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1. Introduction

In this paper we improve one result from [2, p. 250-255] (cf. the last
section of the paper). We also present, by a method of semantical nature, a
certain description of the expressive power of first-order logic with one-place
predicates and equality.

As in [2, p. 250], a monadic formula is a formula of first-order logic,
all of whose non-logical symbols are either one-place predicate letters or
name letters (resp. individual constants). Monadic formulas may contain
the logical symbol ‘=’; i.e., the equals-sign (or the sign of identity).

A formula 71 = 7 for different terms 7; and 75 is said to be a non-

tautological identity.
We prove that for any monadic formula ¢: ¢ is logically valid iff ¢

is true in every interpretation whose domain contains at most [ + 2% - n*t

members, k being the number of predicate letters in ¢, | being the number
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of individual constants in non-tautological identities which are subformulas
of ¢, and n™ being the number of variables in non-tautological identities
which are subformulas of ¢ or, when no variable occurs in non-tautological
identities in p, n™ = 1.1

In the body of this paper we shall define each semantical notion along
the line of Barwise [1] and Mendelson [3], and then prove the above fact.

2. Syntactical and semantical preliminaries

Let PL, NL and Var be fixed denumerably infinite disjoint sets; PL is
the set of one-place predicate letters, NL is the set of name letters, and Var
is the set of variables. Let Term := NL U Var be the set of terms and let
Form be the set of formulas of monadic predicate logic (with equality ‘=’
and name letters), i.e., the smallest set such that:

— if 7 € Term and p € PL, then p(7) € Form;

— if 7,79 € Term, then 71 = 7 € Form;

— if ¢,% € Form, then - € Form and (p8§¢) € Form, where § € {V, A, D};
— if ¢ € Form and x € Var, then Vx¢ € Form and Ixp € Form.

The logical symbols -, V, A and D are the propositional connectives
of negation, disjunction, conjunction and material implication. Moreover,

the logical symbols V and 3 are universal and existential quantifiers.

A sentence is a formula without any free variables.

An interpretation of Form is a pair J = (D, ), where D is a non-empty
set (called the domain of J) and @ is a mapping from NL into D and from
PL into the power set P(D).

Let DV® be the set of functions from Var into D. All elements of
DV will be called assignments. For any assignment s we use s(i) for the
assignment s’ which agrees with s except that s'(x) = d.

Moreover, for any s and ¢ we define a function ¢5, := s U |y of one

argument, with terms as arguments and values in D.

1 For formulas without any variables this estimate can be reduced (cf. footnote 2).
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Let J = (D,s) be an interpretation of Form. We define a relation
J E ¢[s] (read: the assignment s satisfies ¢ in J) for all assignments s and
all formulas ¢ as follows:
JEp(r)[s] iff ts,(7) € u(p); I = = 7o [s] iff ts,(11) = ts.(12); T = 9]
it not 9 = [} T b= (0 A4) 5] i3 | o[s] and T = 9 [s]; T = (9 V ) [3]
iff either I = p or I = ¢ [s]; T = (¢ D ) [s] iff either not I = ¢]s] or
T (s T Vxp[s] iffforalld € D, T = ¢ [s(ﬁ)}; J k= Ix[s] iff there

isad € D such that I = ¢ [s(i)}

A formula ¢ is true in the interpretation J (or J is a model of ¢; we
write: J |= o) iff for every assignment s, J |= ¢ [s]. The form “not J = ¢”
will be an abbreviation for “it is not the case that J = ¢”. Sonot J |= ¢
iff for some s, not J |= ¢[s]. If o is a sentence, then the truth or falsity
of J = o [s] is independent of s. Thus J |= o iff for some (hence every) s,
J | o[s]. So for any sentence o: J = —o iff not J = 0.

A formula ¢ is called logically valid iff o is true in every interpretation.

A formula ¢ is satisfiable iff there is an interpretation for which ¢ is
satisfied by at least one assignment. A sentence o is satisfiable iff there is

a model of o.

3. Estimation

Let ¢ be a given monadic formula. Let p;,...,p, be the k distinct
one-place predicate letters (possibly & = 0) occurring in ¢. Let a,...,
be the [ distinct name letters that occur in non-tautological identities in
¢ (possibly I = 0). Moreover, let xi,...,x, be the n distinct variables
that occur in non-tautological identities in ¢ (possibly n = 0). We put

nt = max(n, 1).

