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1. Introduction

In this paper we improve one result from [2, p. 250–255] (cf. the last

section of the paper). We also present, by a method of semantical nature, a

certain description of the expressive power of first-order logic with one-place

predicates and equality.

As in [2, p. 250], a monadic formula is a formula of first-order logic,

all of whose non-logical symbols are either one-place predicate letters or

name letters (resp. individual constants). Monadic formulas may contain

the logical symbol ‘
.
=’, i.e., the equals-sign (or the sign of identity).

A formula τ1
.
= τ2 for different terms τ1 and τ2 is said to be a non-

tautological identity.

We prove that for any monadic formula ϕ: ϕ is logically valid iff ϕ

is true in every interpretation whose domain contains at most l + 2k · n+

members, k being the number of predicate letters in ϕ, l being the number
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of individual constants in non-tautological identities which are subformulas

of ϕ, and n+ being the number of variables in non-tautological identities

which are subformulas of ϕ or, when no variable occurs in non-tautological

identities in ϕ, n+ = 1.1

In the body of this paper we shall define each semantical notion along

the line of Barwise [1] and Mendelson [3], and then prove the above fact.

2. Syntactical and semantical preliminaries

Let PL, NL and Var be fixed denumerably infinite disjoint sets; PL is

the set of one-place predicate letters, NL is the set of name letters, and Var

is the set of variables. Let Term := NL ∪ Var be the set of terms and let

Form be the set of formulas of monadic predicate logic (with equality ‘
.
=’

and name letters), i.e., the smallest set such that:

– if τ ∈ Term and p ∈ PL, then p(τ) ∈ Form;

– if τ1, τ2 ∈ Term, then τ1
.
= τ2 ∈ Form;

– if ϕ,ψ ∈ Form, then ¬ϕ ∈ Form and (ϕ§ψ) ∈ Form, where § ∈ {∨,∧,⊃};

– if ϕ ∈ Form and x ∈ Var, then ∀xϕ ∈ Form and ∃xϕ ∈ Form.

The logical symbols ¬, ∨, ∧ and ⊃ are the propositional connectives

of negation, disjunction, conjunction and material implication. Moreover,

the logical symbols ∀ and ∃ are universal and existential quantifiers.

A sentence is a formula without any free variables.

An interpretation of Form is a pair I = 〈D, ı〉, where D is a non-empty

set (called the domain of I) and ı is a mapping from NL into D and from

PL into the power set P(D).

Let DVar be the set of functions from Var into D. All elements of

DVar will be called assignments. For any assignment s we use s
(

d
x

)

for the

assignment s′ which agrees with s except that s′(x) = d.

Moreover, for any s and ı we define a function ts,ı := s ∪ ı|NL of one

argument, with terms as arguments and values in D.

1 For formulas without any variables this estimate can be reduced (cf. footnote 2).
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Let I = 〈D, ı〉 be an interpretation of Form. We define a relation

I |= ϕ [s] (read: the assignment s satisfies ϕ in I) for all assignments s and

all formulas ϕ as follows:

I |= p(τ) [s] iff ts,ı(τ) ∈ ı(p); I |= τ1
.
= τ2 [s] iff ts,ı(τ1) = ts,ı(τ2); I |= ¬ϕ [s]

iff not I |= ϕ [s]; I |= (ϕ ∧ ψ) [s] iff I |= ϕ [s] and I |= ψ [s]; I |= (ϕ ∨ ψ) [s]

iff either I |= ϕ or I |= ψ [s]; I |= (ϕ ⊃ ψ) [s] iff either not I |= ϕ [s] or

I |= ψ [s]; I |= ∀x ϕ [s] iff for all d ∈ D, I |= ϕ
[

s
(

d
x

)

]

; I |= ∃x ϕ [s] iff there

is a d ∈ D such that I |= ϕ
[

s
(

d
x

)

]

.

