
REPORTS ON MATHEMATICAL LOGIC

30 (1996), 83–99

Zdzis law GRODZKI and Jerzy MYCKA

THE NEW CLASSES

OF MARKOV-LIKE K-ALGORITHMS

A b s t r a c t This paper continues the line initiated in [1] of uni-

form formalization of some classes of formal algorithms. The succes-

sive new classes RMAk and RMAk of right-hand side Markov-like

k-algorithms are introduced. The classes RMAk and RMAk of

algorithms are ”symmetric” to the classes MAk and MAk of left-

hand side Markov-like k-algorithms which have been introduced in

[1]. The equivalence of the classes RMAk and RMAk and the class

MNA of Markov normal algorithms is shown here. This implies the

closure properties of the above classes under the same operations as

of MNA.

1. Introduction

In this paper two new classes RMAk and RMAk of right-hand side

Markov-like k-algorithms are introduced and briefly characterized. Every

algorithm A of RMAk ∪ RMAk is defined, analogously as of MNA, by

means of an indexed set P = {(xi, yi), 1 ≤ i ≤ n} of productions in an

Received June 19, 1995

84 ZDZIS LAW GRODZKI AND JERZY MYCKA

alphabet Σ in which some final productions are distinguished. The suc-

cession of use of the productions of P to a transformed word t ∈ Σ? is

the same for algorithms of RMAk (and slightly different for algorithms of

RMAk) as of MNA. The difference is only im the usage of productions

to the transformed words. For algorithms of RMAk we replace the j-th

right-hand side subword of the left sides of productions, for maximal j ≤ k,

by their right sides (for algorithms of MAk we replace the j-th left-hand

side subword of the left sides of productions, for maximal j ≤ k, by their

right sides).

For algorithms of RMAk we choose a production (xi, yi) of P with

the least index i ≤ |P | such that xi occurs at least k times in a transformed

word t. If so then we replace the k-th right-hand side subword of xi in t by

yi, otherwise we choose a production (xj , yj) with the least index j ≤ |P |,

such that xj occurs in t (k − 1) times and so on.

The equivalence of the classes RMAk, RMAk and MNA is shown.

The following reasons motivate the introduction of the classes RMAk

and RMAk of algorithms:

(1) We verify a transformed word by algorithms of RMAk from the right

to the left side. The sentences of some natural languages (Jewish,

Chinese, Arabic) are also written from the right to the left side. This

idea suggests the introduction of the right-hand side algorithms;

(2) The operations of addition, subtraction and multiplication of positive

integers (written in binary notation) are performed from the right to

the left side. Therefore the complexity of computations of algorithms

of RMAk can be - for some problems - less time consuming than of

MNA;

(3) Inspiration of the use of the k-th subword of some words in the trans-

formed ones is based on genuine processes (biological, chemical, medi-

cal). Accumulation of some attributes implies the growth of organisms

(for example illness);

(4) The algorithms of MAk and RMAk (as well as MAk and RMAk)

differ only in the direction of verification of the transformed words.

CLASSES OF MARKOV-LIKE K -ALGORITHMS 85

Therefore both classes can be used exchangeably with respect to the

kind of computations.

2. The designated algorithms

The notion of designated algorithm introduced here is based on the

notion of iterative algorithms (Mazurkiewicz [3]) but the formulation is

quite different. Mazurkiewicz algorithms are defined by means of relations

and they are formal models of programs without procedures. In this paper

we use the notion of designated algorithm to define two new classes of right-

hand side Markov-like k-algorithms. These classes are ”symmetric” to the

classes of left-hand side Markov-like k-algorithms introduced in [1].

By a designated algorithm DA we mean a tuple (P, Pi, Pf , V, L,Contr ,Tr),

where V is a nonempty set of objects, P = {(xi, yi) ∈ V 2 : 1 ≤ i ≤ n} is

an indexed set of productions, Pi and Pf are distinguished (nonempty)

subsets of P (not necessarily disjoint) of initial and final productions,

L = {1, . . . , n} is the set of labels of P , Contr : P × L × V 7→ P × L

is a partial function, called a control of DA and Tr : P × L× V 7→ V is a

total function, called a transformation of DA.