Theorem 1. Let J = (D,2) be an arbitrary interpretation of Form.

We can construct a certain interpretation J, = (D, 1,), whose domain D,
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contains at most | + 2F . nt members,? and which satisfies the following
condition:

(1) I, e iff TEo.

~

Proof. We define the binary relation = in D by:
— if k=0 then we put := D x D
— if k > 0 then for dy,ds € D

dy 2dy iff foreveryi=1...,k:dy €p;) iff do € 2(p;) .

~

Clearly, = is an equivalence relation. We denote an equivalence class of d
in D by ||d||. We have: for any one-place predicate symbol p, (0 < i < k)
and any d € D

(*) deup;) it |d]| € u(p;)-

Let p := |D/~|. Obviously 0 < p < 2%, Let {Dy,...,D,} := D/~.

Obviously the sets Dq,..., D, are non-empty and pairwise disjoint. More-
over, D = J?_, D;.
If k£ > 0 then for every i = 1,...,p there is a sequence (d;,,...,0;, ) of

zeros and ones such that D; = z(pl)é"1 N...Nwpg)%% where z(pj)1 =1(p;)
and 1(p;)? = D —u(p;). If k =0 then Dy = D.

Let A:={a1,...,a;} and X:= {xq,...,xp }.

For i =1,...,p we choose from the set D; —1[A] a subset D} such that
|D}| = min(|D; — 1[A]|,n™).

We put

p
D, =AU | D
=1

The set D, contains, at most, [ + 2k . nt members.

2 For a given monadic sentence which has no variables this estimate can be reduced
to It +min(2F —1,¢—11) where [T := max(l, 1) and ¢ being the number of name letters
occurring in this sentence.
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A projection from D on D, is a function 7 : D — D, such that for

anyde Dandi=1,...,p:

(i) if d € D; —[A] then 7(d) € D,
(ii) if d € D, then m(d) = d.

The conditions (i) and (ii) imply:

(') d € D; —4A] iff n(d) € D
(it') d € D; iff w(d) € Dr U (D; N1[A)).

Let Proj be the set of all projections from D on D,,. Clearly, Proj # @.

We choose from the set Proj one projection m*. We define the mapping

1, from NL into D, by:?

and from PL into P(D,,) by:

15(p) == Dy Na(p).

Obviously — by the definition of the set D, and by (ii) in the definition

of the set Proj — for i = 1,...,1 we have:

(%%) 15(a;) = 1(a;) .

For any s € DV let Proj® be the set of all projections which are
injections on the set s[X] U 1[A].

> and individual constants; k& > 0 and

3 If ¢ is a pure monadic formula (without ‘=
Il = 0 = n), then the given proof is “classical”’. In this case, we may also suppose that
D, :=D/~ and 1,(p) :={A € D/~ : A C(p)}. Moreover, if ¢ is a monadic formula
with individual constants and without ‘=’ (k > 0 and | = 0 = n), we may suppose that
Dy =D/, 15(p) :={A € D/~ : ACa(p)} and 2,(b) := ||2(b)||. In both cases there

exists exactly one “canonical” projection || - || : D 3 d — ||d|| € Dy.
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Lemma 1. For any s € DV?": Proj® # (.

Proof. Notice that for any s € DV and i = 1,...,m we have the
condition (ii’) and |D; N (s[X] U[A])| < |DF U (D; N[A])]. Actually, D; N
(s(X] U 1JA]) = (D; (1 s[X)) U (Ds nafA]) = ((Di — 4[A]) (1 s[X]) U (D; 1
Al N s[X]) U (D; A = ((D; — 2JA]) N s[X]) U (D; N]A]). Moreover,
|(D; —[A]) N s[X]| < min(|D; —1[A]|,n) < |Df| and Df N1[A] = @. Thus
1D, 1 (slX] U AD| < D] + Di (ilA]| = D} U (Ds ilA]). 0

For any s € DV and 7 € Proj we have mo s € Dga'. Moreover:

Lemma 2. Suppose that 1 is a subformula of ¢. Then for any s € DV
and m € Proj®:

I, Elros] i Tkl

Proof. Induction on . If ¢ is atomic, either
(a) for some y € Varand i = 1,...,k, ¥ = p,;(y), or
(b) for some be NL and i =1,...,k, ¢ = p;(b), or
(c) for some y € Var, ) =y =y, or
(d) for some b€ NL, ¢» = b= b, or
(e) for some i,j =1,...,n, i # j, ¥ = x; = xj, or
(f) for some i,j =1,...,l,i# j, ¥ = a; = a;, or
(g) forsomei=1,...,nand j=1,...,[, ¥ =x; = a; or ¢ = a; = Xx;.