A formula ϕ is true in the interpretation I (or I is a model of ϕ; we

write: I |= ϕ) iff for every assignment s, I |= ϕ [s]. The form “not I |= ϕ”

will be an abbreviation for “it is not the case that I |= ϕ”. So not I |= ϕ

iff for some s, not I |= ϕ [s]. If σ is a sentence, then the truth or falsity

of I |= σ [s] is independent of s. Thus I |= σ iff for some (hence every) s,

I |= σ [s]. So for any sentence σ: I |= ¬σ iff not I |= σ.

A formula ϕ is called logically valid iff ϕ is true in every interpretation.

A formula ϕ is satisfiable iff there is an interpretation for which ϕ is

satisfied by at least one assignment. A sentence σ is satisfiable iff there is

a model of σ.

3. Estimation

Let ϕ be a given monadic formula. Let p1, . . . , pk be the k distinct

one-place predicate letters (possibly k = 0) occurring in ϕ. Let a1, . . . , al

be the l distinct name letters that occur in non-tautological identities in

ϕ (possibly l = 0). Moreover, let x1, . . . , xn be the n distinct variables

that occur in non-tautological identities in ϕ (possibly n = 0). We put

n+ := max(n, 1).

Theorem 1. Let I = 〈D, ı〉 be an arbitrary interpretation of Form.

We can construct a certain interpretation Iϕ = 〈Dϕ, ıϕ〉, whose domain Dϕ
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contains at most l + 2k · n+ members,2 and which satisfies the following

condition:

(†) Iϕ |= ϕ iff I |= ϕ .

Proof. We define the binary relation ∼= in D by:

– if k = 0 then we put ∼= := D ×D

– if k > 0 then for d1, d2 ∈ D

d1
∼= d2 iff for every i = 1 . . . , k : d1 ∈ ı(pi) iff d2 ∈ ı(pi) .

Clearly, ∼= is an equivalence relation. We denote an equivalence class of d

in D by ‖d‖. We have: for any one-place predicate symbol pi (0 ≤ i ≤ k)

and any d ∈ D

(?) d ∈ ı(pi) iff ‖d‖ ⊆ ı(pi) .

Let p := |D/∼=|. Obviously 0 < p ≤ 2k. Let {D1, . . . , Dp} := D/∼=.

Obviously the sets D1, . . . , Dp are non-empty and pairwise disjoint. More-

over, D =
⋃p

i=1Di.

If k > 0 then for every i = 1, . . . , p there is a sequence 〈δi1 , . . . , δik
〉 of

zeros and ones such that Di = ı(p1)
δi1 ∩ . . . ∩ ı(pk)δik where ı(pj)

1
= ı(pj)

and ı(pj)
0 = D − ı(pj). If k = 0 then D1 = D.

Let A := {a1, . . . , al} and X := {x1, . . . , xn}.

For i = 1, . . . , p we choose from the set Di − ı[A] a subset D?
i such that

|D?
i | = min(|Di − ı[A]|, n+).

We put

Dϕ := ı[A] ∪

p
⋃

i=1

D?
i .

The set Dϕ contains, at most, l + 2k · n+ members.

2 For a given monadic sentence which has no variables this estimate can be reduced

to l+ +min(2k −1, q− l+) where l+ := max(l, 1) and q being the number of name letters

occurring in this sentence.
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A projection from D on Dϕ is a function π : D → Dϕ such that for

any d ∈ D and i = 1, . . . , p:

(i) if d ∈ Di − ı[A] then π(d) ∈ D?
i ,

(ii) if d ∈ Dϕ then π(d) = d.

The conditions (i) and (ii) imply:

(i′) d ∈ Di − ı[A] iff π(d) ∈ D?
i .

(ii′) d ∈ Di iff π(d) ∈ D?
i ∪ (Di ∩ ı[A]).

Let Proj be the set of all projections from D on Dϕ. Clearly, Proj 6= Ø.

We choose from the set Proj one projection π
?. We define the mapping

ıϕ from NL into Dϕ by:3

ıϕ(b) := π
?(ı(b))

and from PL into P(Dϕ) by:

ıϕ(p) := Dϕ ∩ ı(p) .