Informally, we say that a production (xi, yi) of designated algorithm

DA is effectively used to an object v if Tr ((xi, yi), i, v) 6= v for xi 6= yi.

More precisely, a production (xi, yi) of a designated algorithm DA =

(P, Pi, Pf , V, L,Contr ,Tr) is said to be effectively used to an object v if

Contr ((xi, yi), i, v) is an initial production for (xi, yi) 6∈ Pf , otherwise (if

(xi, yi) ∈ Pf) for algorithm DA′ = (P, Pi, Pf − {(xi, yi)}, V, L,Contr ,Tr)

the result of Contr ((xi, yi), i, v) is an initial production, too.

A sequence v = v1, v2, . . . ∈ V∞ (finite or infinite) is said to be a

computation of a designated algorithm DA = (P, Pi, Pf , V, L,Contr ,Tr)

iff there exists a sequence of productions with their labels (trace) of P of

the form p = ((xi1 , yi1), i1), ((xi2 , yi2), i2) . . . satisfying the conditions:

(2.1) l(v) = l(p) + 1, where l(v) and l(p) denote the lengths of v and p, or

are both infinite;

86 ZDZIS LAW GRODZKI AND JERZY MYCKA

(2.2) (xi1 , yi1) ∈ Pi;

(2.3) For every j, 1 ≤ j < l(p), we have vj+1 = Tr((xij
, yij

), ij , vj) and

((xij+1
, yij+1

), ij+1) = Contr((xij
, yij

), ij , vj);

(2.4) For every m > 1, l(v) = m iff a production (xim−1
, yim−1

) is final and

(xim−1
, yim−1

) is effectively used to vm−1. In this case ((xim−1
, yim−1

), im−1, vm−1) 6∈

Dom(Contr), where Dom(φ) denotes the domain of φ.

A partial function π : V → V is said to be computable by an algorithm

DA iff for every v ∈ Dom(π) there exist a computation and a trace of the

form:

v = v1, . . . , vp

p = ((xi1 , yi1), i1), . . . , ((xip−1
, yip−1

), ip−1)

such that v = v1, ((xip−1
, yip−1

), ip−1, vp−1) 6∈ Dom(Contr) and π(v) = vp.

3. Markov-like k-algorithms

A new class RMAk of right-hand side Markov-like k-algorithms is

introduced. Every algorithm A of RMAk is defined, analogously as of

MNA, by means of an indexed set P = {(xi, yi), 1 ≤ i ≤ n} of produc-

tions1 in any alphabet Σ which are labelled by numbers of L = {1, . . . , n}.

The set of labelled productions is called a schema of productions. Prac-

tically schema of productions will be written as sequence of productions.

The succession of use of the productions of P to a transformed word t ∈ Σ?

is the same as for algorithms of MNA, but the manner of use of the pro-

ductions is slightly different. We choose a production (xi, yi), with the

least index i ≤ n, such that xi is a subword of t. Then we replace the j-th

right-hand side subword of xi by yi, for maximal j ≤ k. If (xi, yi) is final

then we stop, otherwise we follow analogously with the new obtained word

t1 as with t.

At the beginning let us introduce some notations.

1 We will also write non-final productions in the form: xi −→ yi, final productions

in the form: xi −→ ·yi and in a general case xi −→ (·)yi.

CLASSES OF MARKOV-LIKE K -ALGORITHMS 87

For an alphabet Σ let Σ? denote the set of all finite sequences over Σ

including the empty sequences ε.

For every v = v1. . .vm ∈ Σ? and 1 ≤ i ≤ j ≤ m v[i,j] denotes a

sequence vi. . .vj . We additionally assume that if i > j then v[i,j] = ε.

For every words u, v ∈ Σ? a word u is said to be a subword of v, u�v,

iff there are words w, z ∈ Σ? (possibly empty) such that v = wuz.

