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THEOREMS OF PEANO ARITHMETIC ARE

BURIDAN-VOLPIN RECURSIVELY SATISFIABLE

A b s t r a c t. The notion of recursive satisfaction is extended from

prenex ∀∃ arithmetic sentences to any first-order arithmetic sentence

by allowing the scope of a negative (existential) quantifier to depend

on positive (universal) quantifiers which may lie within its scope.

1. Introduction

An immediate application of the techniques Gentzen used in his 1938

consistency proof “Neue Fassung der Widerspruchsfreiheitsbeweises für die

reiner Zahlentheorie” (translated in Gentzen [1, pp 252-286] as “New Ver-

sion of the Consistency Proof for Elementary Number Theory”) was to

show that if (x)(Ey)F (x, y) is an ∀∃-theorem of Peano arithmetic (first-

order arithmetic) there is an (ε0-) recursive function f so that for every

number n, F (n, f(n)) is true (here n is the term denoting n in the system.)

Because (Ey)(x)G logically implies, (x)(Ey)G we can immediately extend
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this to conclude that if (x1)(Ey1) · · · (xk)(Eyk)F (x1, y1, . . . , xk, yk) is any

theorem of Peano arithmetic there are (ε0-) recursive functions f1, . . . , fk

so that F (n1, f1(n1, . . . , nk), . . . , nk, fk(n1, . . . , nk)) is true for any natural

numbers n1, . . . , nk.

In this paper we establish a modest generalization of this result. Given

any first-order arithmetic theorem T we will show that finite ranges for the

negative quantifiers can be determined via (ε0-) recursive functions from

finite ranges for the positive quantifiers, and that if the quantifiers of T are

expanded over these ranges, a true arithmetic formula results.The present

proof is of some independent interest because it shows that to describe

an existential quantifier as being functionally dependent on the univer-

sal quantifiers preceding it in the prefix (as one does , for example, with

Skolem functions) is inappropriate in the case of arithmetic theorems. In

this situation, an existential quantifier is functionally dependent on those

quantifiers with which it has become “referentially involved” as a result of

the inference steps of the derivation 1, and these may include quantifiers

which lie within its scope in the final (rather arbitrary) linear form which

the theorem finally achieves.

Our results are obtained by making slight modifications to the methods

of Gentzen’s proof (with which we will assume the reader is familiar.) It

will be shown that any derivation in a (sequent version of) first-order arith-

metic can be transformed (reduced) to a derivation where cuts occur only

on quantifier-free subformulas of the endsequent. However, this “quantifier-

normal” derivation may include instances of the “bounded quantifier infer-

ences”

B∀R BEL

Γ =⇒ ∆, F (n1) ∧ · · · ∧ F (nk) F (n1) ∨ · · · ∨ F (nk),Γ =⇒ ∆
Γ =⇒ ∆, (x)F (x) (Ex)F (x),Γ =⇒ ∆

1 These reference relations are studied in Isles [3]
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The existence of such a derivation for a theorem T of arithmetic is obtained

by means of certain transformations on derivations (“reduction steps”).

These steps define (ε0 -) recursive functions which, when applied to given

finite ranges for the positive (universal) quantifiers in T yield finite ranges

for the negative (existential) quantifiers of T . When the quantifiers of T

are expanded over these ranges the result is a true quantifier-free formula2.

2. Rewriting Gentzen’s Proof: Basic Definitions

We introduce the usual definitions for a sequent calculus of first-order

arithmetic and define certain structural features of its derivations. Many

of the definitions are meant to highlight the connection between different

occurrences of a quantifier in a derivation.

Definition 1. Terms, formulas, and sequents of P (Peano arithmetic.)

1. The language of P is specified by giving logical connectives: ∧, ∨,

¬, existential quantifier (E ), and universal quantifier ( ); a constant

symbol 0; one 1-place function symbol | (successor); two 3-place rela-

tion letters A (addition), and M (multiplication); and equality =. In

addition there are denumerably many

variables: x, y, · · · , x1, y1, · · · (“bound variables”)

and

parameters: a, b, · · · , a1, b1, · · · (“free variables”)

2. The set of “pseudo-terms” is defined in the usual way. “Terms” are

pseudo terms which contain no variables. Notice that the only terms

of the system are of the form 0, a (parameter), 0| · · · |, or a| · · · | with

n, 0 ≤ n, occurrences of |. n is the abbreviation for “numerals” which

are terms of the form 0| · · · |
︸ ︷︷ ︸

n

, 1 ≤ n (0 = 0.)