Obviously — by the definition of the set Dϕ and by (ii) in the definition

of the set Proj — for i = 1, . . . , l we have:

(??) ıϕ(ai) = ı(ai) .

For any s ∈ DVar let Projs be the set of all projections which are

injections on the set s[X] ∪ ı[A].

3 If ϕ is a pure monadic formula (without ‘
.
=’ and individual constants; k > 0 and

l = 0 = n), then the given proof is “classical”. In this case, we may also suppose that

Dϕ := D/∼= and ıϕ(p) := {∆ ∈ D/∼= : ∆ ⊆ ı(p)}. Moreover, if ϕ is a monadic formula

with individual constants and without ‘
.
=’ (k > 0 and l = 0 = n), we may suppose that

Dϕ := D/∼=, ıϕ(p) := {∆ ∈ D/∼= : ∆ ⊆ ı(p)} and ıϕ(b) := ‖ı(b)‖. In both cases there

exists exactly one “canonical” projection ‖ · ‖ : D 3 d 7→ ‖d‖ ∈ Dϕ.
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Lemma 1. For any s ∈ DVar: Projs 6= Ø.

Proof. Notice that for any s ∈ DVar and i = 1, . . . ,m we have the

condition (ii′) and |Di ∩ (s[X] ∪ ı[A])| ≤ |D?
i ∪ (Di ∩ ı[A])|. Actually, Di ∩

(s[X] ∪ ı[A]) = (Di ∩ s[X]) ∪ (Di ∩ ı[A]) = ((Di − ı[A]) ∩ s[X]) ∪ (Di ∩

ı[A] ∩ s[X]) ∪ (Di ∩ ı[A]) = ((Di − ı[A]) ∩ s[X]) ∪ (Di ∩ ı[A]). Moreover,

|(Di − ı[A]) ∩ s[X]| ≤ min(|Di − ı[A]|, n) ≤ |D?
i | and D?

i ∩ ı[A] = Ø. Thus

|Di ∩ (s[X] ∪ ı[A])| ≤ |D?
i | + |Di ∩ ı[A]| = |D?

i ∪ (Di ∩ ı[A])|. ut

For any s ∈ DVar and π ∈ Proj we have π ◦ s ∈ DVar
ϕ . Moreover:

Lemma 2. Suppose that ψ is a subformula of ϕ. Then for any s ∈ DVar

and π ∈ Projs:

Iϕ |= ψ [π ◦ s] iff I |= ψ [s] .

Proof. Induction on ψ. If ψ is atomic, either

(a) for some y ∈ Var and i = 1, . . . , k, ψ = pi(y), or

(b) for some b ∈ NL and i = 1, . . . , k, ψ = pi(b), or

(c) for some y ∈ Var, ψ = y
.
= y, or

(d) for some b ∈ NL, ψ = b
.
= b, or

(e) for some i, j = 1, . . . , n, i 6= j, ψ = xi
.
= xj , or

(f) for some i, j = 1, . . . , l, i 6= j, ψ = ai
.
= aj , or

(g) for some i = 1, . . . , n and j = 1, . . . , l, ψ = xi
.
= aj or ψ = aj

.
= xi.

Let s and π be arbitrary members of DVar and Projs respectively.

In the first case: Iϕ |= pi(y) [π ◦ s] iff π(s(y)) ∈ ıϕ(pi) iff — by the

definition of ıϕ — π(s(y)) ∈ ı(pi) iff — by (?) and (ii′) — s(y) ∈ ı(pi) iff

I |= pi(y) [s].

In the second case: Iϕ |= pi(b) [π ◦ s] iff ıϕ(b) ∈ ıϕ(pi) iff — by the

definition of ıϕ — π
?(ı(b)) ∈ ı(pi) iff — by (?) and (ii′) — ı(b) ∈ ı(pi) iff

I |= pi(b) [s].

In cases (c) and (d): ψ is true in both Iϕ and I.