For u, v ∈ Σ? let us set

Occv;u = {j ∈ N : v[j,j+p−1] = u} and Occq
v;u = {j ∈ Occv;u : j ≤ q}

where p is the length of u.

We additionally assume that Occv;u = Ø if ¬(u�v).

A word u is said to be the right-hand side i-th subword of u in v,

u�r
iv, iff u = v[j,j+p−1], j = minq(|Occq

v;u| = s− i+1), where s = |Occv;u|.

We additionally assume that if u = ε than by ε�r
iv we understand

ε�r
1v.

A word u = v[j,j+p−1] is said to be at most right-hand side i-th subword

of u in v, u�r
≤iv, iff u�r

iv, or there exists 1 ≤ l < i such that u�r
lv and

¬(u�r
l+1v).

Example 3.1. Let u = 01 and v = 1010111011. Then Occv;u =

{2, 4, 8} and Occ0
v;u = Occ1

v;u = Ø;Occ2
v;u = Occ3

v;u = {2}; Occi
v;u for

i = 4, 5, 6, 7 is equal to {2, 4} and for j ≥ 8 Occj
v;u = {2, 4, 8}.

Example 3.2. For the words u, v from Example3.1 the 1-st right-

hand side subword of u in v has initial position equal to mink(|Occk
v;u| =

3 − 1 + 1 = 3) = 8, the 2-nd right-hand side subword of u in v has

initial position equal to mink(|Occk
v;u| = 3− 2 + 1 = 2) = 4, the 3-rd right-

hand side subword of u in v has initial position equal to mink(|Occk
v;u| =

3− 3 +1 = 1) = 2, 3-rd right-hand side subword is also at most right-hand

side i-subword, for i ≥ 4.

Let us assume the following convention. A schema of productions:

xa1y −→ (·)xy, xa2y −→ (·)xy, . . . , xany −→ (·)xy, where Σ = {a1, . . . , an}

88 ZDZIS LAW GRODZKI AND JERZY MYCKA

will be briefly denoted by xαy −→ (·)xy, (α ∈ Σ). The additional symbols

(6∈ Σ) will be denoted by γ, ξ, χ, ψ, λ (with or without subscripts).

Let us introduce the class RMAk.

Definition 3.3. By a Markov-like k-algorithm A ∈ RMAk in alpha-

bet Σ we mean the designated algorithm:

A = (P, Pi, Pf , V, L,Contr 1,Tr 1)

such that V = Σ?, P = {(x1, y1), (x2, y2), . . . , (xn, yn)}, where xi, yi ∈ Σ?,

for all i, 1 ≤ i ≤ n, xn = ε, yn = ε and (xn, yn) ∈ Pf , Pi = {(x1, y1)},

L = {1, . . . , n},

Contr 1((xi, yi), i, v) =







((x1, y1), 1) if xi�
r
≤kv and (xi, yi) 6∈ Pf

((xi+1, yi+1), i+ 1) if ¬(xi�
r
≤kv)

undefined if xi�
r
≤kv and (xi, yi) ∈ Pf

Tr1((xi, yi), i, v) =

{

v[1,j−1]yiv[j+m,l(v)] if v[j,j+m−1] is at most

k subword of xi in v

v otherwise

An algorithm A of RMAk, (k ≥ 1) is said to be an algorithm over an

alphabet Σ iff it is an algorithm in some alphabet Σ1 ⊃ Σ.

The notions of computation of k-algorithm A as well as computable

function by A can be introduced analogously as for designated algorithms.

4. Equivalence of the classes RMA1 and MNA

Let A and A1 be the classes of algorithms (in or over an alphabet Σ)

which are considered in this paper and let A ∈ A, A1 ∈ A1. Then A and A1

are said to be equivalent with respect to Σ (A≡ΣA1) iff for every x ∈ Σ?,

the results A(x) and A1(x) of application of both algorithms to the initial

word x are the same or are both undefined.

The equivalence of the classes of algorithms A and A1 should be under-

stood as the equivalence with respect to an alphabet Σ. In more detail for

every algorithm A ∈ A there exists algorithm A1 ∈ A1 such that A≡ΣA1

and conversely for every A1 ∈ A1 there exists A ∈ A such that A1≡ΣA.