Let s and 7 be arbitrary members of DV and Proj® respectively.

In the first case: J, = p;(y) [mos] iff w(s(y)) € 1,(p;) iff — by the
definition of v, — 7(s(y)) € u(p;) iff — by (%) and (ii") — s(y) € «(p;) iff
J = piy) [s]-

In the second case: J, |= p;(b) [mos] iff 1,(b) € 1,(p;) iff — by the
definition of 2, — 7*(2(b)) € 2(p;) iff — by (%) and (ii’) — 2(b) € o(p;) iff
J = pi(b) [s].

In cases (c) and (d): 1 is true in both J, and J.

In case (e): J, = x; = x;[mos]iff n(s(x;)) = w(s(x;)) iff — by the
definition of Proj® — s(x;) = s(x;) iff J |= x; = x; [s].
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In case (f): J, | a; = aj [mos] iff 1,(a;) = 1,(aj) iff — by (%x) —
1(a;) =(a;) iff I = a; = a; [s].

In case (g): J, = x = aj [mos] iff m(s(x;)) = 1,(a;) iff — by (xx) —
m(s(x;)) = o(a;) iff — by (ii) in the definition of Proj — m(s(x;)) = m(x(a;))
iff — by the definition of Proj® — s(x;) = «(a;) iff J |= x; = a; [s]. Similarly
for a; = x;.

If v = —x then: J, = ¢ [ros]iff not J, = x[mos| iff — by the
hypothesis of the induction — not J |= x [s] iff I |= ¢ [s].

The argument is similar if 1 is a conjunction or other truth-functional
compound of simpler formulas.

Suppose then that ¢ =Vy x. Let J, = Vy x [mos], i.e. forall e € D,
Jo = x |:(7TO s)(;)] Let d be an arbitrary member of D. Then, since

o s(?) = (mos)("D) and 7, | x [(m s)(’f(;”)], it follows that J,, =
X [w o s(ﬂyl)} . Hence, by inductive hypothesis, J |= y [s (Uyl)] . S0 7 k= Yy [s].
Conversely, assume that 7 = Yy x [s], i.e., for all d € D, I | x [s (Cyl)]. Let
e be an arbitrary member of D,. Then J = x [s (;)] Hence, by inductive
hypothesis, T, = x [w o s(f/)}. Moreover, by (ii) in the definition of Proj,
mos(0) = (mos)(5). Thus I, = x [(mo8)()]- S0 9, = Yy [(mos)).

The argument is similar if ¢ is an existential quantification of a simpler

formula. O

Suppose now that J, = ¢. Let s : Var — D be an arbitrary assignment.
Then wos : Var — D, for any m € Proj®. Thus J, |= ¢ [r o s|. Therefore
J E ¢[s], by Lemma 2. So J = ¢.

Assume that J = . Let s : Var — D,, be an arbitrary assignment.
Then also s : Var — D; so J = ¢[s]. Hence, by Lemma 2, I, |= ¢[7 o s]
for any 7 € Proj®. Moreover, by property (ii) in the definition of Proj, we
have s = w o s. Therefore J, = ¢[s]. Thus I, |= ¢. O

4. Corollaries
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Both from the “if” part of () and from the “only if” part of (f) in
Theorem 1 we obtain:

Corollary 1. For any ¢ € Form the following conditions are equivalent:

(i) ¢ is logically valid;
(ii) ¢ is true in every interpretation, whose domain contains at most | +

2% . nt members;
where k, | and n™ we defined in the introduction and in section 3.

Proof. “=” By the definition of logically valid formulas.

“<” Proof by the “if” part of (). Let J be an arbitrary interpretation
of Form. Then J, = ¢, by (ii).

(a) Therefore, by using the “if” part of (1), J | ¢. So ¢ is logically
valid.