2 This is a special case of the “Buridan-Volpin” interpretations studied in Isles [3]
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3. The set of “pseudo-formulas” is defined in the usual manner with

(Ex)F and (x)F being the notation for existentially and universally

quantified formulas. “Formulas” are pseudo-formulas where all vari-

ables are bound. Note: A formula may have parameters.

4. The “degree” of a (pseudo-)formula is the number of logical connectives

occurring within it.

5. Two formulas are “equiform” if they differ only in the naming of their

bound variables.

6. F [x/t] (or F (t)) denotes the result of replacing x at all of its free

occurrences in the pseudo-formula F by the term t.

7. The “(pseudo-)subformulas” of F are defined in the usual way.

8. Let Γ, ∆ be sequences of finitely many (perhaps 0) formulas. The con-

figuration Γ =⇒ ∆ is called a “sequent”. Γ is called its “antecedent”

and ∆ its “consequent.”

Definition 2. Inference rules and derivations. Derivations are trees of se-

quents built up inductively from initial sequents using the following infer-

ence rules. Except for cuts, the rules are divided into Left-rules (indicated

by –L) and Right-rules (indicated by –R). Γ, ∆, Θ, Σ are sequences of

formulas, F and G are formulas, and Di is a derivation.

1. Initial sequents are of the form F =⇒ F . It is convenient (and no

restriction) to take F as quantifier-free.

2. Structural inferences.

(a) Permutations.
PL PR

Γ, F,G,∆ =⇒ Θ Γ =⇒ ∆, F,G,Θ
Γ, G, F,∆ =⇒ Θ Γ =⇒ ∆, G, F,Θ

(b) Weakenings.
WL WR

Γ =⇒ ∆ Γ =⇒ ∆
F,Γ =⇒ ∆ Γ =⇒ ∆, F

No parameter of F is an eigenparameter (see section 5a of this defi-

nition) of the derivation to that point.
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(c) Contractions.
CL CR

F1, F2,Γ =⇒ ∆ Γ =⇒ ∆, F1, F2

F,Γ =⇒ ∆ Γ =⇒ ∆, F

Here F1, F2, and F are equiform.

3. Cuts.
D1 D2

Γ =⇒ ∆, F1 F2,Θ =⇒ Σ
Γ,Θ =⇒ ∆,Σ

The equiform formulas F1, F2 are the “cut formulas.” No parameter

of D1 is an eigenparameter of D2 and conversely. The “cut degree” is

the degree of its cut formulas.

4. Propositional inferences.

(a) Negation inferences.
¬L ¬R

Γ =⇒ ∆, F F,Γ =⇒ ∆
¬F,Γ =⇒ ∆ Γ =⇒ ¬F,∆

(b) Conjunction inferences.

i. Left inferences.
∧L1 ∧L2

G,Γ =⇒ ∆ G,Γ =⇒ ∆
G ∧ F,Γ =⇒ ∆ F ∧ G,Γ =⇒ ∆

ii. Right inference (∧R).
D1 D2

Γ =⇒ ∆, F Θ =⇒ Σ, G
Γ,Θ =⇒ ∆,Σ, F ∧ G

(c) Disjunction inferences.

i. Left inference (∨L.)
D1 D2

F,Γ =⇒ ∆ G,Θ =⇒ Σ
F ∨ G,Γ,Θ =⇒ ∆,Σ

ii. Right inferences.
∨R1 ∨R2

Γ =⇒ ∆, G Γ =⇒ ∆, G
Γ =⇒ ∆, G ∨ F Γ =⇒ ∆, F ∨ G

In ∧L and ∨R no parameter of F is an eigenparameter of the deriva-

tion to that point. In ∧R and ∨L no eigenparameter of D1 is an

eigenparameter of D2 (and conversely.)