In case (e): Iϕ |= xi
.
= xj [π ◦ s] iff π(s(xi)) = π(s(xj)) iff — by the

definition of Projs — s(xi) = s(xj) iff I |= xi
.
= xj [s].
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In case (f): Iϕ |= ai
.
= aj [π ◦ s] iff ıϕ(ai) = ıϕ(aj) iff — by (??) —

ı(ai) = ı(aj) iff I |= ai
.
= aj [s].

In case (g): Iϕ |= xi
.
= aj [π ◦ s] iff π(s(xi)) = ıϕ(aj) iff — by (??) —

π(s(xi)) = ı(aj) iff — by (ii) in the definition of Proj — π(s(xi)) = π(ı(aj))

iff — by the definition of Projs — s(xi) = ı(aj) iff I |= xi
.
= aj [s]. Similarly

for aj
.
= xi.

If ψ = ¬χ then: Iϕ |= ψ [π ◦ s] iff not Iϕ |= χ [π ◦ s] iff — by the

hypothesis of the induction — not I |= χ [s] iff I |= ψ [s].

The argument is similar if ψ is a conjunction or other truth-functional

compound of simpler formulas.

Suppose then that ψ = ∀y χ. Let Iϕ |= ∀y χ [π ◦ s], i.e. for all e ∈ Dϕ,

Iϕ |= χ
[

(π ◦ s)
(

e
y

)

]

. Let d be an arbitrary member of D. Then, since

π ◦ s
(

d
y

)

= (π ◦ s)
(

π(d)
y

)

and Iϕ |= χ
[

(π ◦ s)
(

π(d)
y

)

]

, it follows that Iϕ |=

χ
[

π ◦ s
(

d
y

)

]

. Hence, by inductive hypothesis, I |= χ
[

s
(

d
y

)

]

. So I |= ∀yχ [s].

Conversely, assume that I |= ∀y χ [s], i.e., for all d ∈ D, I |= χ
[

s
(

d
y

)

]

. Let

e be an arbitrary member of Dϕ. Then I |= χ
[

s
(

e
y

)

]

. Hence, by inductive

hypothesis, Iϕ |= χ
[

π ◦ s
(

e
y

)

]

. Moreover, by (ii) in the definition of Proj,

π ◦ s
(

e
y

)

= (π ◦ s)
(

e
y

)

. Thus Iϕ |= χ
[

(π ◦ s)
(

e
y

)

]

. So Iϕ |= ∀y χ [(π ◦ s)].

The argument is similar if ψ is an existential quantification of a simpler

formula. ut

Suppose now that Iϕ |= ϕ. Let s : Var → D be an arbitrary assignment.

Then π ◦ s : Var → Dϕ for any π ∈ Projs. Thus Iϕ |= ϕ [π ◦ s]. Therefore

I |= ϕ [s], by Lemma 2. So I |= ϕ.

Assume that I |= ϕ. Let s : Var → Dϕ be an arbitrary assignment.

Then also s : Var → D; so I |= ϕ [s]. Hence, by Lemma 2, Iϕ |= ϕ [π ◦ s]

for any π ∈ Projs. Moreover, by property (ii) in the definition of Proj, we

have s = π ◦ s. Therefore Iϕ |= ϕ [s]. Thus Iϕ |= ϕ. ut

4. Corollaries
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Both from the “if” part of (†) and from the “only if” part of (†) in

Theorem 1 we obtain:

Corollary 1. For any ϕ ∈ Form the following conditions are equivalent:

(i) ϕ is logically valid;

(ii) ϕ is true in every interpretation, whose domain contains at most l +

2k · n+ members;

where k, l and n+ we defined in the introduction and in section 3.

Proof. “⇒” By the definition of logically valid formulas.

“⇐” Proof by the “if” part of (†). Let I be an arbitrary interpretation

of Form. Then Iϕ |= ϕ, by (ii).

(a) Therefore, by using the “if” part of (†), I |= ϕ. So ϕ is logically

valid.