CLASSES OF MARKOV-LIKE K -ALGORITHMS 89

Theorem 4.1. The classes RMA1 and MNA are equivalent.

Proof. At the beginning we shall prove the following statement:

(1) For every algorithm A ∈ RMA1 in an alphabet Σ there exists an

equivalent algorithm M ∈ MNA over Σ.

Let P = {(xi, yi) : 1 ≤ i ≤ n} be an indexed set of productions of

an algorithm A ∈ RMA1. Let us define the auxiliary Markov normal

algorithms M ′ and M ′′ with the production sets P ′ = {P ′
1, . . . , P

′
6}

2 and

P ′′ = {P ′′
1, P

′′
2, . . . , P

′′
n} of the form:3

P ′
1 = (ηη −→ ξ) (η, ξ 6∈ Σ)

P ′
2 = (ξβ −→ βξ)

P ′
3 = (ξη −→ ξ)

P ′
4 = (ξ −→ ·ε)

P ′
5 = (ηαβ −→ βηα) (α, β ∈ Σ)

P ′
6 = (ε −→ η)

and P ′′
j = (x̂j −→ (·)ŷj) for all productions Pj = (xj −→ (·)yj)

4.

Let us see that M ′ inverts every word x ∈ Σ?, i. e. M ′(x) = x̂. Let us

put M = M ′ ◦M ′′ ◦M ′. As the algorithm M is the composition of three

Markov normal algorithms M ′,M ′′ and M ′ then it is also Markov normal

algorithm (see [4], Chapter 5, p.214).

It follows immediately from the construction that M(x) = A(x) for

every x ∈ Σ?.

The following statement:

(2) For every Markov normal algorithm M1 ∈ MNA in an alphabet Σ

there exists an equivalent algorithm A1 ∈ RMA1 over an alphabet Σ;

2 The above algorithm is recalled after [4]
3 A production Pj of the form xj −→ (·)yj can be written in the form Pj = (xj −→

(·)yj)
4 If x = x1x2 . . . xn−1xn then x̂ = xnxn−1 . . . x2x1.

90 ZDZIS LAW GRODZKI AND JERZY MYCKA

can be analogously proved as of (1).5

The validity of Theorem 4.1 follows from statements (1) and (2).

5. Equivalence of the classes RMA1 and RMAk

Lemma 5.1. For every algorithm A ∈ RMAk in an alphabet Σ there

exists an algorithm M ∈ RMA1 over an alphabet Σ such that A≡ΣM .

Proof. At the beginning let us introduce some notation. For x =

x1. . .xp (xj ∈ Σ, 1 ≤ j ≤ p) let In(x, a) = x1a. . .xp. For each symbol α of

Σ, let αj be a new symbol, and let Σj be the alphabet consisting of these

αj ’s (1 ≤ j ≤ k, α0 will denote the symbol α without subscripts)6. Let us

put Σ′′ = Σ∪Σ1∪Σ2 ∪ · · ·∪Σn ∪∆1∪∆2∪ · · · ∪∆n ∪Ψ(= {ψ1, . . . , ψn})∪

Γ(= {γ1, . . . , γn}) ∪ Λ(= {λ1, . . . , λn}) ∪ X (= {χ0, χ1, . . . , χn}) ∪ N (=

{ν1, . . . , νn}) ∪ Z(= {ζ1, . . . , ζn}) where ∆j = {δj
0, δ2j

1, . . . , δj
k−1}.

We have to prove that M ≡Σ A. Let us give at the beginning an idea

of the construction.

The production set Srk
j (Σ′′) which is assigned to every production

Pj : xj −→ (·)yj consists of k additional symbols δi
j , i = 0, . . . , k− 1, where

δ0j is an initial symbol. We replace the i-th right-hand side subword of xj

in a transformed word t by δi
jxj . Then δk−1

j xj denotes that the k-th right-

hand side subword of xj in t has been found. If so then we replace δk−1
j xj

by yjλj . Symbol λj denotes the fact that the k-th right-hand side subword

of xj in t is replaced by yj. If there is not the k-th right-hand side subword

of xj in t then the symbol δi
j is moved to the end of t and is replaced by ψj .