5. Quantifier inferences.

(a) Logical quantifier inferences.



62 DAVID ISLES

i. Existential inferences.
EL ER

F [x/a],Γ =⇒ ∆ Γ =⇒ ∆, F [x/t]
(Ex)F,Γ =⇒ ∆ Γ =⇒ ∆, (Ex)F

ii. Universal inferences.
∀L ∀R

F [x/t],Γ =⇒ ∆ Γ =⇒ ∆, F [x/a]
(x)F,Γ =⇒ ∆ Γ =⇒ ∆, (x)F

In ∀R and EL, a is a parameter called the “eigenparameter” of the

inference. It does not occur in the sequent which is the conclusion of

the inference.

(b) Bounded quantifier inferences.

BEL B∀R
F1(n1) ∨ · · · ∨ Fk(nk),Γ =⇒ ∆ Γ =⇒ ∆, F1(n1) ∧ · · · ∧ Fk(nk)

(Ex)F,Γ =⇒ ∆ Γ =⇒ ∆, (x)F

Here F1(x), F2(x), and F are equiform. {n1, . . . , nk} is the “range”

of the inference.

6. Induction inference.
F1(a),Γ =⇒ ∆, F2(a|)

F1[a/0],Γ =⇒ ∆, F3[a/t]
The parameter a does

not occur in the concluding sequent. The formulas F1(a), F2(a), and

F3(a) are all equiform. The “degree of the inference” is the degree of

Fi(a).

7. The upper sequent in the preceding inferences is called the “premise

sequent” and the lower sequent is the “concluding sequent.” The dis-

tinguished formula(s) (F , G, F ∨ G, F3(t), etc.) in the concluding

sequent (except for cut) is(are) called the “principal formula(s)” of the

inference. The distinguished formula(s) of the premise sequent(s) is

(are) called the “secondary formula(s).” All other formulas, that is,

those in Γ, ∆, Θ, Σ are called “side formulas.” Inferences given in

clauses 4 and 5 are “logical inferences.”

8. A “derivation in P” is a tree of sequents which may contain any of the

above inferences except for bounded quantifier inferences. “A deriva-

tion in PB” may also have bounded quantifier inferences. In indicat-

ing derivations the notation
Γ =⇒ ∆
Θ =⇒ Σ

will indicate that a sequence of

structural inferences occurs between Γ =⇒ ∆ and Θ =⇒ Σ.
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9. Let Γ =⇒ ∆ be the last sequent of a derivation in P. Then ∆ is called

a “theorem of Peano arithmetic”if Γ = 〈A1, . . . , Ak〉 where Ai is a

formula equiform to one in the following list (F stands for either A or

M .)

(a) (x)¬[x|= 0]

(b) (x)(y)[¬(x = y) ∨ (x|= y|)]

(c) (x)(y)[¬(x|= y|) ∨ (x = y)]

(d) (x)(y)(z)[¬(x = y) ∨ [¬(x = z) ∨ (y = z)]]

(e) (x)(y)(z)(w)[¬(x = y) ∨ [¬F(x, z, w) ∨ F(y, z, w)]]

(f) (x)(y)(z)(w)[¬(x = y) ∨ [¬F(z, x, w) ∨ F(z, y, w)]]

(g) (x)(y)(z)(w)[¬(x = y) ∨ [¬F(z, w, x) ∨ F(z, w, y)]]

(h) (x)A(x, 1, x|)

(i) (x)(y)(z)[¬A(x, y, z) ∨ A(x, y|, z|)]

(j) (x)M(x, 1, x)

(k) (x)(y)(z)(w)[¬M(x, y, z) ∨ [¬A(z, x, w) ∨ M(x, y|, w)]]

From this point on, unless explicitly mentioned, “derivation” will mean

a derivation in PB. Because of the restrictions on parameters given in the

inference rules, any derivation will have the “pure variable property”, that

is, an eigenparameter will not occur anywhere in a derivation except above

the quantifier inference (∀R or EL) with which it is associated.

Definition 3. A derivation is called “quantifier-normal” or “Q-normal” if

the only cut-formulas in it are quantifier-free.