(b) Let cl(ϕ) be a universal closure of ϕ. Then Iϕ |= cl(ϕ) and not

Iϕ |= ¬cl(ϕ), since cl(ϕ) is a sentence. Therefore, by using the “only if”

part of (†), not I |= ¬cl(ϕ). Hence I |= cl(ϕ) and I |= ϕ. So ϕ is logically

valid. ut

Corollary 2. Suppose that ϕ ∈ Form, respectively:

1) contains no individual constants,

2) contains no one-place predicate letters,

3) contains no non-logical symbols,

4) does not contain the equals-sign,

5) does not contain the equals-sign and any individual constants.

Then ϕ is logically valid iff ϕ is true in every interpretation whose domain

contains, respectively, at most:

1) 2k · n+

2) l + n+

3) n+
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4) 2k

5) 2k

members.

5. Expressive power of sentences from Form

5.1. Let σ be a given satisfiable sentence which contains no individual

constants. Suppose that p1, . . . , pk are the k (distinct) predicate letters that

occur in σ (k > 0), and that σ has n distinct variables in non-tautological

identities (possibly n = 0). Let n+ := max(n, 1).

We will use the following abbreviations. Let x1, . . . , xn+ be the n+ dis-

tinct variables from Var. For 0 < j ≤ n+ and for any sequence 〈δ1, . . . , δk〉

of zeros and ones we say that:

pδ1

1 · · · pδk

k (xj) abbreviates pδ1

1 (xj) ∧ . . . ∧ p
δk

k (xj)

where for i = 1, . . . , k:

pδi

i (xj) :=

{

pi(xj) if δi = 1;
¬pi(xj) if δi = 0.

Moreover

Epδ1

1 · · · pδk

k = 0 abbreviates ¬∃x1 pδ1

1 · · · pδk

k (x1) ,

and for any 0 < m < n+:

Epδ1

1 · · · pδk

k = m abbreviates

∃x1 . . . ∃xm(
∧

1≤j≤m

p
δ1

1 · · · pδk

k (xj) ∧
∧

1≤i<j≤m

¬ xi
.
= xj ∧

∧ ∀xm+1(p
δ1

1 · · · pδk

k (xm+1) ⊃
∨

1≤i≤m

xi
.
= xm+1)) .

The sentence “Ep
δ1

1 · · · pδk

k = m” says that there exist exactly m elements

which are pδ1

1 · · · pδk

k ers. Finally:

Epδ1

1 · · · pδk

k ≥ n+ abbreviates

∃x1 . . . ∃xn(
∧

1≤j≤n

p
δ1

1 · · · pδk

k (xj) ∧
∧

1≤i<j≤n

¬ xi
.
= xj) .
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The sentence “Epδ1

1 · · · pδk

k ≥ n+” says that there exist at least n+ elements

which are p
δ1

1 · · · pδk

k ers.

We prove semantically that the sentence σ is equivalent to some sen-

tence σcdnf in canonical disjunctive normal form. The sentence σcdnf will

be a disjunction (possibly degenerate), each disjunct in which is a conjunc-

tion of the following form:

∧

δ1,...,δk=0,1

Epδ1

1 · · · pδk

k = mδ1...δk
(or Epδ1

1 · · · pδk

k ≥ n+)

with 2k cojuncts (exactly one for every sequence 〈δ1, . . . , δk〉) and such that

0 ≤ mδ1...δk
< n+.