(b) Let cl(y) be a universal closure of ¢. Then J, = cl(¢) and not
J, = cl(yp), since cl(p) is a sentence. Therefore, by using the “only if”
part of (1), not I = —cl(¢). Hence J |= cl(p) and I = ¢. So ¢ is logically
valid. O

Corollary 2. Suppose that ¢ € Form, respectively:

1)  contains no individual constants,
2)  contains no one-place predicate letters,
3)  contains no non-logical symbols,
4)  does not contain the equals-sign,

5)  does not contain the equals-sign and any individual constants.

Then ¢ is logically valid iff o is true in every interpretation whose domain
contains, respectively, at most:

1) 2F.nt

2) l+nt
3) nt
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4) 2k
5) 2k
members.

5. Expressive power of sentences from Form

5.1. Let o be a given satisfiable sentence which contains no individual
constants. Suppose that p;, ..., p, are the k (distinct) predicate letters that
occur in ¢ (k > 0), and that o has n distinct variables in non-tautological
identities (possibly n = 0). Let n™ := max(n, 1).

We will use the following abbreviations. Let xq,...,x,+ be the n™ dis-
tinct variables from Var. For 0 < j < n™ and for any sequence (d1,...,d;)
of zeros and ones we say that:

Pl py(x;)  abbreviates  p{'(x;) A... APy (x;)

where for i = 1,... k:

s
~To,
~
—
XX
~—
Il

Moreover

Ep‘i1 e pi’“ =0 abbreviates = 3dx; p‘il e pi’“ (x1),

and for any 0 < m < n™:

Ep‘f1 ---pi’“ =m abbreviates
5 5 .
Ixi.3x (A PPN AN X =X A
1<j<m 1<i<j<m

5 .
A VX (PY - P (Xms1) D VX = @)
The sentence “Ep‘il ---pi’“ = m” says that there exist exactly m elements
which are p‘il pi’“ ers. Finally:

Ep‘f1 e pi’“ >nt abbreviates

Ixg .3 (A p‘il---pi’“(xj)/\ A —x=xj).
1<j<n 1<i<j<n
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The sentence “EpS* - - - pi’“ > n” says that there exist at least n™ elements
which are p‘il e pi’“ ers.

We prove semantically that the sentence o is equivalent to some sen-

tence o“"M in canonical disjunctive normal form. The sentence o™ will
be a disjunction (possibly degenerate), each disjunct in which is a conjunc-

tion of the following form:

5 5 5 5 +
A Epyt---pf =ms,..5, (or Epit---ppt >nT)
01,-..,0,=0,1

with 2% cojuncts (exactly one for every sequence (61, ...,d;)) and such that
0<ms 5 <nt.

Let 7 = (D,1) be an interpretation of Form. Let #(p;)" = u(p;) and
1(p;)® = D —(p;). For every sequence (d1,...,d;) of zeros and ones if
l1(p1)° N...Na(py)%| < n' then let k3 5 be the sentence Ep)t - plk =
l2(p1)% N ... N2 pg)%|; otherwise let ”gl...ék be the sentence Epd* ---pi’“ >

nT. For J we put the following conjunction:

J . J
R = /\ Kél---ék
01,...,0,=0,1

The succession of conjuncts in &’ is assigned by the linear order < on

{0, 1}* defined by the condition: (31,...,81) < (6%,...,02)iff (61 ...01)2 <
(6% ...67)2. We obtain:

Lemma 3. If J = o, then J |= &°. ]

We have (n+)2k mappings from {0,1}* into {0,1,...,n"}. Let M
be the set of all of them. Any interpretation J determines the mapping
m? € M such that

NE R S0 if [u(p)% N .. N a(py)% | > nt
61...0% |Z(p1)61 a...N Z(Pk)5k| otherwise

where o(p;)" is 1(p;) while 1(p;)° is the complement of (p;).
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Lemma 4. The set {k’ : J|= o} is non-empty and finite.

Proof. For any model J of o we have

51 6k _ J 1 J +.
i _JERY e pt =my s, if mg, 5, <n;
Epi'---p) =n if mg, 5, =n".

Hence for all models J1, J5 of o if m’* = m?2 then ’t = k2. O

By Lemma 4 we can put:

O_CDNF .— v Iij )

J is a model of o

The succession of disjuncts in " is assigned by the linear order <* on

M defined by the condition: m’ <* md iff (mg
d

2k 2k
07" .67

.m’

55’“...5,?)”*“ <

1 1 o
16k

(mg1 s )nt 1 where the set {0,1}* is ordered linearly by <.
17k

CDNF

Theorem 2. The sentences o and o are equivalent.