Definition 4. Following Gentzen, we define a “path” beginning at a se-

quent S1 in a derivation as a sequence of sequents which we must run

through in passing from sequent S1 to the last sequent (or “endsequent”)

E. If 〈S1, . . . , E〉 is a path then Si is “above” Sj (and Sj is“below” Si) if

i < j.

Definition 5. We extend Gentzen’s notion of “clustered” formulas slightly.

1. Secondary formulas in the premise sequent are “clustered with” princi-

pal formulas in the concluding sequent (and conversely.) Side formulas
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in the premise sequent are “clustered with” formulas in the correspond-

ing location in the concluding sequent. Notice that a cut-formula is

not clustered with any formula below it nor is the principal formula of

a weakening clustered with any formula above it.

2. Let Fi be a formula in a sequent Si where 〈S1, · · · , Si, · · · , Sk〉 is a path

and Fi, Fi+1, 1 ≤ i < k are clustered. Then 〈F1, · · · , Fk〉 is called a

“formula thread” containing Fi which “impinges on” Si.

3. If F is a formula at a given location in a derivation, there will, in gen-

eral, be many threads containing F . A “maximal thread” 〈F1, · · · , Fk〉

containing F is a thread where F1 is not clustered with any formula

above it, nor is Fk clustered with any formula below it. Notice that F1

is either in an initial sequent or is the principal formula of a weakening

and that Fk is either a cut formula or is in the endsequent.

4. The “formula cluster associated with” a particular occurrence of a

formula F in a derivation is the tree consisting of threads terminating

in F and beginning with either a formula in an initial sequent or the

principal formula of a weakening.

This notion of formula cluster is more general than that in Gentzen.

Because he only considers formula threads which impinge on structural

inferences, all members of one of his threads are equiform. In this definition,

a formula may be clustered with a subformula of another. Notice that as

one ascends a path, a thread in that path may bifurcate at a contraction.

Of course, of two given occurrences of a formula in a derivation, one may

belong to a given formula thread and the other may not.

Definition 6. Quantifier threads.

1. Let 〈F1, · · · , Fk〉 be a formula thread. If (Qxi) is an occurrence of

a quantifier in Fi, it is said to be “clustered with” the quantifier

in the corresponding location in Fi+1 (and conversely.). A sequence

〈(Qx1), . . . , (Qxn)〉 is called a “quantifier thread” if the formulas Fi,

1 ≤ i ≤ n, to which (Qxi) belong constitute a formula thread and

(Qxi) is clustered with (Qxi+1).
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2. A quantifier thread 〈(Qx1), . . . , (Qxn)〉 is said to “impinge on”an oc-

currence of a formula G if the occurrence of(Qxi) is in G. It “impinges

on” an occurrence of a sequent S if it impinges on a formula in S.

3. A “maximal quantifier thread” 〈(Qx1), . . . , (Qxn)〉 containing a partic-

ular occurrence of (Qxi) is one where (Qx1) is not clustered with any

quantifier above it, nor is (Qxn) clustered with any below it. Notice

that (Qx1) will either be in the principal formula of a weakening, con-

junction left, or disjunction right, or will be the quantifier introduced

in the principal formula of a quantifier inference. (Qxn) will either be

in the endsequent or will be contained in a cut formula.

4. The “quantifier cluster” associated with an occurrence of (Qx) in a

derivation is the tree of quantifier threads terminating in (Qx) at that

occurrence and beginning in a weakening or with the principal formula

of a logical inference.

Example: In the following (partial) derivation, the left-hand quantifier

thread of the quantifier occurrence of (x)(D(x) ∨ (Ey)H(y)) in the end-

sequent begins at a ∀R and the right-hand quantifier thread of the same

occurrence begins at WR. The left-hand quantifier thread of the quanti-

fier occurrence of (Ey)H(y) in the endsequent begins at a ∨R1 and the

right-hand quantifier thread also begins at WR.