Let I = 〈D, ı〉 be an interpretation of Form. Let ı(pi)
1 = ı(pi) and

ı(pi)
0 = D − ı(pi). For every sequence 〈δ1, . . . , δk〉 of zeros and ones if

|ı(p1)
δ1 ∩ . . . ∩ ı(pk)δk | < n+ then let κI

δ1...δk
be the sentence Ep

δ1

1 · · · pδk

k =

|ı(p1)
δ1 ∩ . . . ∩ ı(pk)δk |; otherwise let κI

δ1...δk
be the sentence Epδ1

1 · · · pδk

k ≥

n+. For I we put the following conjunction:

κI :=
∧

δ1,...,δk=0,1

κI
δ1...δk

The succession of conjuncts in κI is assigned by the linear order ≺ on

{0, 1}k defined by the condition: 〈δ11 , . . . , δ
1
k〉 ≺ 〈δ21 , . . . , δ

2
k〉 iff (δ11 . . . δ

1
k)2 <

(δ21 . . . δ
2
k)2. We obtain:

Lemma 3. If I |= σ, then I |= κI. ut

We have (n+)2
k

mappings from {0, 1}k into {0, 1, . . . , n+}. Let M

be the set of all of them. Any interpretation I determines the mapping

mI ∈ M such that

mI
δ1...δk

:=

{

n+ if |ı(p1)
δ1 ∩ . . . ∩ ı(pk)δk | ≥ n+

|ı(p1)
δ1 ∩ . . . ∩ ı(pk)δk | otherwise

where ı(pi)
1

is ı(pi) while ı(pi)
0 is the complement of ı(pi).
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Lemma 4. The set {κI : I |= σ} is non-empty and finite.

Proof. For any model I of σ we have

κI
δ1...δk

=

{

Epδ1

1 · · · pδk

k = mI
δ1...δk

if mI
δ1...,δk

< n+;

Ep
δ1

1 · · · pδk

k ≥ n+ if mI
δ1...δk

= n+.

Hence for all models I1, I2 of σ if mI1 = mI2 then κI1 = κI2 . ut

By Lemma 4 we can put:

σcdnf :=
∨

I is a model of σ

κI .

The succession of disjuncts in σcdnf is assigned by the linear order ≺∗ on

M defined by the condition: mI ≺∗ mJ iff (mI

δ1
1
...δ1

k

. . . mI

δ2k

1
...δ2k

k

)n++1 <

(mJ

δ1
1
...δ1

k

. . . mJ

δ2k

1
...δ2k

k

)n++1 where the set {0, 1}k is ordered linearly by ≺.

Theorem 2. The sentences σ and σcdnf are equivalent.

Proof. Suppose that I |= σ. Since by Lemma 3 we have I |= κI,

I |= σcdnf, by the definition of σcdnf.

Let, on the other hand, I = 〈D, ı〉 and I |= σcdnf. Then, by the

definition of σcdnf, for some model J = 〈E, 〉 of σ we obtain I |= κJ.

Since I |= κJ

δ1...δk
, for any 〈δ1, . . . , δk〉 ∈ {0, 1}k we have that either

|ı(p1)
δ1 ∩ . . . ∩ ı(pk)δk | = |(p1)

δ1 ∩ . . . ∩ (pk)δk | < n+

or

|ı(p1)
δ1 ∩ . . . ∩ ı(pk)δk | ≥ n+ and |(p1)

δ1 ∩ . . . ∩ (pk)δk | ≥ n+ .

Let Iσ = 〈Dσ , ıσ〉 and Jσ = 〈Eσ, σ〉 be interpretations obtained by

the procedure given in the proof of Theorem 1. Let p > 0 be the number

of sequences 〈δ1, . . . , δk〉 for which ı(p1)
δ1 ∩ . . . ∩ ı(pk)δk 6= Ø. Then Dσ =

⋃p
i=1D

?
i and Eσ =

⋃p
i=1 E

?
i where for |ı(p1)

δ1 ∩ . . .∩ ı(pk)δk | = mδ1...δk
> 0
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we choose from the sets ı(p1)
δ1 ∩ . . . ∩ ı(pk)δk and (p1)

δ1 ∩ . . . ∩ (pk)δk

respectively subsets D?
i and E?

i such that |D?
i | = |E?

i | = min(mδ1...δk
, n+).

There is a one-one function h with domain Dσ and range Eσ such that

the restriction h|D?

i
is a one-one mapping of D?

i onto E?
i for i = 1, . . . , p.

