from R to S, we shall write R ≺ S. An embedding, ϕ, from R to S will

be called conflict-free if any variables new to R(x1, ..., xk) introduced in

ϕ(R(x1, ..., xk)) do not occur in any other ϕ(T (y1, ..., yk)). It can always be

arranged that embeddings are conflict-free and we shall assume this to be

the case in what follows.

The following Theorem is easily proved and hence we shall omit the

proof.

Theorem 4.1. Suppose R, S and T are sets of relations on D. If R

≺ S and S ≺ T then R ≺ T .

Let Rsat stand for all relations on {0, 1} which are the satisfying as-

signments in the sense of propositional logic of some disjunction of literals.

For example, ∼ x ∨ y yields the relation {(0, 0), (0, 1), (1, 1)}. Let Rk−sat

denote those relations in Rsat which come from disjunctions of k literals.

Theorem 4.2. Rsat ≺ R3−sat.

Proof. The construction used in Garey and Johnson[5] in proving 3-

SAT is NP-complete constitutes a conjunctive embedding of Rsat to R3−sat

(See Cowen[4]). �

There is no conjunctive embedding of R3−sat to R2−sat (and hence no

conjuctive embedding of Rsat to R2−sat) as we show next.
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We will prove the following Theorem.

Theorem 4.3. There is no 2-cnf X with a ∨ b ∨ c ≺ X.

We first prove a lemma.

Lemma 4.4. Let X be a 2-cnf and suppose that a1 ∧ ... ∧ an ∧X is

unsatisfiable. Then ai∧aj ∧X is unsatisfiable for some i, j where 1 ≤ i, j ≤

n.

Proof. If a is a literal, a will denote its opposite. We can assume,

without loss of generality, that X is satisfiable and ai 6= aj , for 1 ≤ i, j ≤ n,

since otherwise the conclusion clearly follows.

We do an induction on the number of clauses in X, that is, let P (k) be

the statement of the Theorem when X has k clauses and n is any integer

≥ 2.

IfX = (x∨y) and a1∧...∧an∧X is unsatisfiable then both a1∧...∧an∧x,

a1 ∧ ... ∧ an ∧ y are unsatisfiable. Since ai 6= aj , both x = ai, y = aj , for

some i, j with 1 ≤ i, j ≤ n. Hence ai ∧ aj ∧X is unsatisfiable and P (1) is

true.

Assume now P (k) holds whenever k < m and suppose X has exactly

m clauses. Suppose X = Z ∧ (x ∨ y) and suppose X is satisfiable, but

a1 ∧ ...∧ an ∧X is unsatisfiable, where ai 6= aj , for 1 ≤ i, j ≤ n. Hence Z is

satisfiable but both a1∧ ...∧an ∧x∧Z, a1∧ ...∧an ∧y∧Z are unsatisfiable.

If x 6= ai and y 6= ai, for all i, 1 ≤ i ≤ n, the induction hypothesis applies

to both a1 ∧ ...∧ an ∧x∧Z, a1 ∧ ...∧ an ∧ y∧Z; hence, either ai ∧ aj ∧Z is

unsatisfiable or both x ∧ ai ∧ Z, y ∧ aj ∧ Z, are unsatisfiable, for some i, j,

1 ≤ i, j ≤ n. In the former case, ai ∧ aj ∧X is unsatisfiable. In the latter

case, (x ∧ ai ∧ Z)∨ (y ∧ aj ∧ Z) is unsatisfiable; therefore ai ∧ aj ∧ X =

ai ∧ aj ∧ Z ∧ (x ∨ y) is unsatisfiable, as well.

We can assume then that x = ai or y = aj . If both are true, then

clearly ai ∧aj ∧X is unsatisfiable. Suppose exactly one is true, say, x = ai,

for some i, 1 ≤ i ≤ n, but y 6= aj , for all j, 1 ≤ j ≤ n. Since x = ai,

x ∧ ai ∧ Z is clearly unsatisfiable. Since y 6= aj , 1 ≤ j ≤ n, applying the
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induction hypothesis to a1 ∧ ... ∧ an ∧ y ∧ Z gives either 1) ai ∧ aj ∧ Z is

unsatisfiable, for some i, j, 1 ≤ i, j ≤ n, or 2) y ∧ aj ∧ Z is unsatisfiable

for some j, 1 ≤ j ≤ n; in the first case ai ∧ aj ∧ X is unsatisfiable. In

the second case, since both y ∧ aj ∧ Z and x ∧ ai ∧ Z are unsatisfiable,

ai ∧aj ∧ (x∨ y)∧Z is also unsatisfiable; thus ai ∧aj ∧X is unsatisfiable. �

We can now give the proof of the Theorem.