G =⇒ D(a) ¬G =⇒ J
G =⇒ (D(a) ∨ (Ey)H(y)) ¬G =⇒ J, (x)(D(x) ∨ (Ey)H(y))

G =⇒ (x)(D(x) ∨ (Ey)H(y)) ¬G =⇒ (x)(D(x) ∨ (Ey)H(y)), J
G ∨ ¬G =⇒ (x)(D(x) ∨ (Ey)H(y)), (x)(D(x) ∨ (Ey)H(y)), J

G ∨ ¬G =⇒ (x)(D(x) ∨ (Ey)H(y)), J

3. Ordinal Assignments and the Reduction Process

Gentzen’s ordinal assignments can be used. The key observation is

that his notion of “level” in a derivation depends only on the degree of cut-

formulas (and inductions.) But the occurrence of a formula (or subformula)
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in a cut-formula means that that occurrence of the formula (or subformula)

will not have a “corresponding occurrence ” in the endformula (although

an equiform formula or subformula may well occur in the endformula.) We

make this precise in the next definition.

Definition 7. Let D be a derivation.

1. Let 〈F1, · · · , Fk〉 be the unique formula thread which begins with F1

and terminates in either the endsequent or a cut-formula. F1 is called

an “essential formula occurrence” in D (or an “essential formula” of

D) if Fk belongs to the endsequent. F1 is called an “inessential for-

mula occurrence” in D (or an “inessential formula” of D) if Fk is a

subformula of a cut-formula.

2. An initial sequent A =⇒ A is called “inessential” if both occurrences

of A are inessential. Otherwise, it is essential.

3. An inference is called “essential” if its principal formula is essential.

Otherwise, it is “inessential”.

Unless otherwise indicated, from this point on all bounded quantifier

inferences in any derivation we consider will be essential.

Definition 8. Let 〈S1, · · · , E〉 be a path in a derivation D with endsequent

E. The “level of S1” at that occurrence in D is the highest level of any cut

or induction inference whose lower sequent is below S1 (and the level of S1

is 0 if there are no such inferences.) Notice that if S1 is a premise sequent

to a cut then the level of S1 is greater than or equal to its cut degree.

The assignment of ordinals below ε0 to derivations is defined as in

Gentzen [1 p.279] and will not be repeated here.

Definition 9. Let D be a derivation. The “ending” of D consists of the

tree of sequents that are encountered as one ascends any path from the

endsequent until one reaches either an initial sequent or the concluding
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sequent of an inessential logical inference (the principal formula of which

therefore lies on a formula thread which terminates in a cut-formula.)

Notice that the top sequents of an ending consist of initial sequents

and the concluding sequents of inessential logical inferences (“inessential

logical top-sequents”.) Below these are located cuts, structural inferences,

induction inferences, essential propositional and quantifier inferences, and

the endsequent.

In his paper, Gentzen describes a sequence of transformations on deri-

vations (so-called “reduction steps”.) After a finite number of such reduc-

tions, the original derivation is transformed to one with a certain structure.

Before applying these reductions, we must now add a preparatory step

which removes all essential occurrences of the logical quantifier inferences

EL or ∀R from the derivation.

Definition 10. Positive and negative occurrences of quantifiers.

1. Occurrences of a quantifier (Qx) at a “positive” or “negative location”

in a formula F .

(a) If F = (Qxi)G and x = xi, then (Qx) occurs at a positive location

in F . If x 6= xi, then if (Qx) occurs at a positive (negative) location

in G, it occurs at a positive (negative) location in F .

(b) If F = ¬F1, F2 ∨ F3, F2 ∧ F3 then if the occurrence of (Qx) is at a

positive (negative) location in F1, it is at a negative (positive) location

in F ; if the occurrence is at a positive (negative) location in F2 or F3,

it is at a positive (negative) location in F .

2. If an occurrence of (x) (or (Ex)) is at a positive (or negative) location

in F , that is said to be a “positive occurrence”. If an occurrence of

(x) (or (Ex)) is at a negative (or positive) location in F , that is said

to be a “negative occurrence”.

3. If (Qx) has a positive (negative) occurrence in ∆ or a negative (posi-

tive) occurrence in Γ, then it has a “positive (negative) occurrence in
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Γ =⇒ ∆”. (Notice that a given quantifier may have both positive and

negative occurrences in a formula, sequent, or derivation 3.)