Then the production ψjε −→ χj introduces new symbol χj which is then

moved in left-hand side direction so long as we find the last right-hand side

subword of xj in t. Is so then we replace this subword by yj. If there is not

the i-th right-hand side subword of xj in t for 1 ≤ i < k then we introduce

5 Proof of closure of RMA1 under composition is identical - with replacing in the

additional productions x −→ y by x̂ −→ ŷ - to the proof of closure MNA under

composition in [4].
6 The same notations is in Mendelson’s monograph [4].

CLASSES OF MARKOV-LIKE K -ALGORITHMS 91

new symbol ζj at the beginning of t. Now the transformed word has the

form ζjt.

An auxiliary schema Saj transforms the words in alphabet Σj into the

words in alphabet Σj+1 introducing as prefix symbol δ0j+1, if there exists

the symbol ζj in the transformed word, or into the words in alphabet Σ, if

xj is at most k-th right-hand side subword of t (in the transformed word

there exists the symbol νj). If Pj belongs to the set Pf and xj is at most

k-th right-hand side subword of t then Saj use the final production to stop

algorithm.

For each production Pj of A ∈ RMAk we create a set of productions:

Srj
k(Σ′′):

δj
k−2xj

j −→ In(xj
j , δj

k−1)

δj
k−3xj

j −→ In(xj
j , δj

k−2)

...

δj
0xj

j −→ In(xj
j , δj

1)

δj
k−1xj

j −→ yj
jλj

χjxj
j −→ yj

jλj

χjα −→ αχj

χjε −→ ζj

εψj −→ χj

αδj −→ δjα (α ∈ Σ ∪ Σ1 ∪ Σ2 ∪ · · · ∪ Σn, δj ∈ ∆j)

εδj −→ ψj

αλj −→ λjα

ελj −→ νj .

Let us assign to each schema Srj
k(Σ′′) (1 ≤ j ≤ n) an auxiliary schema

Saj(Σ
′′) of the form:

γjα −→ αγj

αζj −→ ζjα
j+1 (αj ∈ Σj)

εζj −→ γj

γjε −→ δ0j+1

92 ZDZIS LAW GRODZKI AND JERZY MYCKA

νjα −→ α0νj (α0 ∈ Σ)

νjε −→ ∗ε where ∗ := ε if Pj = (xj −→ yj) or ∗ := · if Pj = (xj −→

·yj)

if 1 ≤ j ≤ n− 1 or

γjα −→ αγj

αζn −→ ζnα
0 (α0 ∈ Σ, α ∈ Σ ∪ Σ1 ∪ Σ2 ∪ · · · ∪ Σn)

εζn −→ ·ε

νnα −→ α0νn

νnε −→ ∗ε where ∗ := ε if Pn = (xn −→ yn) or ∗ := · if Pn = (xn −→

·yn)

if j = n.

One additional set, initial Si(Σ′′), has the form:

Si(Σ′′) :

χ0α −→ α1χ0

χ0ε −→ δ01

εα −→ χ0α

The construction of Srk
j guarantees that this schema simulates Pj . The

fact that Σi ∩ Σj = Ø for i 6= j implies that none collision between Srk
j

and Srk
i can take place. The proof can be simply completed by induction

on the number n of productions.

This determines a Markov-like 1-algorithm M with the indexed set of

productions P = (Sa1, Sa2, . . . , San, Sr1
k, Sr2

k, . . . , Srn
k, Si)

over Σ such that for arbitrary x ∈ Σ? the results M(x) and A(x) of

application of both algorithms M and A to x are the same, M(x) = A(x),

or both results are undefined.

Lemma 5.2. For every algorithm M1 ∈ RMA1 in an alphabet Σ and

a number k ≥ 1 there exists an algorithm A1 ∈ RMAk over an alphabet

Σ such that A1≡ΣM1.