Hence for j = 1, . . . , k we obtain h[ıσ(pj)] = σ(pj) where ıσ(pj) = Dσ ∩

ı(pj) and σ(pj) = Eσ ∩ (pj).

By induction on the length of formulas it is easy to show that: Iσ |= σ

iff Jσ |= σ. Hence J |= σ iff Jσ |= σ iff Iσ |= σ iff I |= σ, by Theorem 1.

Since J |= σ, we obtain I |= σ. ut

Remark. There is an effective procedure for finding σcdnf.

Actually, the sentence σ is satisfiable iff the sentence ¬σ is not logically

valid. Since, by Corollary 2, the second fact is decidable, so is the first fact.

For a given k and n we say that the interpretation I1 and I2 are

equivalent (we write: I1 ≡ I2) iff mI1 = mI2 . Clearly, ≡ is an equivalence

relation. There exist (n+)2
k

equivalence classes.

For any interpretation I we have I ≡ Iσ where Iσ is defined in Theo-

rem 1 (the domain of Iσ is finite). Moreover, if I1 ≡ I2 then κI1 = κI2 . (By

the method used in the proof of Theorem 2, we can obtain that: if I1 ≡ I2,

then I1 |= σ iff I2 |= σ.)

Finally, we can choose from any equivalence class of the relation ≡ an

interpretation I whose domain is finite. For I we have an effective method

for deciding whether σ is true in I or not. In the first case we add κI to

σcdnf. ut

5.2. Let σ be a given satisfiable sentence which contains no individual

constants and no one-place predicate letters, i.e., k = 0. Suppose that σ

has n > 0 distinct variables in non-tautological identities.

We will use the following abbreviations. Let x1, . . . , xn be the n distinct

variables from Var and for any 0 < m < n we establish that:

E = m abbreviates

∃x1 . . . ∃xm(
∧

1≤i<j≤m

¬ xi
.
= xj ∧ ∀xm+1

∨

1≤i≤m

xi
.
= xm+1) .
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The sentence “E = m” says that there exist exactly m elements.

E ≥ n abbreviates ∃x1 . . . ∃xn(
∧

1≤i<j≤n

¬ xi
.
= xj) .

The sentence “E ≥ n” says that there exist at least n elements.

We prove that the sentence σ is equivalent to some sentence σcdnf in

canonical disjunctive normal form. The sentence σcdnf will be a disjunction

(possibly degenerate), in which each disjunct has the following form:

E = m (or E ≥ n)

where 0 < m < n.

Let I = 〈D, ı〉 be an interpretation of Form. If |D| < n then let αI be

the sentence E = |D|; otherwise let αI be the sentence E ≥ n. We obtain:

Lemma 3′. If I |= σ, then I |= αI. ut

Lemma 4′. The set {αI : I |= σ} is non-empty and finite. ut

By Lemma 4′ we can establish that:

σcdnf :=
∨

I is a model of σ

αI .

The succession of disjuncts in σcdnf is the same as the natural succession

in the set {1, 2, . . . , n}.

The proof of the following theorem is similar to the proof of Theorem 2.

Theorem 2′. The sentences σ and σcdnf are equivalent. ut

5.3. Let σ be a given satisfiable sentence from Form. Let Pσ be the set

of k predicate letters (possibly k = 0) occurring in σ. Let Bσ be the set of

q name letters occurring in subformulas p(b) of σ, and let Aσ be the set of

l name letters that occur in non-tautological identities in σ (possibly q = 0

and/or l = 0 and/or Bσ ∩ Aσ 6= Ø). Moreover, let σ have the n variables

in non-tautological identities (possibly n = 0).
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It is possible to show that the sentence σ is equivalent to some sentence

σcdnf in canonical disjunctive normal form. σcdnf is a disjunction (possibly

degenerate), each disjunct in which is a conjunction, the conjuncts in which

are of certain specified forms. Every conjunct must be either p(b) or a
.
= a′

or the negation of them (for some p ∈ Pσ, b ∈ Bσ and a, a′ ∈ Aσ), or

analogous sentences to those in 5.1 (resp. in 5.2 if k = 0).