Let 〈S1, · · · , Sk〉 be a path in a derivation D and 〈(Qx1). · · · , (Qxk)〉

be a quantifier thread where each occurrence of (Qxi) is in Si. Then if

one (Qxi0) has a positive (respectively negative) occurrence in Si0 every

other (Qxj) has a positive (respectively negative) occurrence in Sj , 1 ≤

j ≤ k. Hence if this is a maximal thread containing (Qxi0) the quantifier

occurrence (Qx1) must either lie in the principal formula of a weakening,

∧L, or ∨R, or be the introduced quantifier in the principal formula of a

quantifier inference ∀R, EL, B∀R, or BEL (respectively ∀L or ER.) In

particular, each maximal quantifier-thread of the quantifier cluster of any

positive quantifier in the endsequent E of a derivation in P must begin

either with the principal formula of a weakening, ∧L, or ∨R, or with the

quantifier introduced in quantifier inference ∀R (if the quantifier is (x)) or

EL (if it is (Ex).) Conversely, the quantifier introduced in either of these

two logical quantifier inferences at any location in D must be the initial

quantifier occurrence in a quantifier thread which terminates at a positive

quantifier occurrence in E if these inferences are essential.

The Reduction Steps Let a derivation D in P be given. In his paper,

Gentzen defines four reduction steps or derivation rewritings which, in the

present context, can be described as follows:

1. Removal of induction inferences from the ending.

2. Removal of inessential weakenings from the ending.

3. Removal of inessential initial sequents from the ending.

4. Removal from the ending of inessential propositional and logical quan-

tifier inferences whose concluding sequent is a top sequent of the end-

ing.

However, before these reduction transformations (particularly the induction

reduction) are carried out, one must first remove various parameter occur-

3 This ambiguity can be avoided by using rectified formulas. See Isles [3].
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rences from the derivation and eliminate all essential EL or ∀R inferences

(this last is the main addition to Gentzen’s procedure.)

The preparatory transformation First replace any parameter in the endse-

quent by a numeral and carry back the substitution throughout D. Assign

to each positive occurrence of a quantifier (Qx) of E a finite set of natural

numbers r(x) = U = {n1, . . . , nk} (with possibly a different set of num-

bers for each occurrence of (Qx)). Consider an uppermost occurrence of an

essential ∀R or EL inference in the derivation. For example,

D(a)
Θ =⇒ Σ, G(a)
Θ =⇒ Σ, (y)G

The eigenvariable a does not occur below the conclud-

ing sequent. The unique quantifier thread which begins with (y) and ends

in E, terminates at a positive quantifier occurrence (y∗) of E. Suppose

r(y∗) = {n1, . . . , nk}. Substitute ni for a in derivation D(a) to obtain

k derivations Di[a/ni] , 1 ≤ i ≤ k. We can assume (and this will be

true of similar moves in the other reduction steps) that no parameter of

Di(ni) is an eigenparameter of Dj(nj), i 6= j and conversely. The sequent

Θ =⇒ Σ, (x)G

is then recovered as follows:

D1(n1) D2(n2)
Θ1 =⇒ Σ1, G1(n1) Θ2,=⇒ Σ2, G2(n2)

Θ1,Θ2 =⇒ Σ1,Σ2, G1(n1) ∧ G2(n2)

Θ =⇒ Σ, G1(n1) ∧ G2(n2)
...

Θ =⇒ Σ, G1(n1) ∧ · · · ∧ Gk(nk)
Θ =⇒ Σ, (x)G

The last inference step is an instance of B∀R. Because this was an upper-

most essential logical quantifier inference, the result of this step is to reduce

the total number of essential ∀R or EL inferences in the derivation by one.

Thus all such essential inferences can be removed from the derivation.