Proof. Let M1 be a Markov-like 1-algorithm in an alphabet Σ with

an indexed set of productions P = {P1, P2, . . . , Pn}.

CLASSES OF MARKOV-LIKE K -ALGORITHMS 93

Let us assign to every production Pj (1 ≤ j ≤ n) an indexed produc-

tions set Srj(Σ
′)(Σ′ = Σ ∪ {ξ1, . . . , ξn+1} ∪ {γ1, . . . , γn}) of the form:

ξjxj −→ (·)yj

αξj −→ ξjα (α ∈ Σ)

εξj −→ γj

γjα −→ αγj (α ∈ Σ)

γjε −→ ξj+1

Let A1 ∈ RMAk be an algorithm with indexed sets of productions

(Sr1, Sr2, . . . , Srn, ξn+1 −→ ·ε, ε −→ ξ1).

Let us give some comments on the above construction.

Each schema Srj is assigned to Pj . As every production of algorithm

A1 transforms at most k-th subword of xj then it is sufficient to use in

Srj two singular symbols ξj , γj . Introduction of these symbols implies that

each at most k-th subword of ξjxj is in reality first one of ξjxj . To find xj

we will move ξj so long as the production ξjxj −→ yj will be used. The

symbol γj denotes fact, that the transformed word has not a subword xj .

Because the above additional symbols are different for every Sri, Srj , i 6= j,

none collision between Sri and Srj can occurr.

Proof, can be completed by induction on the number of productions

of M1.

The above consideration implies that M1 ≡Σ A1.

Theorem 5.3. The classes RMA1 and RMAk(k ≥ 1) are equivalent.

Proof immediately follows from previous lemmas.

Theorem 5.4. The classes MNA and RMAk(k ≥ 1) are equivalent.

Proof. Theorems 4.1 and 5.3 determine the equivalence RMAk≡ΣMNA.

Theorem 5.5. Every class RMAk(k ≥ 1) is closed under composi-

tion, ramification, propagation and iteration operations.

Proof. MNA is closed under all the above operations (see Mendelson

[4], pp. 214–218) and the classes RMAk(k ≥ 1) and MNA are equivalent.

94 ZDZIS LAW GRODZKI AND JERZY MYCKA

6. A class RMAk of right-hand side Markov-like k-algorithms

New class RMAk of right-hand side Markov-like k-algorithms intro-

duced here is ”symmetric” to the class MAk of left-hand side k-algorithms

introduced in [1]. The difference is only such that we verify the transformed

words by using the algorithms of RMAk from the right to the left, whereas

by means of algorithms of MAk from the left to the right.

Every k-algorithm of RMAk is defined by means of an indexed set of

productions P = {(xi, yi) : 1 ≤ i ≤ kn + 1} in an alphabet Σ which are

labelled by the numbers {1, . . . , kn + 1}. Some final productions are also

distinguished. The indexed set of productions consists of k identical subsets

{(xi, yi) : (p − 1)n + 1 ≤ i ≤ pn}, 1 ≤ p ≤ k with n productions, but for

every subset productions are connected with different subword (k + 1 − p)

left side of production in the transformed word.

For brevity we shall write a schema of productions without repetitions

in the form P = {(xi, yi) : 1 ≤ i ≤ n}

Given word t ∈ Σ? we choose a production (xj , yj) with the least index

j ≤ n such that xj occurs in t at least k times. If so then we replace the

k-th right-hand side subword of xj in t by yj . If (xj , yj) is final then we

stop, otherwise we follow analogously with the new obtained word t1 as

with t. If there does not exist a production (xj , yj) as above, then we

repeat verification for k − 1 and so on.

We give a formal definition of the class RMAk.