Proof of Theorem 4.3. Suppose a∨ b∨ c ≺ X; then a∧ b∧ c∧X is

unsatisfiable, since otherwise there would be an interpretation of X whose

restriction to {a, b, c} fails to satisfy a∨ b∨ c. Therefore the lemma implies

that at least one of a∧ b∧X , a∧ c∧X , b∧ c∧X is unsatisfiable. Suppose

without loss of generality, a ∧ b ∧ X is unsatisfiable. Since a = 0, b = 0,

c = 1 satisfies a ∨ b ∨ c and a ∨ b ∨ c ≺ X, there is an extention of a = 0,

b = 0, c = 1 which satisfies X; but this implies that a∧ b∧X is satisfiable!

Therefore a ∨ b ∨ c ≺ X must be false. �

The fact that Rsat is not conjunctively embeddable in R2−sat, demon-

strates the weakness of R2−sat and, to our mind, suggests that 2-SAT is

weaker than BPI in ZF (the result proved by Wojtylak mentioned above).

In fact we make the following conjecture.

Conjecture 4.5. If R is a set of relations on {0, 1} and Rsat ≺ R is

false, then compact(R) is weaker than BPI, in ZF.

However, if Rsat ≺ R is true, it does follow that compact(R) is

equivalent to BPI. This follows from the following “Relative Compactness

Theorem.”

Theorem 4.6. Let R and S be sets of relations on D suppose that

R ≺ S . Then compact(S) implies compact(R).

Proof. Assume compact(S) and that ϕ is a conjunctive, conflict-free

embedding from R to S. Let {Ri(xi1 , ..., xiki
)}i∈I be given where the Ri

represent relations on D and the variables range over finite subsets of D.
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Suppose
∧

i∈W Ri(xi1 , ..., xiki
) is satisfiable for each finite W ⊂ I; we must

show that
∧

i∈I Ri(xi1 , ..., xiki
) is satisfiable.

Let Σ = {Sj(yj1 , ...yki
)}j∈J , where the Sj(yj1 , ...yki

) occur in the

ϕ(Ri(xi1 , ..., xiki
)), i ∈ I. We claim that Σ is satisfiable. Suppose that

W ⊂ J, W finite. Let F (W ) be a finite set such that each Sj(yj1 , ...yki
),

j ∈ W, occurs in some ϕ(Ri(xi1 , ..., xiki
)), i ∈ F (W ). (Since W is finite,

the Axiom of Choice is not needed here.) Since
∧

i∈F (W )Ri(xi1 , ..., xiki
) is

satisfiable and ϕ is conflict-free,
∧

i∈F (W ) ϕ(Ri(xi1 , ..., xiki
)) is satisfiable as

well. But then, surely,
∧

j∈W Sj(yj1 , ...yki
) will also be satisfiable. Since S is

compact,
∧

j∈J Sj(yj1 , ...yki
) is satisfiable. Hence,

∧
i∈I ϕ(Ri(xi1 , ..., xiki

))

is satisfiable, and finally, the restriction of any satisfying assigment to the

variables of the Ri(xi1 , ..., xiki
), i ∈ I, must satisfy

∧
i∈I Ri(xi1 , ..., xiki

),

since Ri(xi1 , ..., xiki
) ≺ ϕ(Ri(xi1 , ..., xiki

)), i ∈ I. �

Theorem 4.7. 3-SAT implies BPI, in ZF.

Proof. As mentioned above, Rsat ≺ R3−sat; thus, the previous

theorem yields, compact(R3−sat) → compact(Rsat), or, equivalently, 3-SAT

→ SAT. However, BPI is well-known to be equivalent to the compactness

of propositional logic. Since each propositional formula is equivalent to one

in conjunctive normal form, BPI is equivalent to SAT; hence 3-SAT → BPI.

�
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