Once this preparatory step has been carried out, the reduction steps

can be carried out in a manner almost identical to that described in Gentzen

([2 pp. 264–274].) Each step has the effect of either lowering the derivation
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ordinal or of leaving the derivation ordinal unchanged while reducing the

size of the derivation. It should be pointed out, that when, during the

induction reduction, one deals with an induction inference in the ending

F1(a),Γ =⇒ ∆, F2(a|)
F1(0),Γ =⇒ ∆, F3(t)

the term t may contain a parameter b: t(b) = b | · · · |. However, in the

derivation below the concluding sequent b will not be the eigenvariable of

any quantifier inference because all occurrences of essential logical quan-

tifier inferences that involve eigenvariables have been removed from the

derivation and no occurrences of inessential inferences ∀R or EL lie below

this sequent. Consequently a numeral, for example 0, can be substituted

for b throughout the derivation without disrupting any inference and with-

out affecting the endsequent. If t(0) = m, the induction inference can then

be replaced by m cuts.

4. BV Recursive Satisfaction

Theorem 1. Let D be derivation in P of a sequent E where E has no

parameters. Given an assignment of finite ranges to each positive quantifier

in E, a finite number of reduction steps transforms D to a derivation DN

in PB of E. DN has no parameters and includes only

1. essential initial sequents,

2. structural inferences (with no inessential weakenings),

3. essential propositional inferences,

4. essential ∀L or ER inferences, or

5. essential B∀R or BEL inferences.

Furthermore, the only cut-formulas occurring in DN are quantifier-free sub-

formulas of formulas in E.

Proof. Each reduction step can be applied only finitely often. The

preparatory step removes all essential ∀R or EL inferences from the deriva-

tion and none of the subsequent reductions reintroduces such inferences.
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After the preparatory step, one carries out reductions 1 through 3 each

time doing so until the particular reduction step can no longer be applied.

At this point, one removes an inessential propositional or quantificational

top-sequent from the ending (step 4). This will, in general, bring more

induction inferences into the ending and one must return to step 1 again.

Eventually, none of the reductions can be applied. At that point, the ending

of the derivation is the whole derivation. There are no inessential propo-

sitional inferences, no inessential quantificational inferences, no essential

∀R or EL inferences, and no inessential initial sequents or weakenings. As

there are no eigenparameters, all parameters can be replaced by a numeral.

If a cut occurs, any formula thread which terminates at one of the cut

formulas G must consist of equiform formulas and must originate at an

essential initial sequent G =⇒ G. Thus G is a subformula of some formula

in E.

One of the effects of the preparatory step is to connect every posi-

tive quantifier occurrence in E via a quantifier-thread with zero or more

bounded quantifier inferences all with the same range. Inspection of the

reconstructions which occur during the subsequent reduction steps shows

that although some of these threads may be eliminated or multiplied, the

bounded quantifier inferences to which a given positive quantifier occur-

rence in E is connected will still all have the same range. Therefore in the

normal derivation DN the following are true:

1. Each quantifier occurrence in DN lies on a quantifier-thread which

connects it to a quantifier occurrence in E.

2. Each positive quantifier occurrence in E is the terminus of quantifier-

threads which begins either at the principal formula of a weakening,

∧L, ∨R, or at the introduced quantifier of one or more occurrences

of a bounded quantifier inference (B∀R if (Qx) = (x) and BEL if

(Qx) = (Ex)) all of which have the same ranges.

3. Each negative quantifier occurrence in E is the terminus of quantifier-

threads which begin either at the principal formula of a weakening,
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∧L, ∨R or at the introduced quantifier of one or more occurrences of

an ∀L inference (if (Qy) = (y)) or an ER inference (if (Qy) = (Ey)).

Definition 11. Let DN be the derivation of E described in Theorem 1.

Suppose E has positive quantifier occurrences (Qxi) 1 ≤ i ≤ k, negative

quantifier occurrences (Qyj) 1 ≤ j ≤ d, and that ranges r(xi) = Ui have

been assigned to each positive quantifier occurrence. If (Qyj) = (yj) look

at all instances of ∀L inferences (or ER inferences if (Qyj) = (Eyj)) which

initiate the quantifier cluster of (Qyj). Suppose these infererence occur-

rences are
Fl(tl),Γl =⇒ ∆l

(zl)Fl,Γl =⇒ ∆l
1 ≤ l ≤ s. Notice that all of the terms tl are

numerals. Define r(yj) = Sj = {t1, . . . , ts} (or r(yj) = {0} if there are no

such inferences.)