Proof. Suppose that J |= 0. Since by Lemma 3 we have J = &7,
J E o™, by the definition of oN*.

Let, on the other hand, J = (D,2) and J = o“". Then, by the
definition of o°*¥, for some model J = (E,7) of o we obtain J = x9.

Since J |= Iiglmgk, for any (d1,...,0%) € {0,1}* we have that either

) )
l(p)™ NN a(pe)™ | = [9(py)* N .o N glpe) | <t

or
) )
(p)™ Moo Nalp) | = mt and [3(p)* M. N a(p) | = .

Let I, = (Dy,1,) and J, = (E,,),) be interpretations obtained by
the procedure given in the proof of Theorem 1. Let p > 0 be the number
of sequences (81, . ..,68;) for which ¢(p,)* N ... Nu(pg)% # @. Then D, =

P_, Df and E, = J/_, Ef where for lu(p)’ M. .Nalp,) % | = ms,...5, > 0
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we choose from the sets 2(p;)™ N ... N 1(py, )% and 2(p) N N 3(py.)%%
respectively subsets D} and E} such that |D}| = |E}| = min(mg, s, ,n").

There is a one-one function A with domain D, and range F, such that
the restriction h| py 18 a one-one mapping of D} onto Ef for i = 1,...,p.
Hence for j = 1,...,k we obtain h[1,(p,)] = jo(p;) Where 1,(p;) = Dy N
1(.0]‘) and Jo(Pj) =E;N J(Pj)-

By induction on the length of formulas it is easy to show that: J, = o
iff §, = 0. Hence J E o iff §, = o iff I, = o iff I = o, by Theorem 1.
Since J | o, we obtain J = 0. O

Remark. There is an effective procedure for finding o“°N*.

Actually, the sentence o is satisfiable iff the sentence — o is not logically
valid. Since, by Corollary 2, the second fact is decidable, so is the first fact.

For a given k and n we say that the interpretation J; and Jo are
equivalent (we write: J; = Jy) iff m’1 = m72. Clearly, = is an equivalence
relation. There exist (n+)2k equivalence classes.

For any interpretation J we have J = J, where J, is defined in Theo-
rem 1 (the domain of J, is finite). Moreover, if J; = J5 then x’1 = x’2. (By
the method used in the proof of Theorem 2, we can obtain that: if J; = J5,
then J; E o iff Iy = 0.)

Finally, we can choose from any equivalence class of the relation = an
interpretation J whose domain is finite. For J we have an effective method
for deciding whether ¢ is true in J or not. In the first case we add &’ to
O.CDNF. I:l

5.2. Let o be a given satisfiable sentence which contains no individual
constants and no one-place predicate letters, i.e., kK = 0. Suppose that o
has n > 0 distinct variables in non-tautological identities.

We will use the following abbreviations. Let xq, ..., x, be the n distinct
variables from Var and for any 0 < m < n we establish that:

E=m abbreviates

Ixi3xn (AN X=X A X1 VX = )
1<i<j<m 1<i<m
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The sentence “E = m” says that there exist exactly m elements.

E>n abbreviates I3 (A X =x).
1<i<j<n

The sentence “E > n” says that there exist at least n elements.

We prove that the sentence o is equivalent to some sentence o“™* in

CDNF

canonical disjunctive normal form. The sentence o will be a disjunction

(possibly degenerate), in which each disjunct has the following form:
E=m (or E>n)

where 0 < m < n.

Let J = (D,12) be an interpretation of Form. If |D| < n then let a” be
the sentence E = | D|; otherwise let o’ be the sentence E > n. We obtain:

Lemma 3'. If J = o, thenJ |= o’. O

Lemma 4'. The set {’ : J |= o} is non-empty and finite. ]

By Lemma 4’ we can establish that:

O_CDNF — \/ afJ .

J is a model of o

CPNF is the same as the natural succession

The succession of disjuncts in o
in the set {1,2,...,n}.
The proof of the following theorem is similar to the proof of Theorem 2.