Definition 6.1. By a Markov-like k-algorithm A ∈ RMAk in the

alphabet Σ we mean a designated algorithm

A = (P, Pi, Pf , V, L,Contr 2,Tr 2)

such that V = Σ?, P = {(x1, y1), (x2, y2), . . . , (xkn+1, ykn+1)}, where for

all i, 1 ≤ i ≤ kn + 1, xi, yi ∈ Σ?, and for all j(n < j < kn + 1)xj =

xj−n and yj = yj−n and xkn+1 = ε, ykn+1 = ε, (xkn+1, ykn+1) ∈ Pf and

CLASSES OF MARKOV-LIKE K -ALGORITHMS 95

Pi = {(x1, y1)}, L = {1, . . . , kn + 1} and the functions Contr 2 and Tr2

which follows:

Contr 2((xi, yi), i, v) =























((x1, y1), 1) xi�
r
lv, l = k − entier(i−1

n
),

and (xi, yi) 6∈ Pf

((xi+1, yi+1), i+ 1) ¬(xi�
r
lv), l = k − entier(i−1

n
)

undefined xi�
r
lv, l = k − entier(i−1

n
),

and (xi, yi) ∈ Pf

Tr2((xi, yi), i, v) =











v[1,j−1]yiv[j+m,l(v)] if v[j,j+m−1] is l right-hand side

subword of xi in v

where l = k − entier(i−1
n

)
v otherwise

An algorithm A ∈ RMAk is said to be an algorithm over an alphabet Σ

iff it is an algorithm in some alphabet Σ1 ⊃ Σ.

Now we explain on the example an activity of algorithms of this class.

Example 6.2. Let us define a right-hand side 2-algorithm A ∈ RMA2

in the alphabet Σ = {0, 1} by means of set of productions P = {P1 =

(01, 10), P2 = (111, 010), P3 = (01, 10), P4 = (111, 010), P5 = (ε, ε)} (first

two productions are used for second right-hand side subword of left sides of

productions in transformed words, next two productions are used for first

right-hand side subword of left sides of productions in transformed words,

this set of productions without repetition has the form {(01, 10), (111, 010)})

and Pf = {(ε, ε)}. For v = 1111 the computation and trace of A have the

form:

v = ((1111), (1111), (0101), (1001), (1001),

(1001), (1010), (1010), (1010), (1100), (1100),

(1100), (1100), (1100))

p = ((P1, 1), (P2, 2), (P1, 1), (P1, 1), (P2, 2),

(P3, 3), (P1 , 1), (P2, 2), (P3, 3), (P1, 1), (P2, 2),

(P3, 3), (P4, 4), (P5, 5))

96 ZDZIS LAW GRODZKI AND JERZY MYCKA

The result of application of A to the word 1111 is equal Tr
RMA2

((ε, ε), 5, 1100) =

1100.

Theorem 6.3. The classes RMAk and MNA are equivalent.

Proof. First let us prove the equivalence of the classes RMAk and

RMA1. The proof of equivalence RMAk and RMA1 presented here is

the simple modification of the proof of equivalence MAk and MNA given

in [1](Theorem 5.2.).

We prove this equivalence in two steps.

(1) For every k-algorithm A ∈ RMAk in an alphabet Σ there exists an

equivalent algorithm M ∈ RMA1 over an alphabet Σ such that A ≡Σ M ;

(2) For every algorithm M ∈ RMA1 in an alphabet Σ there exists an

equivalent algorithm A2 ∈ RMAk over an alphabet Σ such that A2 ≡Σ M .

First we prove (1).

Let Σ′ = Σ ∪ {γj
l,i, λi}) where 1 ≤ i ≤ n and 1 ≤ j, l ≤ k. For an

algorithm A ∈ RMAk with the schema of productions (x1, y1), . . . , (xn, yn)

(productions are without repetition) we create for each production (xi, yi)

an auxiliary block of productions Sri
l of the form:

γj
l,ixi −→ In(xi, γj+1

l,i) for j < k

γk
l,ixi −→ yi this production is final iff (xi, yi) is

final

αγj
l,i −→ γj

l,iα for j < k

εγj
l,i −→ λl,i for j < k

λl,iα −→ αλl,i

λl,iε −→ γ1
l,i+1 if i+1 = n then right side =γ1

l−1,1

Let M ∈ RMA1 be an algorithm with a schema of productions

(Sr1
k, Sr2

k, . . . , Srn
k, Sr1

k−1, Sr2
k−1, . . . , Srn

k−1, . . . , Sr1
1, Sr2

1, . . . , Srn
1, (γ1

0,1 −→

ε), (ε −→ γ1
k,1)), ((γ1

0,1 −→ ε) ∈ Pf). One can easily see that A ≡Σ M .