Definition 12. Suppose F is a formula all of whose quantifier occurrences

have been assigned finite ranges. Then F ∗, the “Buridan-Volpin (BV)

propositional expansion of F” over these ranges, is defined by expanding

each quantifier occurrence over its range. More precisely:

1. If F is quantifier-free, F ∗ = F .

2. If F = F1 ∧ F2, F1 ∨ F2,¬F1 then F ∗ = F ∗

1 ∧ F ∗

2 , F ∗

1 ∨ F ∗

2 ,¬(F ∗

1 ).

3. If r(x) = {n1, . . . , nk} and F = (x)G then G∗[x/n1]∧ · · · ∧G∗[x/nk] =

F ∗; if F = (Ex)G then F ∗ = G∗[x/n1] ∨ · · · ∨ G∗[x/nk].

4. If D is a derivation, then D∗ is the derivation obtained by replacing

each formula in D by its BV expansion.

Corollary 1. Let DN be the quantifier-normal derivation of Theorem 1

with an assignment of ranges as prescribed in Definition 11. D∗

N is a propo-

sitional derivation of E∗ in the quantifier-free portion of P.

Proof. Apply * first to the initial sequents and then downwards along

a path towards E. All propositional and structural inferences remain un-

disturbed. A contraction
Γ =⇒ ∆, F1, F2

Γ =⇒ ∆, F
becomes

Γ =⇒ ∆, F ∗

1 , F ∗

2

Γ =⇒ ∆, F ∗
which

is a contraction because the formulas F ∗

1 , F ∗

2 , F ∗ are identical. This is so

because in DN they are equiform and clustered quantifiers in Fi and F are

connected by quantifier-threads to the same quantifier occurrence in E. For
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the same reason, the *-transformation of a B∀R or BEL inference remains

a legitimate inference (and, in fact. becomes superfluous.) An inference
Γ =⇒ ∆, F (t)

Γ =⇒ ∆, (Ex)F
becomes

Γ∗ =⇒ ∆∗, F ∗(t)
Γ∗ =⇒ ∆∗, F ∗(t1) ∨ · · · ∨ F ∗(t) ∨ · · · ∨ F ∗(tk)

and this inference can be reconstructed propositionally.

Definition 13. A (closed) formula F of P with positive quantifier occur-

rences (Qxi) 1 ≤ i ≤ k and negative quantifier occurrences (Qyj) 1 ≤ j ≤ r

is called “Buridan- Volpin (BV) recursively satisfiable” if there are (ε0-)

recursive functions Φ1, . . . .Φr so that for any assignment of finite sets Ui

to (xi), 1 ≤ i ≤ k, and Φj(U1, . . . , Uk) to (Qyj), 1 ≤ j ≤ r, the BV

propositional expansion of F over these ranges is true.

Theorem 2. Let ∆ be a theorem of Peano arithmetic. Then ∆ is BV

recursively satisfiable.

Proof. Let D be a derivation of Γ =⇒ ∆ in P where the formulas

in Γ are arithmetic axioms. The only positive quantifier occurrences in

Γ =⇒ ∆ are in formulas of ∆. Given an assignment of finite ranges {Ui}

to these, D can be transformed to the quantifier-normal derivation DN

(Theorem 1.) The transformation defines (ε0-) recursive functions {Φj}

and ranges {Φj(U1, . . . , Un)} for the negative occurrences of quantifiers in

DN . The BV propositional expansion of DN over these ranges, D∗

N , will

be a propositional derivation of Γ∗ =⇒ ∆∗. But if A is in Γ, then A∗ is

a true arithmetic formula. Hence ∆∗ is true. (Notice that this conclusion

holds if A is any true Π0
1 formula.)

Corollary 2. If (x1)(Ey1) · · · (xk)(Eyk)F (x1, y1, . . . , xk, yk) is a theorem

of Peano arithmetic, there are recursive functions φi 1 ≤ i ≤ k so that

for any values n1, . . . , nk, F (n1, φ1(n1. . . . .nk), . . . , nk, φk(n1. . . . , nk)) is

true.(cf [5] pp 34-35).

Proof. Let φi(n1, . . . .nk) = Φi({n1}, . . . , {nk}).
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