CDNF

Theorem 2'. The sentences o and o are equivalent. ]

5.3. Let o be a given satisfiable sentence from Form. Let P, be the set
of k predicate letters (possibly & = 0) occurring in o. Let B, be the set of
¢ name letters occurring in subformulas p(b) of o, and let A, be the set of
[ name letters that occur in non-tautological identities in o (possibly ¢ = 0
and/or [ = 0 and/or B, N A, # ). Moreover, let o have the n variables
in non-tautological identities (possibly n = 0).
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It is possible to show that the sentence o is equivalent to some sentence

CDNF CDNF

o in canonical disjunctive normal form. o is a disjunction (possibly
degenerate), each disjunct in which is a conjunction, the conjuncts in which
are of certain specified forms. Every conjunct must be either p(b) or a = a’
or the negation of them (for some p € P,, b € B, and a,a € A,), or

analogous sentences to those in 5.1 (resp. in 5.2 if kK = 0).

6. Notes about the estimations in [2]

G. Boolos and R. Jeffrey (and R. Jensen) proved in [2, p. 252-254] for
sentences without individual constants that:

If 0 is a monadic sentence which is satisfiable, then o is true in
some interpretation whose domain contains at most 2% - members,
k being the number of predicate letters and r being the number
of variables in o. (Theorem 1, p. 250)*

From this, one easily concludes:

If 0 is a sentence containing no non-logical symbols, then if o is
satisfiable, o is true in some interpretation whose domain contains
no more members than there are variables in o. (Theorem 2,
p. 254)

Another consequence of Theorem 1 from [2] is a result about pure
monadic sentences, i.e., sentences without the equals-sign and individual

constants:

If 0 is a pure monadic sentence which is satisfiable, then o is
true in some interpretation whose domain contains at most 2%

members. (Theorem 3, p. 254)

The last theorem is an immediate consequence of Theorem 1 by the fact
that:

4 For monadic formulas containing no individual constants, we obtain from Theo-
rem 1: a formula ¢ is logically valid iff ¢ is true in every interpretation whose domain
contains at most 2F - r members.
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Any pure monadic sentence is [logically] equivalent to a pure
monadic sentence [i.e. they are true in the same interpretations]
containing exactly the same predicate letters and only one vari-
able. (Theorem 4, p. 254)°

In exercise 25.2 Boolos and Jeffrey have written: “Show that the esti-
mates 2¥ - 7, r and 2¥ in Theorems 1, 2, 3 cannot be reduced”. Actually
the estimates in Theorems 1 and 2 cannot be reduced by the method used
in the proof of Theorem 1 in [2] (cf. the relation of exact likeness of two
finite sequences of elements of domains of interpretations). However, we

have presented here a method which improves their estimations.

Observe that for the sentences containing no individual constants, a
corollary of the “only if” part of (}) is:

Corollary 3. If a sentence ¢ is satisfiable, then ¢ is also true in some
interpretation whose domain contains at most 2¥ -n* members, k being the
number of predicate letters and n™ being the number of variables in non-
tautological identities which are subformulas of ¢, or when non-tautological
identities do not occur in p, n™ = 1.

Corollary 3 we can obtain also from Theorem 1 in [2] and from the
following analogue of Theorem 4 in [2] (which we do not prove):

For any monadic sentence o there exists a monadic sentence o’ which

has the properties:

(i) o and o’ are logically equivalent;

5 For pure monadic formulas, a corollary of Theorem 4 is: a formula ¢ is logically
valid iff o is true in every interpretation whose domain contains at most 2¥ members.

For a formula ¢(X1,...,Xr, a1,...,d¢) — containing r > n¥t variables and q > [
individual constants — we write @(X1,...,Xr, Xp41,...,Xr+q) for the formula obtained
by replacing all occurrences of a; in ¢(X1,...,Xr,a1,...,3q) by Xpqi. If X3 # X;
for i,7 = r+1,...,7r+q and i # j, then: o(X1,...,Xr,d1,...,dq) is logically valid
iff o(X1,...,Xr, Xr41,...,Xr+q) is logically valid. Thence, by Theorem 1, we obtain:
o(X1,..., Xr, a1,...,4aq) is logically valid iff o(X1,...,Xr, Xr41,-..,Xr4q) IS true in ev-
ery interpretation, whose domain contains at most 2% - (¢ + r) members. Let us notice
that 28 - (g 4+7r) > 1+ 2F - nt.
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(ii) o and o’ contain exactly the same predicate letters (possibly none);

(iii) o’ has as many variables as ¢ in non-tautological identities or, when
non-tautological identities do not occur in o, then ¢’ has exactly one
variable.
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