To prove (2) let us consider an algorithm M of RMA1 in the alphabet

Σ with the schema of productions of the form: (x1, y1), . . . , (xn, yn).

CLASSES OF MARKOV-LIKE K -ALGORITHMS 97

Let us construct an algorithm A2 ∈ RMAk in the alphabet (Σ′ =

Σ ∪ {ξ1, . . . , ξk+1} ∪ {γ1, . . . , γk}) as follows.

Let us assign to the j-th production (xj , yj) (1 ≤ j ≤ n) the following

schema of productions Srj :

αξj −→ ξjα

βjα −→ αβj

εξj −→ γj (α ∈ Σ)

βjε −→ ε

γjα −→ αγj

γjε −→ ξj+1

Let A2 ∈ RMAk be an algorithm with a schema of productions (with-

out repetition) of the form: ((ξ1x1 −→ ζ1), . . . , (ξnxn −→ ζn), Sr1, Sr2, . . . , Srn, (εγn −→

ε) ∈ Pf , (ε −→ ξ1)); where ζi = yiβi if i 6∈Pf and otherwise ζi = yi and

this production is final.

One can easily see that A2 ≡Σ M .

The above constructions of new algorithms use schemas Srj , Sr
l
j , where

each Srj or Srl
j simulate one production Pj from given algorithm. The addi-

tional symbols guarantee that algorithms replace respective k-th subwords

of xj in the transformed word and preserve from collisions between different

Srj , Sri. Because the above proof of equivalence RMAk and RMA1 is

modification of the proof of equivalence MAk and MNA given in [1] we

omit here any explanation. Formal proof can be done by induction on the

number of productions.

Theorem 4.1 shows that the classes MNA and RMA1 are equivalent.

Hence the classes RMAk and MNA are equivalent, too.

Theorem 6.4. Every class RMAk (k ≥ 1) is closed under the fol-

lowing operations: composition, ramification, propagation and iteration.

Proof follows from equivalence of RMAk and MNA and from closure

MNA under above operations.

7. Final remarks

98 ZDZIS LAW GRODZKI AND JERZY MYCKA

The equivalence of the classes MAk and MAk of left-hand side Markov-

like k-algorithms and the class MNA of Markov normal algorithms has

been shown in [1]. In this paper the equivalence of the classes RMAk and

RMAk and MNA is shown. Therefore every of the classes MAk, MAk,

RMAk, RMAk and MNA can be used exchangeably for computing of

some functions (for example Boolean) or for solution of some decidable

problems.

Let us also add that the mentioned above classes of k-algorithms are

only partially worked out. The majority of problems, especially a problem

of complexity, have remained open till now.

References

[1] Grodzki Z., Mycka J. The equivalence of some classes of algorithms, Annales Uni-

versitatis Mariae Curie-Sklodowska, vol XLIX, 6(1995), 85–99.

[2] Markov, A. The Theory of Algorithms, (in Russian), Trudy Mat. Inst. Steklov.

XLII, (1954).

[3] Mazurkiewicz, A Podstawy teorii programowania (Foundation of the programming

theory), Problemy przetwarzania informacji, vol.2 (1974), 37–93,(in Polish).

[4] Mendelson, E., Introduction to Mathematical Logic, The University Series in Math-

ematics, Princeton, (1964).

Institute of Management and Foundation of Technics,

Department of Applied Mathematics,

Technical University of Lublin

ul. Bernardynska 13

20-950 Lublin, Poland.

Institute of Mathematics,

CLASSES OF MARKOV-LIKE K -ALGORITHMS 99

M. Curie-Sklodowska University

pl. M. Curie-Sklodowskiej 1

20-031 Lublin, Poland.