6. Notes about the estimations in [2]

G. Boolos and R. Jeffrey (and R. Jensen) proved in [2, p. 252–254] for

sentences without individual constants that:

If σ is a monadic sentence which is satisfiable, then σ is true in

some interpretation whose domain contains at most 2k ·r members,

k being the number of predicate letters and r being the number

of variables in σ. (Theorem 1, p. 250)4

From this, one easily concludes:

If σ is a sentence containing no non-logical symbols, then if σ is

satisfiable, σ is true in some interpretation whose domain contains

no more members than there are variables in σ. (Theorem 2,

p. 254)

Another consequence of Theorem 1 from [2] is a result about pure

monadic sentences, i.e., sentences without the equals-sign and individual

constants:

If σ is a pure monadic sentence which is satisfiable, then σ is

true in some interpretation whose domain contains at most 2k

members. (Theorem 3, p. 254)

The last theorem is an immediate consequence of Theorem 1 by the fact

that:

4 For monadic formulas containing no individual constants, we obtain from Theo-

rem 1: a formula ϕ is logically valid iff ϕ is true in every interpretation whose domain

contains at most 2k · r members.



CARDINALITIES OF MODELS AND THE EXPRESSIVE POWER. . . 63

Any pure monadic sentence is [logically] equivalent to a pure

monadic sentence [i.e. they are true in the same interpretations]

containing exactly the same predicate letters and only one vari-

able. (Theorem 4, p. 254)5

In exercise 25.2 Boolos and Jeffrey have written: “Show that the esti-

mates 2k · r, r and 2k in Theorems 1, 2, 3 cannot be reduced”. Actually

the estimates in Theorems 1 and 2 cannot be reduced by the method used

in the proof of Theorem 1 in [2] (cf. the relation of exact likeness of two

finite sequences of elements of domains of interpretations). However, we

have presented here a method which improves their estimations.

Observe that for the sentences containing no individual constants, a

corollary of the “only if” part of (†) is:

Corollary 3. If a sentence ϕ is satisfiable, then ϕ is also true in some

interpretation whose domain contains at most 2k ·n+ members, k being the

number of predicate letters and n+ being the number of variables in non-

tautological identities which are subformulas of ϕ, or when non-tautological

identities do not occur in ϕ, n+ = 1.

Corollary 3 we can obtain also from Theorem 1 in [2] and from the

following analogue of Theorem 4 in [2] (which we do not prove):

For any monadic sentence σ there exists a monadic sentence σ ′ which

has the properties:

(i) σ and σ′ are logically equivalent;

5 For pure monadic formulas, a corollary of Theorem 4 is: a formula ϕ is logically

valid iff ϕ is true in every interpretation whose domain contains at most 2k members.

For a formula ϕ(x1, . . . , xr,a1, . . . , aq) — containing r ≥ n+ variables and q ≥ l

individual constants — we write ϕ(x1, . . . , xr, xr+1, . . . , xr+q) for the formula obtained

by replacing all occurrences of ai in ϕ(x1, . . . , xr, a1, . . . ,aq) by xr+i. If xi 6= xj

for i, j = r + 1, . . . , r + q and i 6= j, then: ϕ(x1, . . . , xr, a1, . . . ,aq) is logically valid

iff ϕ(x1, . . . , xr, xr+1, . . . , xr+q) is logically valid. Thence, by Theorem 1, we obtain:

ϕ(x1, . . . , xr,a1, . . . , aq) is logically valid iff ϕ(x1, . . . , xr, xr+1, . . . , xr+q) is true in ev-

ery interpretation, whose domain contains at most 2k · (q + r) members. Let us notice

that 2k · (q + r) ≥ l + 2k · n+.
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(ii) σ and σ′ contain exactly the same predicate letters (possibly none);

(iii) σ′ has as many variables as σ in non-tautological identities or, when

non-tautological identities do not occur in σ, then σ ′ has exactly one

variable.
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